Recommendation Systems for the Metaverse
Abstract
:1. Introduction
2. Literature Collection and Trend Analysis
3. Metaverse-Oriented Recommendation Systems
3.1. Overview of Metaverse Recommendation Systems
3.2. Ideal Characteristics of Metaverse Recommendation Systems
- (1)
- Dynamic Interactivity
- (2)
- Simplicity and Efficiency
- (3)
- Robust Sociability
4. Core Support Technologies of Metaverse Recommendation Systems
4.1. Blockchain Technology
4.2. Artificial Intelligence Technology
4.3. Interactive Technology
4.4. Internet of Things (IoT) Technology
4.5. Networking and Computing Technology
4.6. Electronic Game Technology
5. Application Scenarios of Metaverse Recommendation Systems
5.1. Recommendation Models
5.2. Metaverse Recommendation Systems for Product Transaction Scenarios
5.3. Metaverse Recommendation Systems for Social Scenarios
5.4. Metaverse Recommendation Systems for Tourism Services
6. Future Prospects of Metaverse Recommendation Systems
6.1. Reducing User Interaction Burden
6.2. Establish Multisensory Channel Feedback Mechanism
6.3. Integrating Visualization with User Requirements
7. Conclusions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Stephenson, N. Snow Crash; Bantam Books: New York, NY, USA, 1992. [Google Scholar]
- Needleman, S.E. The amazing things you’ll do in the ‘Metaverse’ and what it will take to get there. Wall Str. J. 2021, 7, 70–75. [Google Scholar]
- Seok, W. Analysis of metaverse business model and ecosystem. Electron. Telecommun. Trends 2021, 36, 81–91. [Google Scholar]
- Dahan, N.A.; Al-Razgan, M.; Al-Laith, A.; Alsoufi, M.A.; Al-Asaly, M.S.; Alfakih, T. Metaverse framework: A case study on E-learning environment (ELEM). Electronics 2022, 11, 1616. [Google Scholar] [CrossRef]
- Lee, L.-H. The Digital Big Bang in the Metaverse Era. In Proceedings of the 2022 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Singapore, 17–21 October 2022; p. 55. [Google Scholar]
- Yang, Q.; Zhao, Y.; Huang, H.; Xiong, Z.; Kang, J.; Zheng, Z. Fusing blockchain and AI with metaverse: A survey. IEEE Open J. Comput. Soc. 2022, 3, 122–136. [Google Scholar] [CrossRef]
- Al-Ghaili, A.M.; Kasim, H.; Al-Hada, N.M.; Hassan, Z.; Othman, M.; Hussain, T.J.; Kasmani, R.M.; Shayea, I. A review of metaverse’s definitions, architecture, applications, challenges, issues, solutions, and future trends. IEEE Access 2022, 10, 125835–125866. [Google Scholar] [CrossRef]
- Koo, C.; Kwon, J.; Chung, N.; Kim, J. Metaverse tourism: Conceptual framework and research propositions. Curr. Issues Tour. 2022, 9, 1–7. [Google Scholar] [CrossRef]
- Dionisio, J.D.N.; Burns, W.G., III; Gilbert, R. 3D virtual worlds and the metaverse: Current status and future possibilities. ACM Comput. Surv. (CSUR) 2013, 45, 1–38. [Google Scholar] [CrossRef]
- Davis, A.; Murphy, J.; Owens, D.; Khazanchi, D.; Zigurs, I. Avatars, people, and virtual worlds: Foundations for research in metaverses. J. Assoc. Inf. Syst. 2009, 10, 1. [Google Scholar] [CrossRef]
- Park, S.-M.; Kim, Y.-G. A metaverse: Taxonomy, components, applications, and open challenges. IEEE Access 2022, 10, 4209–4251. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Hughes, L.; Baabdullah, A.M.; Ribeiro-Navarrete, S.; Giannakis, M.; Al-Debei, M.M.; Dennehy, D.; Metri, B.; Buhalis, D.; Cheung, C.M. Metaverse beyond the hype: Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manag. 2022, 66, 102542. [Google Scholar] [CrossRef]
- Papagiannidis, S.; Bourlakis, M.; Li, F. Making real money in virtual worlds: MMORPGs and emerging business opportunities, challenges and ethical implications in metaverses. Technol. Forecast. Soc. Change 2008, 75, 610–622. [Google Scholar] [CrossRef]
- Kumar, S.; Chhugani, J.; Kim, C.; Kim, D.; Nguyen, A.; Dubey, P.; Bienia, C.; Kim, Y. Second Life and the New Generation of Virtual Worlds. IEEE Comput. 2009, 41, 46–53. [Google Scholar] [CrossRef]
- Wang, Y.; Su, Z.; Zhang, N.; Liu, D.; Xing, R.; Luan, T.H.; Shen, X. A Survey on Metaverse: Fundamentals, Security, and Privacy. IEEE Commun. Surv. Tutor. 2022, 25, 319–352. [Google Scholar] [CrossRef]
- Bourlakis, M.; Papagiannidis, S.; Li, F. Retail spatial evolution: Paving the way from traditional to metaverse retailing. Electron. Commer. Res. 2009, 9, 135–148. [Google Scholar] [CrossRef]
- Rauschnabel, P.A.; Felix, R.; Hinsch, C.; Shahab, H.; Alt, F. What is XR? Towards a framework for augmented and virtual reality. Comput. Hum. Behav. 2022, 133, 107289. [Google Scholar] [CrossRef]
- Gupta, A.; Khan, H.U.; Nazir, S.; Shafiq, M.; Shabaz, M. Metaverse Security: Issues, Challenges and a Viable ZTA Model. Electronics 2023, 12, 391. [Google Scholar] [CrossRef]
- Riva, G.; Wiederhold, B.K. What the metaverse is (really) and why we need to know about it. Cyberpsychology Behav. Soc. Netw. 2022, 25, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Scheiding, R. Designing the future? The metaverse, NFTs, & the future as defined by unity users. Games Cult. 2022, 15554120221139218. [Google Scholar]
- Kim, J.Y.; Oh, J.M. Opportunities and Challenges of Metaverse for Automotive and Mobility Industries. In Proceedings of the 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 19–21 October 2022; pp. 113–117. [Google Scholar]
- Oh, H.J.; Kim, J.; Chang, J.J.; Park, N.; Lee, S. Social benefits of living in the metaverse: The relationships among social presence, supportive interaction, social self-efficacy, and feelings of loneliness. Comput. Hum. Behav. 2023, 139, 107498. [Google Scholar] [CrossRef]
- Guidi, B.; Michienzi, A. Social games and Blockchain: Exploring the Metaverse of Decentraland. In Proceedings of the 2022 IEEE 42nd International Conference on Distributed Computing Systems Workshops (ICDCSW), Bologna, Italy, 10 July 2022; pp. 199–204. [Google Scholar]
- Ng, D.T.K. What is the metaverse? Definitions, technologies and the community of inquiry. Australas. J. Educ. Technol. 2022, 38, 190–205. [Google Scholar] [CrossRef]
- Saberi, S.; Kouhizadeh, M.; Sarkis, J.; Shen, L. Blockchain technology and its relationships to sustainable supply chain management. Int. J. Prod. Res. 2019, 57, 2117–2135. [Google Scholar] [CrossRef]
- Deveci, M.; Gokasar, I.; Cali, U. Evaluation of Urban Mobility Alternatives For Blockchain Use In Metaverse. In Proceedings of the 2022 IEEE 1st Global Emerging Technology Blockchain Forum: Blockchain & Beyond (iGETblockchain), Irvine, CA, USA, 7–11 November 2022; pp. 1–4. [Google Scholar]
- Nguyen, C.T.; Hoang, D.T.; Nguyen, D.N.; Dutkiewicz, E. Metachain: A novel blockchain-based framework for metaverse applications. In Proceedings of the 2022 IEEE 95th Vehicular Technology Conference:(VTC2022-Spring), Helsinki, Finland, 19–22 June 2022; pp. 1–5. [Google Scholar]
- Bhutta, M.N.M.; Khwaja, A.A.; Nadeem, A.; Ahmad, H.F.; Khan, M.K.; Hanif, M.A.; Song, H.; Alshamari, M.; Cao, Y. A survey on blockchain technology: Evolution, architecture and security. IEEE Access 2021, 9, 61048–61073. [Google Scholar] [CrossRef]
- Verma, J.; Sharma, J.; Sharma, A.; Kaur, J. Does Metaverse a Technological Revolution in Artificial Intelligence? A Bibliometric Analysis. In Proceedings of the 2022 Seventh International Conference on Parallel, Distributed and Grid Computing (PDGC), Solan, Himachal Pradesh, India, 25–27 November 2022; pp. 425–428. [Google Scholar]
- Huynh-The, T.; Pham, Q.-V.; Pham, X.-Q.; Nguyen, T.T.; Han, Z.; Kim, D.-S. Artificial intelligence for the metaverse: A survey. Eng. Appl. Artif. Intell. 2023, 117, 105581. [Google Scholar] [CrossRef]
- Siwach, G.; Haridas, A.; Bunch, D. Inferencing Big Data with Artificial Intelligence & Machine Learning Models in Metaverse. In Proceedings of the 2022 International Conference on Smart Applications, Communications and Networking (SmartNets), Palapye, Botswana, 29 November–1 December 2022; pp. 1–6. [Google Scholar]
- Mozumder, M.A.I.; Sheeraz, M.M.; Athar, A.; Aich, S.; Kim, H.-C. Overview: Technology roadmap of the future trend of metaverse based on IoT, blockchain, AI technique, and medical domain metaverse activity. In Proceedings of the 2022 24th International Conference on Advanced Communication Technology (ICACT), Pyeongchang, Republic of Korea, 13–16 February 2022; pp. 256–261. [Google Scholar]
- Wiederhold, B.K. Ready (or Not) player one: Initial musings on the metaverse. Cyberpsychol. Behav. Soc. Netw. 2022, 25, 1–2. [Google Scholar] [CrossRef]
- Yang, J.O.; Lee, J.S. Utilization exercise rehabilitation using metaverse (VR· AR· MR· XR). Korean J. Sport Biomech. 2021, 31, 249–258. [Google Scholar]
- Duan, H.; Li, J.; Fan, S.; Lin, Z.; Wu, X.; Cai, W. Metaverse for social good: A university campus prototype. In Proceedings of the 29th ACM international conference on multimedia, Online, 20–24 October 2021; pp. 153–161. [Google Scholar]
- Kanter, T. The metaverse and extended reality with distributed IoT. IEEE IoT Newsletter 2021, 2021, 43–50. [Google Scholar]
- Hajjaji, Y.; Boulila, W.; Farah, I.R.; Romdhani, I.; Hussain, A. Big data and IoT-based applications in smart environments: A systematic review. Comput. Sci. Rev. 2021, 39, 100318. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Niyato, D.; Dobre, O.; Poor, H.V. 6G Internet of Things: A comprehensive survey. IEEE Internet Things J. 2021, 9, 359–383. [Google Scholar] [CrossRef]
- Shi, F.; Ning, H.; Zhang, X.; Li, R.; Tian, Q.; Zhang, S.; Zheng, Y.; Guo, Y.; Daneshmand, M. A new technology perspective of the Metaverse: Its essence, framework and challenges. Digit. Commun. Netw. 2023, in press. [Google Scholar] [CrossRef]
- Zhuang, C.; Gong, J.; Liu, J. Digital twin-based assembly data management and process traceability for complex products. J. Manuf. Syst. 2021, 58, 118–131. [Google Scholar] [CrossRef]
- Ko, H.; Lee, S.; Park, Y.; Choi, A. A survey of recommendation systems: Recommendation models, techniques, and application fields. Electronics 2022, 11, 141. [Google Scholar] [CrossRef]
- Vallet, D.; Cantador, I.; Fernández, M.; Castells, P. A multi-purpose ontology-based approach for personalized content filtering and retrieval. In Proceedings of the 2006 First International Workshop on Semantic Media Adaptation and Personalization (SMAP’06), Athens, Greece, 4–5 December 2006; pp. 19–24. [Google Scholar]
- Salter, J.; Antonopoulos, N. CinemaScreen recommender agent: Combining collaborative and content-based filtering. IEEE Intell. Syst. 2006, 21, 35–41. [Google Scholar] [CrossRef]
- Im, I.; Hars, A. Does a one-size recommendation system fit all? the effectiveness of collaborative filtering based recommendation systems across different domains and search modes. ACM Trans. Inf. Syst. (TOIS) 2007, 26, 4-es. [Google Scholar] [CrossRef]
- Burke, R. Hybrid recommender systems: Survey and experiments. User Model. User-Adapt. Interact. 2002, 12, 331–370. [Google Scholar] [CrossRef]
- Khedr, A.E.; Idrees, A.M.; Hegazy, A.E.-F.; El-Shewy, S. A proposed configurable approach for recommendation systems via data mining techniques. Enterp. Inf. Syst. 2018, 12, 196–217. [Google Scholar] [CrossRef]
- Subramaniyaswamy, V.; Logesh, R. Adaptive KNN based recommender system through mining of user preferences. Wirel. Pers. Commun. 2017, 97, 2229–2247. [Google Scholar] [CrossRef]
- Gulzar, Y.; Alwan, A.A.; Abdullah, R.M.; Abualkishik, A.Z.; Oumrani, M. OCA: Ordered Clustering-Based Algorithm for E-Commerce Recommendation System. Sustainability 2023, 15, 2947. [Google Scholar] [CrossRef]
- Sun, J.; Gao, L.; Shen, X.; Liu, S.; Liang, R.; Du, S.; Liu, S. Separated Graph Neural Networks for Recommendation Systems. IEEE Trans. Ind. Inform. 2022, 19, 382–393. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, H.; Chen, X.; Zhong, J.; Wang, D. A novel hybrid deep recommendation system to differentiate user’s preference and item’s attractiveness. Inf. Sci. 2020, 519, 306–316. [Google Scholar] [CrossRef]
- Yoo, K.; Welden, R.; Hewett, K.; Haenlein, M. The merchants of meta: A research agenda to understand the future of retailing in the metaverse. J. Retail. 2023, 99, 173–192. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Hughes, L.; Wang, Y.; Alalwan, A.A.; Ahn, S.J.; Balakrishnan, J.; Barta, S.; Belk, R.; Buhalis, D.; Dutot, V. Metaverse marketing: How the metaverse will shape the future of consumer research and practice. Psychol. Mark. 2023, 40, 750–776. [Google Scholar] [CrossRef]
- Riar, M.; Xi, N.; Korbel, J.J.; Zarnekow, R.; Hamari, J. Using augmented reality for shopping: A framework for AR induced consumer behavior, literature review and future agenda. Internet Res. 2022, 33, 242–279. [Google Scholar] [CrossRef]
- He, J.; Chu, W.W. A social network-based recommender system (SNRS). In Data Mining for Social Network Data; Springer: Berlin/Heidelberg, Germany, 2010; pp. 47–74. [Google Scholar]
- Hennig-Thurau, T.; Aliman, D.N.; Herting, A.M.; Cziehso, G.P.; Linder, M.; Kübler, R.V. Social interactions in the metaverse: Framework, initial evidence, and research roadmap. J. Acad. Mark. Sci. 2022, 51, 889–913. [Google Scholar] [CrossRef]
- Yaqob, M.; Hafez, M.M. Metaverse-An overview of daily usage and risks. In Proceedings of the 2022 OPJU International Technology Conference on Emerging Technologies for Sustainable Development (OTCON), Raigarh, India, 8–10 February 2023; pp. 1–6. [Google Scholar]
- Kunhibava, S.; Muneeza, A.; Mustapha, Z.; Khalid, M. Understanding Blockchain technology in Islamic social finance and its opportunities in metaverse. In Proceedings of the 2023 20th Learning and Technology Conference (L&T), Jeddah, Saudi Arabia, 26 January 2023; pp. 37–41. [Google Scholar]
- Sun, Y.; Fan, H.; Bakillah, M.; Zipf, A. Road-based travel recommendation using geo-tagged images. Comput. Environ. Urban Syst. 2015, 53, 110–122. [Google Scholar] [CrossRef]
- Kesorn, K.; Juraphanthong, W.; Salaiwarakul, A. Personalized attraction recommendation system for tourists through check-in data. IEEE Access 2017, 5, 26703–26721. [Google Scholar] [CrossRef]
- Li, M.; Yu, Z. A systematic review on the metaverse-based blended English learning. Front. Psychol. 2023, 13, 1087508. [Google Scholar] [CrossRef] [PubMed]
- Xi, N.; Chen, J.; Gama, F.; Riar, M.; Hamari, J. The challenges of entering the metaverse: An experiment on the effect of extended reality on workload. Inf. Syst. Front. 2023, 25, 659–680. [Google Scholar] [CrossRef]
- Lee, U.-K. Tourism using virtual reality: Media richness and information system successes. Sustainability 2022, 14, 3975. [Google Scholar] [CrossRef]
Rank | Title | Author, Year | Journal | Citations |
---|---|---|---|---|
1 | 3D Virtual Worlds and the Metaverse: Current Status and Future Possibilities | Dionisio et al., 2013 [9] | ACM Computing Surveys | 157 |
2 | Avatars, People, and Virtual Worlds: Foundations for Research in Metaverses | Davis et al., 2009 [10] | Journal of the Association for Information Systems | 151 |
3 | A Metaverse: Taxonomy, Components, Applications, and Open Challenges | Park et al., 2022 [11] | IEEE Access | 135 |
4 | Metaverse beyond the hype: Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy | Dwivedi et al., 2022 [12] | International Journal of Information Management | 93 |
5 | Making real money in virtual worlds: MMORPGs and emerging business opportunities, challenges and ethical implications in metaverses | Papagiannidis et al., 2008 [13] | Technological Forecasting and Social Change | 84 |
6 | Second Life and the new generation of virtual worlds | Kumar et al., 2008 [14] | Computer | 71 |
7 | Fusing Blockchain and AI with Metaverse: A Survey | Yang et al., 2022 [6] | IEEE Open Journal of the Computer Society | 67 |
8 | A Survey on Metaverse: Fundamentals, Security, and Privacy | Wang et al., 2023 [15] | IEEE Communications Surveys & Tutorials | 63 |
9 | Retail spatial evolution: paving the way from traditional to metaverse retailing | Bourlakis, et al., 2009 [16] | Electronic Commerce Research | 56 |
10 | What is XR? Towards a Framework for Augmented and Virtual Reality | Rauschnabel et al., 2022 [17] | Computers in Human Behavior | 47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.; Wang, X.; Wang, T.; Duan, Z.; Hong, Y.; He, X.; Huang, H. Recommendation Systems for the Metaverse. Blockchains 2023, 1, 19-33. https://doi.org/10.3390/blockchains1010003
Wei L, Wang X, Wang T, Duan Z, Hong Y, He X, Huang H. Recommendation Systems for the Metaverse. Blockchains. 2023; 1(1):19-33. https://doi.org/10.3390/blockchains1010003
Chicago/Turabian StyleWei, Lingwen, Xutian Wang, Ting Wang, Zhilan Duan, Yan Hong, Xiaoming He, and Huawei Huang. 2023. "Recommendation Systems for the Metaverse" Blockchains 1, no. 1: 19-33. https://doi.org/10.3390/blockchains1010003
APA StyleWei, L., Wang, X., Wang, T., Duan, Z., Hong, Y., He, X., & Huang, H. (2023). Recommendation Systems for the Metaverse. Blockchains, 1(1), 19-33. https://doi.org/10.3390/blockchains1010003