Renal Resistive Index in Cardiac Surgery: A Narrative Review
Abstract
1. Introduction
- -
- Patient-related risk factors include advanced age, female sex, cardiogenic shock requiring intra-aortic balloon pump (IABP), reduced left ventricular ejection fraction (<35%), heart failure, COPD, diabetes, left main coronary disease, prior cardiac surgery, peripheral arterial disease, emergency surgical status, and pre-existing chronic kidney disease (CKD).
- -
- Procedure-related risk factors encompass prolonged CPB duration (>100–120 min), aortic cross clamp time, hemolysis, hemodilution, embolism, use of CPB versus off-pump techniques, pulsatile versus non-pulsatile flow, and deep hypothermic circulatory arrest.
- -
2. Materials and Methods
3. Renal Perfusion: Hemodynamic Monitoring Through Doppler Ultrasound and Resistive Index Assessment
3.1. Renal Resistive Index Examination Techniques
3.2. Factors Impacting Renal Resistive Index
3.3. Applicability and Clinical Utility of the Renal Resistive Index
3.4. Renal Resistive Index in Cardiac Surgery
3.4.1. Renal Resistive Index in Advanced Surgical and Percutaneous Techniques
3.4.2. Renal Resistive Index in Neonatal and Pediatric Population
Author (Year) | Population | Surgical Context | RRI Cut-Off | Key Findings |
---|---|---|---|---|
Guinot et al. (2013) [54] | 82 patients | Cardiac Surgery | >0.73 | RRI predicts AKI progression (AUC 0.93) |
Kararmaz et al. (2015) [55] | 60 patients | Cardiac Surgery | - | RRI correlates with AKI; good method agreement |
Renberg et al. (2024) [56] | 96 patients | Cardiac Surgery | >0.70 | Preop. RRI linked to long-term renal/cardiovascular outcomes |
Hertzberg et al. (2017) [57] | 96 patients | Cardiac Surgery | >0.70 | RRI > 0.74 increases AKI risk |
Kajal et al. (2022) [62] | 115 patients | Cardiac Surgery (CABG) | >0.68 | RRI associated with AKI (AUC 0.705) |
Zhou et al. (2020) [66] | 74 patients | Cardiac Surgery | >0.68 | RRI predicts AKI |
Wybraniec et al. (2020) [67] | 111 patients | Cardiac Surgery (CAD patients) | >0.645 | Elevated RRI predicts long-term mortality |
Valeri et al. (2022) [68] | 73 patients | Cardiac Surgery (aortic surgery) | >0.75 | RRI associated with AKI |
Corradi et al. (2015) [69] | 61 patients | Post-cardiac surgery | - | RRI reflects renal oxygen supply-demand mismatch |
Zaouter et al. (2018) [70] | 50 patients | Cardiac Surgery | - | RRI + biomarkers improve early AKI detection |
Kararmaz et al. (2021) [71] | 42 patients | Cardiac Surgery | - | RRI + biomarkers improve early AKI detection |
Samoni et al. (2022) [72] | 31 patients | Pre-cardiac surgery | - | RRI variation predicts AKI risk |
Andrew et al. (2018) [73] | 318 patients | Cardiac Surgery | - | Algorithm for RRI estimation from automatically processed intraoperative renal Doppler waveforms |
Bossard et al. (2011) [74] | 125 patients | Cardiac Surgery | >0.74 | RRI > 0.74 predicts AKI |
Dhawan et al. (2024) [76] | 80 patients | Cardiac Surgery | >0.75 | Elevated RRI associated with AKI |
Andrew et al. (2018) [77] | 100 patients | Cardiac Surgery (valve) | >0.70 | High RRI linked to AKI development |
Giles et al. (2024) [78] | 150 patients | Cardiac Surgery | - | Combined Doppler improves AKI prediction |
Vo et al. (2018) [79] | Review | Cardiac Surgery (aortic valve surgery) | >0.75 | RRI useful in high-risk patients |
Sinning et al. (2014) [80] | 132 patients | TAVI | >0.85 | RRI detects AKI and paravalvular regurgitation |
Barua et al. (2024) [81] | - | LVAD | - | Elevated RRI in LVAD patients |
De Souza et al. (2024) [82] | 58 children | Pediatric cardiac surgery | >0.85 | RRI predicts AKI in children |
Sun et al. (2024) [83] | 16 neonates | ECMO | >0.79 | Elevated RRI associated with neonatal AKI |
Ohuchi et al. (2017) [84] | 280 Fontan patients | Fontan follow-up | >0.71 | RRI predicts mortality in Fontan patients |
4. Renal Resistive Index in Focus: A Valuable Diagnostic Tool for CSA-AKI
4.1. The Role of Renal Resistive Index in Diagnosis of CSA-AKI
4.2. Can RRI Serve as a Standalone Diagnostic Marker?
4.3. The Synergistic Role of RRI and Novel Biomarkers in Early AKI Detection
4.4. Is Routine Quantification of RRI Clinically Beneficial?
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RRI | Renal Resistive Index |
CSA AKI | Cardiac surgery-associated acute kidney injury |
AKI | Acute kidney injury |
GFR | Glomerular filtration rate |
sCR | Serum creatinine |
ICU | Intensive care unit |
TEE | Transesophageal echocardiography |
CPB | Cardiopulmonary bypass |
KDIGO | Kidney Disease Improving Global Outcomes |
RIFLE | Risk, Injury, Failure, Loss, End-stage renal disease |
AKIN | Acute Kidney Injury Network |
References
- Wang, Y.; Bellomo, R. Cardiac surgery-associated acute kidney injury: Risk factors, pathophysiology and treatment. Nat. Rev. Nephrol. 2017, 13, 697–711. [Google Scholar] [CrossRef] [PubMed]
- Massoth, C.; Zarbock, A. Diagnosis of Cardiac Surgery-Associated Acute Kidney Injury. J. Clin. Med. 2021, 10, 3664. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goyal, A.; Daneshpajouhnejad, P.; Hashmi, M.F.; Bashir, K. Acute Kidney Injury. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar] [PubMed]
- Ricci, Z.; Cruz, D.N.; Ronco, C. Classification and staging of acute kidney injury: Beyond the RIFLE and AKIN criteria. Nat. Rev. Nephrol. 2011, 7, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Parikh, C.R. Current concepts and advances in biomarkers of acute kidney injury. Crit. Rev. Clin. Lab. Sci. 2021, 58, 354–368. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; He, C.; Jia, L.; Ge, C.; Long, L.; Bai, Y.; Zhang, N.; Du, Q.; Shen, L.; Zhao, H. Performance of the renal resistive index and usual clinical indicators in predicting persistent AKI. Ren. Fail. 2022, 44, 2028–2038. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhi, H.J.; Cui, J.; Yuan, M.W.; Zhao, Y.N.; Zhao, X.W.; Zhu, T.T.; Jia, C.M.; Li, Y. Predictive performance of renal resistive index, semiquantitative power Doppler ultrasound score and renal venous Doppler waveform pattern for acute kidney injury in critically ill patients and prediction model establishment: A prospective observational study. Ren. Fail. 2023, 45, 2258987. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.Y.; Kim, J.S.; Jeong, K.H.; Kim, S.K. Acute Kidney Injury: Biomarker-Guided Diagnosis and Management. Medicina 2022, 58, 340. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ho, J.; Tangri, N.; Komenda, P.; Kaushal, A.; Sood, M.; Brar, R.; Gill, K.; Walker, S.; MacDonald, K.; Hiebert, B.M.; et al. Urinary, Plasma, and Serum Biomarkers’ Utility for Predicting Acute Kidney Injury Associated with Cardiac Surgery in Adults: A Meta-analysis. Am. J. Kidney Dis. 2015, 66, 993–1005. [Google Scholar] [CrossRef]
- Ostermann, M.; Zarbock, A.; Goldstein, S.; Kashani, K.; Macedo, E.; Murugan, R.; Bell, M.; Forni, L.; Guzzi, L.; Joannidis, M.; et al. Recommendations on Acute Kidney Injury Biomarkers from the Acute Disease Quality Initiative Consensus Conference: A Consensus Statement. JAMA Netw. Open. 2020, 3, e2019209. [Google Scholar] [CrossRef]
- Ortega, L.M.; Heung, M. The use of cell cycle arrest biomarkers in the early detection of acute kidney injury. Is this the new renal troponin? Nefrologia 2018, 38, 361–367. [Google Scholar] [CrossRef]
- Geng, J.; Qiu, Y.; Qin, Z.; Su, B. The value of kidney injury molecule 1 in predicting acute kidney injury in adult patients: A systematic review and Bayesian meta-analysis. J. Transl. Med. 2021, 19, 105. [Google Scholar] [CrossRef] [PubMed]
- Scurt, F.G.; Bose, K.; Mertens, P.R.; Chatzikyrkou, C.; Herzog, C. Cardiac Surgery-Associated Acute Kidney Injury. Kidney360 2024, 5, 909–926. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hariri, G.; Collet, L.; Duarte, L.; Martin, G.L.; Resche-Rigon, M.; Lebreton, G.; Bouglé, A.; Dechartres, A. Prevention of cardiac surgery-associated acute kidney injury: A systematic review and meta-analysis of non-pharmacological interventions. Crit Care. 2023, 27, 354. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fuhrman, D.Y.; Kellum, J.A. Epidemiology and pathophysiology of cardiac surgery-associated acute kidney injury. Curr. Opin. Anaesthesiol. 2017, 30, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Sgouralis, I.; Evans, R.G.; Layton, A.T. Renal medullary and urinary oxygen tension during cardiopulmonary bypass in the rat. Math. Med. Biol. 2017, 34, 313–333. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, L.; Hong, L.; Ma, A.; Chen, Y.; Xiao, Y.; Jiang, F.; Huang, R.; Zhang, C.; Bu, X.; Ge, Y.; et al. Intraoperative venous congestion rather than hypotension is associated with acute adverse kidney events after cardiac surgery: A retrospective cohort study. Br. J. Anaesth. 2022, 128, 785–795. [Google Scholar] [CrossRef] [PubMed]
- Ranucci, M.; Romitti, F.; Isgrò, G.; Cotza, M.; Brozzi, S.; Boncilli, A.; Ditta, A. Oxygen delivery during cardiopulmonary bypass and acute renal failure after coronary operations. Ann. Thorac. Surg. 2005, 80, 2213–2220. [Google Scholar] [CrossRef] [PubMed]
- Baines, C.P. The mitochondrial permeability transition pore and ischemia-reperfusion injury. Basic Res. Cardiol. 2009, 104, 181–188. [Google Scholar] [CrossRef]
- Meersch, M.; Zarbock, A. Prevention of cardiac surgery-associated acute kidney injury. Curr Opin Anaesthesiol. 2017, 30, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Schrier, R.W.; Abraham, W.T. Hormones and hemodynamics in heart failure. N. Engl. J. Med. 1999, 341, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Kitts, D.; Bongard, F.S.; Klein, S.R. Septic embolism complicating infective endocarditis. J. Vasc. Surg. 1991, 14, 480–485. [Google Scholar] [CrossRef] [PubMed]
- O’Neal, J.B.; Shaw, A.D.; Billings, F.T. Acute kidney injury following cardiac surgery: Current understanding and future directions. Crit. Care 2016, 20, 187. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Loubon, C.; Martínez-Paz, P.; García-Morán, E.; Tamayo-Velasco, Á.; López-Hernández, F.J.; Jorge-Monjas, P.; Tamayo, E. Genetic Susceptibility to Acute Kidney Injury. J. Clin. Med. 2021, 10, 3039. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheruku, S.R.; Raphael, J.; Neyra, J.A.; Fox, A.A. Acute Kidney Injury after Cardiac Surgery: Prediction, Prevention, and Management. Anesthesiology 2023, 139, 880–898. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wijeysundera, D.N.; Karkouti, K.; Dupuis, J.Y.; Rao, V.; Chan, C.T.; Granton, J.T.; Beattie, W.S. Derivation and validation of a simplified predictive index for renal replacement therapy after cardiac surgery. JAMA 2007, 297, 1801–1809. [Google Scholar] [CrossRef] [PubMed]
- Thakar, C.V.; Arrigain, S.; Worley, S.; Yared, J.P.; Paganini, E.P. A clinical score to predict acute renal failure after cardiac surgery. J. Am. Soc. Nephrol. 2005, 16, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.N.; Shenoy, M.P.; Gopalakrishnan, M.; Kiran, B.A. Applicability of the Cleveland clinic scoring system for the risk prediction of acute kidney injury after cardiac surgery in a South Asian cohort. Indian Heart J. 2018, 70, 533–537. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boddi, M.; Natucci, F.; Ciani, E. The internist and the renal resistive index: Truths and doubts. Intern. Emerg. Med. 2015, 10, 893–905. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Liu, K.; Darko, I.N.; Xu, X.; Li, L.; Xing, C.; Mao, H. Predictive value of renal resistive index for the onset of acute kidney injury and its non-recovery: A systematic review and meta-analysis. Clin. Nephrol. 2020, 93, 172–186. [Google Scholar] [CrossRef] [PubMed]
- Boddi, M.; Bonizzoli, M.; Chiostri, M.; Begliomini, D.; Molinaro, A.; Buoninsegni, L.T.; Gensini, G.F.; Peris, A. Renal Resistive Index and mortality in critical patients with acute kidney injury. Eur. J. Clin. Investig. 2016, 46, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Provenchère, S.; Plantefève, G.; Hufnagel, G.; Vicaut, E.; de Vaumas, C.; Lecharny, J.B.; Depoix, J.P.; Vrtovsnik, F.; Desmonts, J.M.; Philip, I. Renal dysfunction after cardiac surgery with normothermic cardiopulmonary bypass: Incidence, risk factors, and effect on clinical outcome. Anesth. Analg. 2003, 96, 1258–1264. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.B.; Qin, H.; Ma, W.G.; Zhao, H.L.; Zheng, J.; Li, J.R.; Sun, L.Z. Can Renal Resistive Index Predict Acute Kidney Injury After Acute Type A Aortic Dissection Repair? Ann. Thorac. Surg. 2017, 104, 1583–1589. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, S.; Das, R.K.; Paul, A.; Bhunia, K.S.; Roy, D. A transesophageal echocardiography technique to locate the kidney and monitor renal perfusion. Anesth. Analg. 2013, 116, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Zaitoun, T.; Megahed, M.; Elghoneimy, H.; Emara, D.M.; Elsayed, I.; Ahmed, I. Renal arterial resistive index versus novel biomarkers for the early prediction of sepsis-associated acute kidney injury. Intern. Emerg. Med. 2024, 19, 971–981. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, L.; Chao, Y.; Wang, X.; Chinese Critical Ultrasound Study Group. Shock Resuscitation—The Necessity and Priority of Renal Blood Perfusion Assessment. Aging Dis. 2022, 13, 1056–1062. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Noitz, M.; Szasz, J.; Dünser, M.W. Regional perfusion monitoring in shock. Curr. Opin. Crit. Care 2020, 26, 281–288. [Google Scholar] [CrossRef]
- Schnell, D.; Darmon, M. Bedside Doppler ultrasound for the assessment of renal perfusion in the ICU: Advantages and limitations of the available techniques. Crit. Ultrasound J. 2015, 7, 24. [Google Scholar] [CrossRef]
- Di Nicolò, P.; Granata, A. Renal intraparenchymal resistive index: The ultrasonographic answer to many clinical questions. J. Nephrol. 2019, 32, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Regolisti, G.; Maggiore, U.; Cademartiri, C.; Belli, L.; Gherli, T.; Cabassi, A.; Morabito, S.; Castellano, G.; Gesualdo, L.; Fiaccadori, E. Renal resistive index by transesophageal and transparietal echo-doppler imaging for the prediction of acute kidney injury in patients undergoing major heart surgery. J. Nephrol. 2017, 30, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Beaubien-Souligny, W.; Huard, G.; Bouchard, J.; Lamarche, Y.; Denault, A.; Albert, M. Doppler Renal Resistance Index for the Prediction of Response to Passive Leg-Raising Following Cardiac Surgery. J. Clin. Ultrasound. 2018, 46, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Moussa, M.D.; Scolletta, S.; Fagnoul, D.; Pasquier, P.; Brasseur, A.; Taccone, F.S.; Vincent, J.-L.; De Backer, D. Effects of fluid administration on renal perfusion in critically ill patients. Crit. Care 2015, 19, 250. [Google Scholar] [CrossRef]
- Le Dorze, M.; Bouglé, A.; Deruddre, S.; Duranteau, J. Renal Doppler ultrasound: A new tool to assess renal perfusion in critical illness. Shock 2012, 37, 360–365. [Google Scholar] [CrossRef]
- Bude, R.O.; Rubin, J.M. Relationship between the resistive index and vascular compliance and resistance. Radiology 1999, 211, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Calabia, J.; Torguet, P.; Garcia, I.; Martin, N.; Mate, G.; Marin, A.; Molina, C.; Valles, M. The relationship between renal resistive index, arterial stiffness, and atherosclerotic burden: The link between macrocirculation and microcirculation. J. Clin. Hypertens. 2014, 16, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Mostbeck, G.H.; Gössinger, H.D.; Mallek, R.; Siostrzonek, P.; Schneider, B.; Tscholakoff, D. Effect of heart rate on Doppler measurements of resistive index in renal arteries. Radiology 1990, 175, 511–513. [Google Scholar] [CrossRef] [PubMed]
- Candan, Y.; Akinci, M.; Eraslan, O.; Yilmaz, K.B.; Karabacak, H.; Dural, H.I.; Tatar, I.G.; Kaya, I.O. The correlation of intraabdominal pressure with renal resistive index. J. Surg. Res. 2020, 252, 240–246. [Google Scholar] [CrossRef]
- Viyannan, M.; Kappumughath; Mohamed, S.; Nagappan, E.; Balalakshmoji, D. Doppler sonographic evaluation of resistive index of intra-renal arteries in acute ureteric obstruction. J. Ultrasound. 2021, 24, 481–488. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yuksel, U.C.; Anabtawi, A.G.; Cam, A.; Poddar, K.; Agarwal, S.; Goel, S.; Kim, E.; Bajzer, C.; Gornik, H.L.; Shishehbor, M.H.; et al. Predictive value of renal resistive index in percutaneous renal interventions for atherosclerotic renal artery stenosis. J. Invasive Cardiol. 2012, 24, 504–509. [Google Scholar] [PubMed]
- Afsar, B.; Elsurer, R. Increased renal resistive index in type 2 diabetes: Clinical relevance, mechanisms and future directions. Diabetes Metab. Syndr. 2017, 11, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.; Lu, Z.B.; Li, B.; Li, B.; Xing, D.; Liu, L.X.; Wang, X.T.; Hu, Z.J. Ultrasonic evaluation of systemic and renal perfusion in sepsis patients before and after fluid resuscitation. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 12450–12460. [Google Scholar] [CrossRef] [PubMed]
- Darmon, M.; Schortgen, F.; Vargas, F.; Liazydi, A.; Schlemmer, B.; Brun-Buisson, C.; Brochard, L. Diagnostic accuracy of Doppler renal resistive index for reversibility of acute kidney injury in critically ill patients. Intensive Care Med. 2011, 37, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Darmon, M.; Bourmaud, A.; Reynaud, M.; Rouleau, S.; Meziani, F.; Boivin, A.; Benyamina, M.; Vincent, F.; Lautrette, A.; Leroy, C.; et al. Performance of Doppler-based resistive index and semi-quantitative renal perfusion in predicting persistent AKI: Results of a prospective multicenter study. Intensive Care Med. 2018, 44, 1904–1913. [Google Scholar] [CrossRef] [PubMed]
- Guinot, P.G.; Bernard, E.; Arab, O.A.; Badoux, L.; Diouf, M.; Zogheib, E.; Dupont, H. Doppler-based renal resistive index can assess progression of acute kidney injury in patients undergoing cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2013, 27, 890–896. [Google Scholar] [CrossRef] [PubMed]
- Kararmaz, A.; Arslantas, M.K.; Cinel, I. Renal Resistive Index Measurement by Transesophageal Echocardiography: Comparison with Translumbar Ultrasonography and Relation to Acute Kidney Injury. J. Cardiothorac. Vasc. Anesth. 2015, 29, 875–880. [Google Scholar] [CrossRef] [PubMed]
- Renberg, M.; Sartipy, U.; Bell, M.; Hertzberg, D. Association of Preoperative Renal-Resistive Index with Long-term Renal and Cardiovascular Outcomes After Cardiac Surgery. J. Cardiothorac. Vasc. Anesth. 2024, 38, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Hertzberg, D.; Ceder, S.L.; Sartipy, U.; Lund, K.; Holzmann, M.J. Preoperative Renal Resistive Index Predicts Risk of Acute Kidney Injury in Patients Undergoing Cardiac Surgery. J. Cardiothorac. Vasc. Anesth. 2017, 31, 847–852. [Google Scholar] [CrossRef] [PubMed]
- Marty, P.; Ferre, F.; Labaste, F.; Jacques, L.; Luzi, A.; Conil, J.M.; Silva, S.; Minville, V. The Doppler renal resistive index for early detection of acute kidney injury after hip fracture. Anaesth Crit Care Pain Med. 2016, 35, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Peillex, M.; Marchandot, B.; Bayer, S.; Prinz, E.; Matsushita, K.; Carmona, A.; Heger, J.; Trimaille, A.; Petit-Eisenmann, H.; Jesel, L.; et al. Bedside Renal Doppler Ultrasonography and Acute Kidney Injury after TAVR. J. Clin. Med. 2020, 9, 905. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cruz, E.G.; Broca Garcia, B.E.; Sandoval, D.M.; Gopar-Nieto, R.; Gonzalez Ruiz, F.J.; Gallardo, L.D.; Ronco, C.; Madero, M.; Vasquez Jimenez, E. Renal Resistive Index as a Predictor of Acute Kidney Injury and Mortality in COVID-19 Critically Ill Patients. Blood Purif. 2022, 51, 309–316. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cherry, A.D.; Hauck, J.N.; Andrew, B.Y.; Li, Y.J.; Privratsky, J.R.; Kartha, L.D.; Nicoara, A.; Thompson, A.; Mathew, J.P.; Stafford-Smith, M. Intraoperative renal resistive index threshold as an acute kidney injury biomarker. J. Clin. Anesth. 2020, 61, 109626. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kajal, K.; Chauhan, R.; Negi, S.L.; Gourav, K.P.; Panda, P.; Mahajan, S.; Sarna, R. Intraoperative evaluation of renal resistive index with transesophageal echocardiography for the assessment of acute renal injury in patients undergoing coronary artery bypass grafting surgery: A prospective observational study. Ann. Card. Anaesth. 2022, 25, 158–163. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fogagnolo, A.; Grasso, S.; Dres, M.; Gesualdo, L.; Murgolo, F.; Morelli, E.; Ottaviani, I.; Marangoni, E.; Volta, C.A.; Spadaro, S. Focus on renal blood flow in mechanically ventilated patients with SARS-CoV-2: A prospective pilot study. J. Clin. Monit. Comput. 2022, 36, 161–167. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferré, F.; Marty, P.; Folcher, C.; Kurrek, M.; Minville, V. Effect of fluid challenge on renal resistive index after major orthopaedic surgery: A prospective observational study using Doppler ultrasonography. Anaesth. Crit. Care Pain Med. 2019, 38, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Rajaraman, B.; Darlong, V.; Soni, K.D.; Aggarwal, R.; Dehran, M.; Devasenathipathy, K.; Trikha, A.; Baidya, D.K. Renal Doppler ultrasound to predict acute kidney injury in critically ill patients with acute circulatory failure. J. Clin. Monit. Comput. 2025, 39, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Ren, A.; Zhu, H.; Zhang, H.; Li, Q.; Liu, J. The correlation between intraoperative renal resistive index and cardiac surgery-associated acute kidney injury—A pilot, prospective, observational, single center study. J. Clin. Anesth. 2020, 67, 110066. [Google Scholar] [CrossRef] [PubMed]
- Wybraniec, M.T.; Bożentowicz-Wikarek, M.; Olszanecka-Glinianowicz, M.; Chudek, J.; Mizia-Stec, K. Renal resistive index and long-term outcome in patients with coronary artery disease. BMC Cardiovasc. Disord. 2020, 20, 322. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Valeri, I.; Persona, P.; Pivetta, E.; De Rosa, S.; Cescon, R.; Petranzan, E.; Antonello, M.; Grego, F.; Navalesi, P. Renal-Resistive Index and Acute Kidney Injury in Aortic Surgery: An Observational Pilot Study. J. Cardiothorac. Vasc. Anesth. 2022, 36, 2968–2974. [Google Scholar] [CrossRef] [PubMed]
- Corradi, F.; Brusasco, C.; Paparo, F.; Manca, T.; Santori, G.; Benassi, F.; Molardi, A.; Gallingani, A.; Ramelli, A.; Gherli, T.; et al. Renal Doppler Resistive Index as a Marker of Oxygen Supply and Demand Mismatch in Postoperative Cardiac Surgery Patients. BioMed Res. Int. 2015, 2015, 763940. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zaouter, C.; Potvin, J.; Bats, M.L.; Beauvieux, M.C.; Remy, A.; Ouattara, A. A combined approach for the early recognition of acute kidney injury after adult cardiac surgery. Anaesth. Crit. Care Pain Med. 2018, 37, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Kararmaz, A.; Arslantas, M.K.; Aksu, U.; Ulugol, H.; Cinel, I.; Toraman, F. Evaluation of acute kidney injury with oxidative stress biomarkers and Renal Resistive Index after cardiac surgery. Acta Chir. Belg. 2021, 121, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Samoni, S.; Villa, G.; De Rosa, S.; Husain-Syed, F.; Guglielmetti, G.; Tofani, L.; De Cal, M.; Nalesso, F.; Meola, M.; Ronco, C. Ultrasonographic Intraparenchymal Renal Resistive Index Variation for Assessing Renal Functional Reserve in Patients Scheduled for Cardiac Surgery: A Pilot Study. Blood Purif. 2022, 51, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Andrew, B.Y.; Andrew, E.Y.; Cherry, A.D.; Hauck, J.N.; Nicoara, A.; Pieper, C.F.; Stafford-Smith, M. Intraoperative Renal Resistive Index as an Acute Kidney Injury Biomarker: Development and Validation of an Automated Analysis Algorithm. J. Cardiothorac. Vasc. Anesth. 2018, 32, 2203–2209. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bossard, G.; Bourgoin, P.; Corbeau, J.J.; Huntzinger, J.; Beydon, L. Early detection of postoperative acute kidney injury by Doppler renal resistive index in cardiac surgery with cardiopulmonary bypass. Br. J. Anaesth. 2011, 107, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhou, K.; Wang, D.; Zhang, N.; Liu, J. The predictive value of the intraoperative Renal Pulsatility Index for acute kidney injury in patients undergoing cardiac surgery. Minerva Anestesiol. 2020, 86, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- Dhawan, R.; Trela, K.; Junge, J.M.; Viox, D.; Wroblewski, K.E.; Chaney, M.A. Renal resistive index assessment by intraoperative transesophageal echocardiography is associated with acute kidney injury after cardiac surgery: A prospective observational study. Minerva Anestesiol. 2024, 90, 1108–1117. [Google Scholar] [CrossRef] [PubMed]
- Andrew, B.Y.; Cherry, A.D.; Hauck, J.N.; Nicoara, A.; Maxwell, C.D.; Konoske, R.M.; Thompson, A.; Kartha, L.D.; Swaminathan, M.; Stafford-Smith, M. The Association of Aortic Valve Pathology with Renal Resistive Index as a Kidney Injury Biomarker. Ann. Thorac. Surg. 2018, 106, 107–114. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giles, C.; Huard, K.; Denault, A.; Beaubien-Souligny, W. Prediction of Acute Kidney Injury After Cardiac Surgery with Combined Arterial and Venous Intrarenal Doppler. Can. J. Kidney Health Dis. 2024, 11, 20543581241309976. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vo, T.X.; Boodhwani, M. Renal resistive index as a biomarker for acute kidney injury in aortic valve surgery. J. Thorac. Dis. 2018, 10, S4010–S4012. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sinning, J.M.; Adenauer, V.; Scheer, A.C.; Lema Cachiguango, S.J.; Ghanem, A.; Hammerstingl, C.; Sedaghat, A.; Müller, C.; Vasa-Nicotera, M.; Grube, E.; et al. Doppler-based renal resistance index for the detection of acute kidney injury and the non-invasive evaluation of paravalvular aortic regurgitation after transcatheter aortic valve implantation. EuroIntervention 2014, 9, 1309–1316. [Google Scholar] [CrossRef] [PubMed]
- Barua, S.; Robson, D.; Eckford, H.; Macdonald, P.; Muthiah, K.; Hayward, C.S. Renal resistive index in patients supported with a durable continuous flow left ventricular assist device. Artif. Organs 2024, 48, 1366–1371. [Google Scholar] [CrossRef] [PubMed]
- De Souza, F.M.; De Carvalho, A.V.; Ferraz, I.S.; Damiano, A.P.; Brandão, M.B.; Nogueira, R.J.N.; De Souza, T.H. Acute kidney injury in children undergoing cardiac surgery: Predictive value of kidney arterial Doppler-based variables. Pediatr. Nephrol. 2024, 39, 2235–2243. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.P.; Zhou, S.J.; Liu, Y.Y.; Cao, H.; Zheng, Y.R.; Chen, Q. Elevated Renal-Resistive Index as an Indicator of Acute Kidney Injury Associated with Neonatal Extracorporeal Membrane Oxygenation. J. Cardiothorac. Vasc. Anesth. 2024, 38, 739–744. [Google Scholar] [CrossRef] [PubMed]
- Ohuchi, H.; Negishi, J.; Hayama, Y.; Miyazaki, A.; Shiraishi, I.; Ichikawa, H. Renal resistive index reflects Fontan pathophysiology and predicts mortality. Heart 2017, 103, 1631–1637, Erratum in Heart 2020, 106, e3. https://doi.org/10.1136/heartjnl-2016-310812corr1. [Google Scholar] [CrossRef] [PubMed]
- Schurle, A.; Koyner, J.L. CSA-AKI: Incidence, Epidemiology, Clinical Outcomes, and Economic Impact. J. Clin. Med. 2021, 10, 5746. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abosaif, N.; Tolba, Y. RIFLE classification of acute kidney failure in intensive care. Br. J. Hosp. Med. 2007, 68, 304–306. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.E.; Blaine, C.; Dawnay, A.; Devonald, M.A.; Ftouh, S.; Laing, C.; Latchem, S.; Lewington, A.; Milford, D.V.; Ostermann, M. The definition of acute kidney injury and its use in practice. Kidney Int. 2015, 87, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Ostermann, M.; Karsten, E.; Lumlertgul, N. Biomarker-Based Management of AKI: Fact or Fantasy? Nephron 2022, 146, 295–301, Erratum in Nephron 2022, 146, 324–326. https://doi.org/10.1159/000520264. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thiele, R.H.; Isbell, J.M.; Rosner, M.H. AKI associated with cardiac surgery. Clin. J. Am. Soc. Nephrol. 2015, 10, 500–514. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giustiniano, E.; Meco, M.; Morenghi, E.; Ruggieri, N.; Cosseta, D.; Cirri, S.; Difrancesco, O.; Zito, P.C.; Gollo, Y.; Raimondi, F. May Renal Resistive Index be an early predictive tool of postoperative complications in major surgery? Preliminary results. BioMed Res. Int. 2014, 2014, 917985. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mulier, J.L.G.H.; Rozemeijer, S.; Röttgering, J.G.; Spoelstra-de Man, A.M.E.; Elbers, P.W.G.; Tuinman, P.R.; de Waard, M.C.; Oudemans-van Straaten, H.M. Renal resistive index as an early predictor and discriminator of acute kidney injury in critically ill patients; A prospective observational cohort study. PLoS ONE 2018, 13, e0197967. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wei, Q.; Zhu, Y.; Zhen, W.; Zhang, X.; Shi, Z.; Zhang, L.; Zhou, J. Performance of resistive index and semi-quantitative power doppler ultrasound score in predicting acute kidney injury: A meta-analysis of prospective studies. PLoS ONE 2022, 17, e0270623, Erratum in PLoS ONE 2024, 19, e0315513. https://doi.org/10.1371/journal.pone.0315513. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Murphy, G.J.; Reeves, B.C.; Rogers, C.A.; Rizvi, S.I.; Culliford, L.; Angelini, G.D. Increased mortality, postoperative morbidity, and cost after red blood cell transfusion in patients having cardiac surgery. Circulation 2007, 116, 2544–2552. [Google Scholar] [CrossRef] [PubMed]
- Bellos, I.; Pergialiotis, V.; Kontzoglou, K. Renal resistive index as predictor of acute kidney injury after major surgery: A systematic review and meta-analysis. J. Crit. Care 2019, 50, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Ninet, S.; Schnell, D.; Dewitte, A.; Zeni, F.; Meziani, F.; Darmon, M. Doppler-based renal resistive index for prediction of renal dysfunction reversibility: A systematic review and meta-analysis. J. Crit. Care 2015, 30, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Cauwenberghs, N.; Kuznetsova, T. Determinants and Prognostic Significance of the Renal Resistive Index. Pulse 2016, 3, 172–178. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oliveira, R.A.G.; Mendes, P.V.; Park, M.; Taniguchi, L.U. Factors associated with renal Doppler resistive index in critically ill patients: A prospective cohort study. Ann. Intensive Care 2019, 9, 23. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Darabont, R.; Mihalcea, D.; Vinereanu, D. Current Insights into the Significance of the Renal Resistive Index in Kidney and Cardiovascular Disease. Diagnostics 2023, 13, 1687. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, D.; Yang, Z.; Qiu, L.; Lin, J.; Cheng, X. The predictive value of renal vascular resistance index and serum biomarkers for sepsis-associated acute kidney injury: A retrospective study. BMC Nephrol. 2025, 26, 208. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Córdova-Sánchez, B.M.; Ñamendys-Silva, S.A.; Pacheco-Bravo, I.; García-Guillén, F.J.; Mejía-Vilet, J.M.; Cruz, C.; Barraza-Aguirre, G.; Ramírez-Talavera, W.O.; López-Zamora, A.R.; Monera-Martínez, F.; et al. Renal arterial resistive index, monocyte chemotactic protein 1 and neutrophil gelatinase-associated lipocalin, for predicting acute kidney injury in critically ill cancer patients. Int. Urol. Nephrol. 2023, 55, 1799–1809. [Google Scholar] [CrossRef] [PubMed]
- Shaker, A.M.; Mohamed, M.F.; Thabet, K.K.; Ramzy, T.; Abdelhamid, Y.M. Serum Interleukin-18, Kidney Injury Molecule-1, and the Renal Resistive Index for Predicating Acute Kidney Injury in Critically Ill Patients with Sepsis. Saudi J. Kidney Dis. Transplant. 2023, 34 (Suppl. S1), S153–S160. [Google Scholar] [CrossRef] [PubMed]
- Ganatra, H.A. Machine Learning in Pediatric Healthcare: Current Trends, Challenges, and Future Directions. J. Clin. Med. 2025, 14, 807. [Google Scholar] [CrossRef] [PubMed]
- Marinelli, S.; De Paola, L.; Stark, M.; Vergallo, G.M. Artificial Intelligence in the Service of Medicine: Current Solutions and Future Perspectives, Opportunities, and Challenges. Clin. Ther. 2025, 176, 77–82. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torre, D.E.; Carbognin, S.; Mangino, D.; Pirri, C. Renal Resistive Index in Cardiac Surgery: A Narrative Review. Anesth. Res. 2025, 2, 19. https://doi.org/10.3390/anesthres2030019
Torre DE, Carbognin S, Mangino D, Pirri C. Renal Resistive Index in Cardiac Surgery: A Narrative Review. Anesthesia Research. 2025; 2(3):19. https://doi.org/10.3390/anesthres2030019
Chicago/Turabian StyleTorre, Debora Emanuela, Silvia Carbognin, Domenico Mangino, and Carmelo Pirri. 2025. "Renal Resistive Index in Cardiac Surgery: A Narrative Review" Anesthesia Research 2, no. 3: 19. https://doi.org/10.3390/anesthres2030019
APA StyleTorre, D. E., Carbognin, S., Mangino, D., & Pirri, C. (2025). Renal Resistive Index in Cardiac Surgery: A Narrative Review. Anesthesia Research, 2(3), 19. https://doi.org/10.3390/anesthres2030019