Hidden Hazards: A Literature Review on Occupational Exposure to Fungi and Mycotoxins in the Coffee Industry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Inclusion and Exclusion Criteria
2.2. Selection of Studies and Data Extraction
2.3. Quality Assessment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bosson-Rieutort, D.; Sarazin, P.; Bicout, D.; Ho, V.; Lavoué, J. Occupational Co-exposures to Multiple Chemical Agents from Workplace Measurements by the US Occupational Safety and Health Administration. Ann. Work Expo. Health 2020, 64, 402–415. [Google Scholar] [CrossRef] [PubMed]
- Burzoni, S.; Duquenne, P.; Mater, G.; Ferrari, L. Workplace Biological Risk Assessment: Review of Existing and Description of a Comprehensive Approach. Atmosphere 2020, 11, 741. [Google Scholar] [CrossRef]
- Oppliger, A. Advancing the Science of Bioaerosol Exposure Assessment. Ann. Occup. Hyg. 2014, 58, 661–663. [Google Scholar] [CrossRef]
- Czarniecka-Skubina, E.; Pielak, M.; Sałek, P.; Korzeniowska-Ginter, R.; Owczarek, T. Consumer Choices and Habits Related to Coffee Consumption by Poles. Int. J. Environ. Res. Public Health 2021, 18, 3948. [Google Scholar] [CrossRef]
- ICO. International Coffee Organization. Total Production by All Exporting Countries. 2021. Available online: https://www.ico.org/trade_statistics.asp (accessed on 12 November 2023).
- ICO. International Coffee Organization. Exports of All Forms of Coffee by All Exporting Countries. 2021. Available online: http://dev.ico.org/prices/m1-exports.pdf (accessed on 12 November 2023).
- Brasil. Programa de Disseminação das Estatísitcas do Trabalho (PDET), Ministério do Trabalho. Base de Dados CAGED. 2021. Available online: http://pdet.mte.gov.br/novo-caged (accessed on 10 November 2023).
- Almeida Neto, J.T.P.; Piagentini, A.; Borém, F.M. Beneficiamento e rebeneficiamento do café. In Pós-Colheita do Café; Borem, F.M., Ed.; Editora UFLA: Lavras, Brazil, 2009. [Google Scholar]
- Kanageswari, S.V.; Tabil, L.G.; Sokhansanj, S. Dust and Particulate Matter Generated during Handling and Pelletization of Herbaceous Biomass: A Review. Energies 2022, 15, 2634. [Google Scholar] [CrossRef]
- Rotta, N.M.; Curry, S.; Han, J.; Reconco, R.; Spang, E.; Ristenpart, W.; Donis-González, I.R. A comprehensive analysis of operations and mass flows in postharvest processing of washed coffee. Resour. Conserv. Recycl. 2021, 170, 105554. [Google Scholar] [CrossRef]
- Zhao, J.; Tang, G.; Wang, Y.; Han, Y. Explosive property and combustion kinetics of grain dust with different particle sizes. Heliyon 2020, 6, e03457. [Google Scholar] [CrossRef]
- Vanka, K.S.; Shukla, S.; Gomez, H.M.; James, C.; Palanisami, T.; Williams, K.; Chambers, D.C.; Britton, W.J.; Ilic, D.; Hansbro, P.M.; et al. Understanding the pathogenesis of occupational coal and silica dust-associated lung disease. Eur. Respir. Rev. 2022, 31, 210250. [Google Scholar] [CrossRef]
- Viegas, C.; Pacífico, C.; Faria, T.; de Oliveira, A.C.; Caetano, L.A.; Carolino, E.; Gomes, A.Q.; Viegas, S. Fungal contamination in green coffee beans samples: A public health concern. J. Toxicol. Environ. Health 2017, 80, 719–728. [Google Scholar] [CrossRef]
- Barcelo, J.M.; Barcelo, R.C. Post-harvest practices linked with ochratoxin A contamination of coffee in three provinces of Cordillera Administrative Region, Philippines. Food Addit. Contam. 2018, 35, 328–340. [Google Scholar] [CrossRef]
- Silva, S.A.; Pereira, R.G.F.A.; Lira, N.A.; Glória, E.M.; Chalfoun, S.M.; Batista, L.R. Fungi associated to beans infested with coffee berry borer and the risk of ochratoxin A. Food Control 2020, 113, 107204. [Google Scholar] [CrossRef]
- Abaya, S.W.; Bråtveit, M.; Deressa, W.; Kumie, A.; Tenna, A.; Moen, B.E. Microbial contamination of coffee during postharvest on farm processing: A concern for the respiratory health of production workers. Arc. Environ. Occup. Health 2019, 75, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Culliao, A.G.L.; Barcelo, J.M. Fungal and mycotoxin contamination of coffee beans in Benguet province, Philippines. Food Addit. Contam. 2015, 32, 250–260. [Google Scholar] [CrossRef]
- Alvindia, D.G.; Guzman, M.F. Survey of Philippine coffee beans for the presence of ochratoxigenic fungi. Mycotoxin Res. 2016, 32, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Magnoli, C.; Astoreca, A.; Ponsone, M.; Barberis, C.; Fernández-Juri, M.; Dalcero, A. Ochratoxin- and aflatoxin-producing fungi associated with green and roasted coffee samples consumed in Argentina. World Mycotoxin J. 2008, 1, 419–427. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; AlHusaini, A.; Abu-Dieyeh, M.H.; Mahmoud, A.E.; Alam, M.A. Determination of aflatoxins in coffee by means of ultra-high performance liquid chromatography-fluorescence detector and fungi isolation. Int. J. Environ. Res. Anal. Chem. 2020, 102, 6999–7014. [Google Scholar] [CrossRef]
- Sousa, T.M.A.; Batista, L.R.; Passamani, F.R.F.; Lira, N.A.; Cardoso, M.G.; Santiago, W.D.; Chalfoun, S.M. Evaluation of the effects of temperature on processed coffee beans in the presence of fungi and ochratoxin A. J. Food Saf. 2018, 39, e12584. [Google Scholar] [CrossRef]
- Twarużek, M.; Kosicki, R.; Kwiatkowska-Giżyńska, J.; Grajewski, J.; Ałtyn, I. Ochratoxin A and citrinin in green coffee and dietary supplements with green coffee extract. Toxicon 2020, 188, 172–177. [Google Scholar] [CrossRef]
- Maman, M.; Sangchote, S.; Piasai, O.; Leesutthiphonchai, W.; Sukorini, H.; Khewkhom, N. Storage fungi and ochratoxin A associated with arabica coffee bean in postharvest processes in Northern Thailand. Food Control 2021, 130, 108351. [Google Scholar] [CrossRef]
- Yassin, M.A.; El-Rahim, A.; El-Samawaty, M.A.; Al-Arfaj, A.A. Coffee bean myco-contaminants and oxalic acid producing Aspergillus niger. Ital. J. Food Sci. 2015, 27, 82–87. [Google Scholar] [CrossRef]
- Bessaire, T.; Perrin, I.; Tarres, A.; Bebius, A.; Reding, F.; Theurillat, V. Mycotoxins in green coffee: Occurrence and risk assessment. Food Control 2019, 96, 59–67. [Google Scholar] [CrossRef]
- Mamo, F.T.; Abate, B.A.; Zheng, Y.; Nie, C.; He, M.; Liu, Y. Distribution of Aspergillus fungi and recent Aflatoxin reports, health risks, and advances in developments of biological mitigation strategies in China. Toxins 2021, 13, 678. [Google Scholar] [CrossRef]
- Saleh, I.; Goktepe, I. The characteristics, occurrence, and toxicological effects of patulin. Food Chem. Toxic. 2019, 129, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Ekwomadu, T.I.; Akinola, S.A.; Mwanza, M. Fusarium mycotoxin, their metabolites (free, emerging, and masked), food safety concerns, and health impacts. Int. J. Environ. Res. Public Health 2021, 18, 11741. [Google Scholar] [CrossRef]
- Huttunen, K.; Korkalainen, M. Microbial secondary metabolites and knowledge on inhalation effects. In Exposure to Microbiological Agents in Indoor and Occupational Environments; Viegas, C., Viegas, S., Gomes, A.Q., Taubel, M., Sabino, R., Eds.; Springer Nature: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Taubel, M.; Hyvarinen, A. Occurrence of mycotoxins in indoor environments. In Environmental Mycology in Public Health; Viegas, C., Viegas, S., Gomes, A.Q., Taubel, M., Sabino, R., Eds.; Academic Press: London, UK, 2016; pp. 299–323. [Google Scholar] [CrossRef]
- Viegas, S.; Viegas, C.; Oppliger, A. Occupational Exposure to Mycotoxins: Current Knowledge and Prospects. Ann. Work Expo. Health 2018, 62, 923–941. [Google Scholar] [CrossRef] [PubMed]
- Moher, D. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Brera, C.; Caputi, R.; Miraglia, M.; Iavicoli, I.; Salerno, A.; Carelli, G. Exposure assessment to mycotoxins in workplaces: Aflatoxins and ochratoxin A occurrence in airborne dusts and human sera. Microchem. J. 2002, 73, 167–173. [Google Scholar] [CrossRef]
- Iavicoli, I.; Brera, C.; Carelli, G.; Caputi, R.; Marinaccio, A.; Miraglia, M. External and internal dose in subjects occupationally exposed to ochratoxin A. Int. Arch. Occup. Environ. Health 2002, 75, 381–386. [Google Scholar] [CrossRef]
- Thomas, K.E.; Trigg, C.J.; Baxter, P.J.; Topping, M.; Lacey, J.; Crook, B.; Whitehead, P.; Bennett, J.B.; Davies, R.J. Factors relating to the development of respiratory symptoms in coffee process workers. Occup. Environ. Med. 1991, 48, 314–322. [Google Scholar] [CrossRef]
- Viegas, C.; Gomes, B.; Oliveira, F.; Dias, M.; Cervantes, R.; Pena, P.; Gomes, A.Q.; Caetano, L.A.; Carolino, E.; de Andrade, E.T.; et al. Microbial Contamination in the Coffee Industry: An Occupational Menace besides a Food Safety Concern? Int. J. Environ. Res. Public Health 2022, 19, 13488. [Google Scholar] [CrossRef]
- Tarín, A.; Rosell, M.G.; Guardino, X. Use of high-performance liquid chromatography to assess airborne mycotoxins. J. Chromatogr. 2004, 1047, 235–240. [Google Scholar] [CrossRef]
- Oppliger, A.; Duquenne, P. Highly contaminated workplaces. In Environmental Mycology in Public Health; Viegas, C., Viegas, S., Gomes, A.Q., Taubel, M., Sabino, R., Eds.; Academic Press: London, UK, 2016; pp. 79–105. [Google Scholar] [CrossRef]
- Eriksen, E.; Madsen, A.M.; Afanou, A.K.; Straumfors, A.; Eiler, A.; Graff, P. Occupational exposure to inhalable pathogenic microorganisms in waste sorting. Int. J. Hyg. Environ. Health 2023, 253, 114240. [Google Scholar] [CrossRef]
- Al Attiya, W.; Hassan, Z.U.; Al-Thani, R.; Jaoua, S. Prevalence of toxigenic fungi and mycotoxins in Arabic coffee (Coffea arabica): Protective role of traditional coffee roasting, brewing and bacterial volatiles. PLoS ONE 2021, 16, e0259302. [Google Scholar] [CrossRef]
- Santis, B.; Debegnach, F.; Sonego, E.; Mazzilli, G.; Buiarelli, F.; Ferri, F.; Rossi, P.G.; Collini, G.; Brera, C. Biomonitoring Data for Assessing Aflatoxins and Ochratoxin A Exposure by Italian Feedstuffs Workers. Toxins 2019, 11, 351. [Google Scholar] [CrossRef]
- Debegnach, F.; Brera, C.; Mazzilli, G.; Sonego, E.; Buiarelli, F.; Ferri, F.; Rossi, P.G.; Collini, G.; De Santis, B. Optimization and validation of a LC-HRMS method for aflatoxins determination in urine samples. Mycotoxin Res. 2020, 36, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Habschied, K.; KanižaiŠarić, G.; Krstanović, V.; Mastanjević, K. Mycotoxins—Biomonitoring and Human Exposure. Toxins 2021, 13, 113. [Google Scholar] [CrossRef] [PubMed]
- Ndaw, S.; Remy, A.; Jargot, D.; Antoine, G.; Denis, F.; Robert, A. Mycotoxins Exposure of French Grain Elevator Workers: Biomonitoring and Airborne Measurements. Toxins 2021, 13, 382. [Google Scholar] [CrossRef]
- Bevan, R.; Levy, L. Biomonitoring for workplace exposure to copper and its compounds is currently not interpretable. Int. J. Hyg. Environ. Health 2024, 258, 114358. [Google Scholar] [CrossRef]
- Niculita-Hirzel, H.; Hantier, G.; Storti, F.; Plateel, G.; Roger, T. Frequent Occupational Exposure to Fusarium Mycotoxins of Workers in the Swiss Grain Industry. Toxins 2016, 8, 370. [Google Scholar] [CrossRef]
- Vesper, S.; Wymer, L.; Cox, D.; Dewalt, G.; Pinzer, E.; Friedman, W.; Ashley, P.J. Comparison of ERMI results for dust collected from homes by an electrostatic cloth and by the standard vacuum method. J. Occup. Environ. Hyg. 2021, 18, 423–429. [Google Scholar] [CrossRef]
- Marcelloni, A.M.; Pigini, D.; Chiominto, A.; Gioffrè, A.; Paba, E. Exposure to airborne mycotoxins: The riskiest working environments and tasks. Ann. Work Expo. Health 2024, 68, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Rittscher, A.E.; Vlasblom, A.A.; Duim, B.; Scherpenisse, P.; van Schothorst, I.J.; Wouters, I.M.; Smit, L.A. A comparison of passive and active dust sampling methods for measuring airborne methicillin-resistant Staphylococcus aureus in pig farms. Ann. Work Expo. Health 2023, 67, 1004–1010. [Google Scholar] [CrossRef] [PubMed]
- Normand, A.C.; Ranque, S.; Cassagne, C.; Gaudart, J.; Sallah, K.; Charpin, D.A. Comparison of Air Impaction and Electrostatic Dust Collector Sampling Methods to Assess Airborne Fungal Contamination in Public Buildings. Ann. Occup. Hyg. 2015, 60, 161–175. [Google Scholar] [CrossRef]
- Frankel, M.; Timm, M.; Hansen, E.W.; Madsen, A.M. Comparison of sampling methods for the assessment of indoor microbial exposure. Indoor Air 2012, 22, 405–414. [Google Scholar] [CrossRef] [PubMed]
- White, J.K.; Nielsen, J.L.; Madsen, A.M. Microbial species and biodiversity in settling dust within and between pig farms. Environ. Res. 2019, 171, 558–567. [Google Scholar] [CrossRef]
- Szulc, J.; Okrasa, M.; Dybka-Stępień, K.; Sulyok, M.; Nowak, A.; Otlewska, A.; Szponar, B.; Majchrzycka, K. Assessment of Microbiological Indoor Air Quality in Cattle Breeding Farms. Aerosol Air Qual. Res. 2020, 20, 1353–1373. [Google Scholar] [CrossRef]
- Straumfors, A.; Mundra, S.; Foss, O.A.H.; Mollerup, S.; Kauserud, H. The airborne mycobiome and associations with mycotoxins and inflammatory markers in the Norwegian grain industry. Sci. Rep. 2021, 11, 9357. [Google Scholar] [CrossRef]
- Duquenne, P.; Simon, X.; Coulais, C.; Koehler, V.; Degois, J.; Facon, B. Bioaerosol exposure during sorting of municipal solid, commercial and industrial waste: Concentration levels, size distribution, and biodiversity of airborne fungal. Atmosphere 2024, 15, 461. [Google Scholar] [CrossRef]
- Scheepers, P.T.J.; Duca, R.C.; Galea, K.S.; Godderis, L.; Hardy, E.; Knudsen, L.E.; Leese, E.; Louro, H.; Mahiout, S.; Ndaw, S.; et al. HBM4EU Occupational Biomonitoring Study on e-Waste—Study Protocol. Int. J. Environ. Res. Public Health 2021, 18, 12987. [Google Scholar] [CrossRef]
- Madsen, A.M.; White, J.K.; Markouch, A.; Kadhim, S.; de Jonge, N.; Thilsing, T.; Hansen, V.M.; Bælum, J.; Nielsen, J.L.; Vogel, U.; et al. A cohort study of cucumber greenhouse workers’ exposure to microorganisms as measured using NGS and MALDI-TOF MS and biomarkers of systemic inflammation. Environ. Res. 2021, 192, 110325. [Google Scholar] [CrossRef]
- Salambanga, F.D.R.; Wingert, L.; Valois, I.; Lacombe, N.; Gouin, F.; Trépanier, J.; Debia, M.; Soszczyńska, E.; Twarużek, M.; Kosicki, R.; et al. Microbial contamination and metabolite exposure assessment during waste and recyclable material collection. Environ. Res. 2022, 212, 113597. [Google Scholar] [CrossRef] [PubMed]
- Nji, Q.N.; Babalola, O.O.; Mwanza, M. Soil Aspergillus species, pathogenicity and control perspectives. J. Fungi 2023, 9, 766. [Google Scholar] [CrossRef] [PubMed]
- Salazar, I.C.R.; Mesa, G.A.P. Influence of temperature, relative humidity, and storage time conditions on ochratoxin a production by Aspergillus niger fungi in dry parchment coffee. Food Addit. Contam. Part A 2025, 42, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Lauruschkat, C.D.; Etter, S.; Schnack, E.; Ebel, F.; Schäuble, S.; Page, L.; Rümens, D.; Dragan, M.; Schlegel, N.; Panagiotou, G.; et al. Chronic occupational mold exposure drives expansion of Aspergillus-reactive type 1 and type 2 T-helper cell responses. J. Fungi 2021, 7, 698. [Google Scholar] [CrossRef]
- Cadena, J.; Thompson, G.R.; Patterson, T.F. Aspergillosis: Epidemiology, diagnosis, and treatment. Infect. Dis. Clin. 2021, 35, 415–434. [Google Scholar] [CrossRef]
- Liu, W.C.; Pushparaj, K.; Meyyazhagan, A.; Arumugam, V.A.; Pappuswamy, M.; Bhotla, H.K.; Baskaran, R.; Issara, U.; Balasubramanian, B.; Khaneghah, A.M. Ochratoxin A as an alarming health threat for livestock and human: A review on molecular interactions, mechanism of toxicity, detection, detoxification, and dietary prophylaxis. Toxicon 2022, 213, 59–75. [Google Scholar] [CrossRef]
- Kodape, A.R.; Raveendran, A.; Babu, C.S.V. Aflatoxins: A postharvest associated challenge and mitigation opportunities. In Aflatoxins-Occurrence, Detection and Novel Detoxification Strategies; Intech Open: London, UK, 2022. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Articles published in the English language | Articles published in other languages |
Original scientific articles on the topic | Abstracts of congress, reports, reviews/state-of-the-art articles |
Articles related to occupational exposure in the coffee industry | Articles related to other food commodities |
Articles related to occupational exposure | Articles dedicated only to coffee bean quality analysis |
Title | Study | Firm Sample Location | Occupational Setting | Matrices Analyzed | Sampling Method | Analytical Method | Results | Main Conclusions | ||
---|---|---|---|---|---|---|---|---|---|---|
Toxins/ Microorganisms Studied | Laboratory Method | Microorganisms Identified | Mycotoxins Detected | |||||||
Microbial Contamination in the Coffee Industry: An Occupational Menace besides a Food Safety Concern? | [36] | Brazil | Coffee dry milling firm | Dust; FRPD; GCB | EDC; settled dust | Fungi; bacteria | Plate incubation, qPCR | Cladosporium; Paecilomyces; Aspergillus; Penicillium; other fungal genera; Gram-negative bacteria | This study draws attention to the need to consider occupational exposure to mycotoxins in the dry milling stage and other stages, due to high fungal diversity and contamination. | |
Use of high-performance liquid chromatography to assess airborne mycotoxins | [37] | Spain | Coffee processing | Dust | Filtration | Mycotoxins | HPLC | Green coffee from big bags OTA: <2.0 ng m−3 AFL: <0.06 ng m−3 Big coffee bags on a conveyor belt OTA: <0.4 ng m−3 AFL: <0.01 ng m−3 | The authors concluded that the concentration of mycotoxins was lower than the detection limit of the method used. However, the authors emphasize that occupational exposure limits have not been set. | |
Exposure assessment to mycotoxins in workplaces: aflatoxins and ochratoxin A occurrence in airborne dusts and human sera | [33] | Italy | Warehouse: Handling and processing of coffee beans | Dust; serum | Stationary and personal filtration | Mycotoxins | HPLC | Personal OTA: 0.007–0.066 ng m−3 Dust: 0.006–0.018 ng m−3 | This study showed a wide range of OTA levels in the samples. This could be related to the distance between the worker and the stocked raw materials and the manual tasks being developed. | |
External and internal dose in subjects occupationally exposed to ochratoxin A | [34] | Italy | Coffee processing warehouse | Dust; serum | Stationary and personal filtration | Mycotoxin: OTA | HPLC | Airborne OTA: 0.051 ng m−2 Serum: 2.41 ng mL−1 | OTA represents an occupational hazard, in addition to other mycotoxins potentially present in the workplace. | |
Factors relating to the development of respiratory symptoms in coffee process workers | [35] | England | Coffee processing firm: unloading; tipping; roasting | Dust; serum | Impaction | Total fungi; total bacteria | Culture-based methods | Bacteria Container unloading: 4.12 × 10−3 CFU m−3 Tipping: 8.50 × 10−3 CFU Roasting: 1.90 × 10−3 CFUm−3 Fungi Container unloading: 8.14 × 10−3 CFU m−3 Tipping: 3.40 × 10−3 CFU m−3 Roasting: 5.65 × 10−3 CFU m−3 | The collected data show that different work areas resulted in different mean concentrations of airborne dust and microorganisms. The study also suggests that respiratory symptoms are work-related. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, F.d.S.d.; de Andrade, E.T.; Viegas, C.; de Souza, J.R.S.C.; Rabelo, G.F.; Viegas, S. Hidden Hazards: A Literature Review on Occupational Exposure to Fungi and Mycotoxins in the Coffee Industry. Aerobiology 2025, 3, 3. https://doi.org/10.3390/aerobiology3020003
Oliveira FdSd, de Andrade ET, Viegas C, de Souza JRSC, Rabelo GF, Viegas S. Hidden Hazards: A Literature Review on Occupational Exposure to Fungi and Mycotoxins in the Coffee Industry. Aerobiology. 2025; 3(2):3. https://doi.org/10.3390/aerobiology3020003
Chicago/Turabian StyleOliveira, Filipe da Silva de, Ednilton Tavares de Andrade, Carla Viegas, Jéssica Raquel Sales Carvalho de Souza, Giovanni Francisco Rabelo, and Susana Viegas. 2025. "Hidden Hazards: A Literature Review on Occupational Exposure to Fungi and Mycotoxins in the Coffee Industry" Aerobiology 3, no. 2: 3. https://doi.org/10.3390/aerobiology3020003
APA StyleOliveira, F. d. S. d., de Andrade, E. T., Viegas, C., de Souza, J. R. S. C., Rabelo, G. F., & Viegas, S. (2025). Hidden Hazards: A Literature Review on Occupational Exposure to Fungi and Mycotoxins in the Coffee Industry. Aerobiology, 3(2), 3. https://doi.org/10.3390/aerobiology3020003