Previous Issue
Volume 3, March
 
 

Aerobiology, Volume 3, Issue 2 (June 2025) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
17 pages, 4362 KiB  
Article
Bioparticle Sources, Dispersion, and Influencing Factors in Rural Environmental Air
by Xuezheng Yu, Yunping Han, Yingnan Cao, Jianguo Liu, Zipeng Liu, Yilin Li and Weiying Feng
Aerobiology 2025, 3(2), 4; https://doi.org/10.3390/aerobiology3020004 - 13 May 2025
Viewed by 167
Abstract
Rural villages function as relatively self-sustained production and living units with well-developed infrastructure. In this setting, investigating the transmission pathways of airborne biological particles, including pathogenic microorganisms, is pivotal for ensuring the health of residents. This study investigated the sources and dispersion of [...] Read more.
Rural villages function as relatively self-sustained production and living units with well-developed infrastructure. In this setting, investigating the transmission pathways of airborne biological particles, including pathogenic microorganisms, is pivotal for ensuring the health of residents. This study investigated the sources and dispersion of biogenic particulate matter in rural ambient air and factors influencing their behavior. Potential bioaerosol sources including livestock farming areas, composting sites, garbage dumps, and sewage treatment facilities were investigated using a calibrated portable bioaerosol detector to collect and analyze the dispersion of bioaerosol particles. The dispersal characteristics of Enterobacteriaceae were explored using an Andersen six-stage sampler. Livestock farming areas were the primary source of bioparticles. The distribution of the bioparticles varied significantly with environmental conditions. Key factors influencing their distribution included the dispersal capabilities due to wind speed and the processes of aggregation and coagulation of particles. The dispersal pathway of Enterobacteriaceae indicated that the inhabitants of residences near the dispersion source might be exposed to health risks from pathogenic bacteria present in bioparticles indoors. Understanding such characteristics and transmission patterns of bioparticles in rural environments provides a scientific basis for risk assessment and management strategies, with important implications for improving air-quality monitoring, public health policies, and environmental management in rural areas. Full article
Show Figures

Figure 1

14 pages, 913 KiB  
Review
Hidden Hazards: A Literature Review on Occupational Exposure to Fungi and Mycotoxins in the Coffee Industry
by Filipe da Silva de Oliveira, Ednilton Tavares de Andrade, Carla Viegas, Jéssica Raquel Sales Carvalho de Souza, Giovanni Francisco Rabelo and Susana Viegas
Aerobiology 2025, 3(2), 3; https://doi.org/10.3390/aerobiology3020003 - 24 Apr 2025
Viewed by 355
Abstract
Several studies have reported the incidence of fungi and mycotoxins in coffee beans; however, there are few reports related to occupational exposure to these agents at coffee dry milling industries. The aim of this review was to identify and to analyze studies assessing [...] Read more.
Several studies have reported the incidence of fungi and mycotoxins in coffee beans; however, there are few reports related to occupational exposure to these agents at coffee dry milling industries. The aim of this review was to identify and to analyze studies assessing occupational exposure to fungi and mycotoxins in coffee industries. Therefore, a systematic literature search was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology and focusing on the assessment of occupational exposure to fungi and mycotoxins in the coffee industry. In these papers, different environmental matrices were considered in evaluating occupational exposure, but the most used matrix was airborne dust (four of the five studies). Airborne fungi were sampled using active (four of the five studies) and passive sampling. Only the most recent of the studies (2022) identified microorganisms by their genera and species, and only two groups of mycotoxins were analyzed in the studies considered, namely, Ochratoxin A and Aflatoxins. None of the studies reported data on both fungi and mycotoxins. The fungal genera identified in these occupational environments included Cladosporium, Paecilomyces, Aspergillus, Penicillium, and other genera. Among the mycotoxins, only aflatoxins and ochratoxin A were investigated. Occupational exposure to these biological agents may lead to several health effects. Fungal spores and fragments can cause respiratory diseases such as asthma, allergic rhinitis, bronchitis, and hypersensitivity pneumonitis. Additionally, the mycotoxins studied—particularly Aflatoxins and Ochratoxin A—are associated with serious toxicological effects. Coexposure to both fungi and mycotoxins may enhance health risks and should be carefully considered in occupational risk assessments. Considering the possible effects related to exposure to fungi and mycotoxins and the number of workers involved in this type of industry in the world, more studies should be developed. This is the first review to systematically consolidate data on occupational exposure to both fungi and mycotoxins specifically within the coffee industry, highlighting existing knowledge gaps and the need for targeted risk assessments in coffee-producing settings. Full article
Show Figures

Graphical abstract

Previous Issue
Back to TopTop