Impact of BMI on Complications, Readmissions, and Perioperative Metrics in a Mature Direct Anterior Approach Total Hip Arthroplasty (THA) Practice
Abstract
1. Introduction
2. Materials and Methods
2.1. Statistical Analysis
2.2. Surgical Procedure
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| THA | Total Hip Arthroplasty |
| DAA | Direct Anterior Approach |
| BMI | Body Mass Index |
| ASA | American Society of Anesthesiologists |
| ICD-10-CM | International Classification of Diseases, 10th Revision, Clinical Modification |
References
- Collaborators GUOF. National-level and state-level prevalence of overweight and obesity among children, adolescents, and adults in the USA, 1990–2021, and forecasts up to 2050. Lancet 2024, 404, 2278–2298. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, D.; Zhang, Y.; Dou, Q. Genetically predicted obesity and risk of hip osteoarthritis. Eat. Weight Disord. 2023, 28, 11. [Google Scholar] [CrossRef]
- Reyes, C.; Leyland, K.M.; Peat, G.; Cooper, C.; Arden, N.K.; Prieto-Alhambra, D. Association Between Overweight and Obesity and Risk of Clinically Diagnosed Knee, Hip, and Hand Osteoarthritis: A Population-Based Cohort Study. Arthritis Rheumatol. 2016, 68, 1869–1875. [Google Scholar] [CrossRef]
- Shichman, I.; Roof, M.; Askew, N.; Nherera, L.; Rozell, J.C.; Seyler, T.M.; Schwarzkopf, R. Projections and Epidemiology of Primary Hip and Knee Arthroplasty in Medicare Patients to 2040–2060. JBJS Open Access 2023, 8, e22. [Google Scholar] [CrossRef]
- Patel, N.N.; Shah, J.A.; Erens, G.A. Current Trends in Clinical Practice for the Direct Anterior Approach Total Hip Arthroplasty. J. Arthroplast. 2019, 34, 1987–1993.e3. [Google Scholar] [CrossRef]
- Wagner, E.R.; Kamath, A.F.; Fruth, K.M.; Harmsen, W.S.; Berry, D.J. Effect of Body Mass Index on Complications and Reoperations After Total Hip Arthroplasty. J. Bone Jt. Surg. Am. 2016, 98, 169–179. [Google Scholar] [CrossRef]
- Aggarwal, V.A.; Sambandam, S.; Wukich, D. The Impact of Obesity on Total Hip Arthroplasty Outcomes: A Retrospective Matched Cohort Study. Cureus 2022, 14, e27450. [Google Scholar] [CrossRef]
- Onggo, J.R.; Onggo, J.D.; de Steiger, R.; Hau, R. Greater risks of complications, infections, and revisions in the obese versus non-obese total hip arthroplasty population of 2,190,824 patients: A meta-analysis and systematic review. Osteoarthr. Cartil. 2020, 28, 31–44. [Google Scholar] [CrossRef]
- Matar, H.E.; Pincus, D.; Paterson, J.M.; Aktar, S.; Jenkinson, R.; Ravi, B. Early Surgical Complications of Total Hip Arthroplasty in Patients With Morbid Obesity: Propensity-Matched Cohort Study of 3683 Patients. J. Arthroplast. 2020, 35, 2646–2651. [Google Scholar] [CrossRef]
- Acuna, A.J.; Forlenza, E.M.; Serino, J.; Terhune, E.B., 3rd; Della Valle, C.J. Body Mass Index Does Not Drive the Risk for Early Postoperative Instability After Total Hip Arthroplasty: A Matched Cohort Analysis. J. Arthroplast. 2024, 39, S301–S305.e3. [Google Scholar] [CrossRef]
- Haynes, J.; Nam, D.; Barrack, R.L. Obesity in total hip arthroplasty: Does it make a difference? Bone Jt. J. 2017, 99 (Suppl. A), 31–36. [Google Scholar] [CrossRef]
- Antoniadis, A.; Dimitriou, D.; Flury, A.; Wiedmer, G.; Hasler, J.; Helmy, N. Is Direct Anterior Approach a Credible Option for Severely Obese Patients Undergoing Total Hip Arthroplasty? A Matched-Control, Retrospective, Clinical Study. J. Arthroplast. 2018, 33, 2535–2540. [Google Scholar] [CrossRef]
- Argyrou, C.; Tzefronis, D.; Sarantis, M.; Kateros, K.; Poultsides, L.; Macheras, G.A. Total hip arthroplasty through the direct anterior approach in morbidly obese patients. Bone Jt. Open 2022, 3, 4–11. [Google Scholar] [CrossRef]
- Purcell, R.L.; Parks, N.L.; Gargiulo, J.M.; Hamilton, W.G. Severely Obese Patients Have a Higher Risk of Infection After Direct Anterior Approach Total Hip Arthroplasty. J. Arthroplast. 2016, 31 (Suppl. S9), 162–165. [Google Scholar] [CrossRef]
- Brock, J.L.; Kamath, A.F. Obesity and racial characteristics drive utilization of total joint arthroplasty at a younger age. J. Clin. Orthop. Trauma 2019, 10, 334–339. [Google Scholar] [CrossRef]
- Changulani, M.; Kalairajah, Y.; Peel, T.; Field, R.E. The relationship between obesity and the age at which hip and knee replacement is undertaken. J. Bone Jt. Surg. Br. 2008, 90, 360–363. [Google Scholar] [CrossRef]
- Clement, N.D.; Deehan, D.J. Overweight and Obese Patients Require Total Hip and Total Knee Arthroplasty at a Younger Age. J. Orthop. Res. 2020, 38, 348–355. [Google Scholar] [CrossRef]
- Sang, W.; Zhu, L.; Ma, J.; Lu, H.; Wang, C. The Influence of Body Mass Index and Hip Anatomy on Direct Anterior Approach Total Hip Replacement. Med. Princ. Pract. 2016, 25, 555–560. [Google Scholar] [CrossRef]
- Bowditch, M.G.; Villar, R.N. Do obese patients bleed more? A prospective study of blood loss at total hip replacement. Ann. R. Coll. Surg. Engl. 1999, 81, 198–200. [Google Scholar]
- Wang, J.L.; Gadinsky, N.E.; Yeager, A.M.; Lyman, S.L.; Westrich, G.H. The increased utilization of operating room time in patients with increased BMI during primary total hip arthroplasty. J. Arthroplast. 2013, 28, 680–683. [Google Scholar] [CrossRef]
- Abella, M.; Angeles, J.P.M.; Finlay, A.K.; Amanatullah, D.F. Does Operative Time Modify Obesity-related Outcomes in THA? Clin. Orthop. Relat. Res. 2023, 481, 1917–1925. [Google Scholar] [CrossRef]
- Hanly, R.J.; Marvi, S.K.; Whitehouse, S.L.; Crawford, R.W. Morbid Obesity in Total Hip Arthroplasty: Redefining Outcomes for Operative Time, Length of Stay, and Readmission. J. Arthroplast. 2016, 31, 1949–1953. [Google Scholar] [CrossRef]
- Sikov, M.; Sloan, M.; Sheth, N.P. Effect of operative time on complications following primary total hip arthroplasty: Analysis of the NSQIP database. Hip Int. 2021, 31, 231–236. [Google Scholar] [CrossRef]
- Surace, P.; Sultan, A.A.; George, J.; Samuel, L.T.; Khlopas, A.; Molloy, R.M.; Stearns, K.L.; Mont, M.A. The Association Between Operative Time and Short-Term Complications in Total Hip Arthroplasty: An Analysis of 89,802 Surgeries. J. Arthroplast. 2019, 34, 426–432. [Google Scholar] [CrossRef]
- Hung, C.Y.; Chang, C.H.; Lin, Y.C.; Lee, S.H.; Chen, S.Y.; Hsieh, P.H. Predictors for Unfavorable Early Outcomes in Elective Total Hip Arthroplasty: Does Extreme Body Mass Index Matter? BioMed Res. Int. 2019, 2019, 4370382. [Google Scholar] [CrossRef]
- Simpson, E.R.; Hudson, P.; Deshpande, V.; Guerrero, S.; Barnett, S.; Siljander, M.P. Body Mass Index as a Risk Factor for Readmission Rates in Direct Anterior Approach Total Hip Arthroplasty. Arthroplast. Today 2025, 33, 101679. [Google Scholar] [CrossRef]
- Roger, C.; Debuyzer, E.; Dehl, M.; Bulaid, Y.; Lamrani, A.; Havet, E.; Mertl, P. Factors associated with hospital stay length, discharge destination, and 30-day readmission rate after primary hip or knee arthroplasty: Retrospective Cohort Study. Orthop. Traumatol. Surg. Res. 2019, 105, 949–955. [Google Scholar] [CrossRef]
- Abdulla, I.; Mahdavi, S.; Khong, H.; Gill, R.; Powell, J.; Johnston, K.D.; Sharma, R. Does body mass index affect the rate of adverse outcomes in total hip and knee arthroplasty? A retrospective review of a total joint replacement database. Can. J. Surg. 2020, 63, E142–E149. [Google Scholar] [CrossRef]
- Hartford, J.M.; Graw, B.P.; Frosch, D.L. Perioperative Complications Stratified by Body Mass Index for the Direct Anterior Approach to Total Hip Arthroplasty. J. Arthroplast. 2020, 35, 2652–2657. [Google Scholar] [CrossRef]
- Horberg, J.V.; Coobs, B.R.; Jiwanlal, A.K.; Betzle, C.J.; Capps, S.G.; Moskal, J.T. Dislocation rates following total hip arthroplasty via the direct anterior approach in a consecutive, non-selective cohort. Bone Jt. J. 2021, 103 (Suppl. B), 38–45. [Google Scholar] [CrossRef]
- Werner, B.C.; Higgins, M.D.; Pehlivan, H.C.; Carothers, J.T.; Browne, J.A. Super Obesity Is an Independent Risk Factor for Complications After Primary Total Hip Arthroplasty. J. Arthroplast. 2017, 32, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Mirghaderi, P.; Pahlevan-Fallahy, M.T.; Rezaee, H.; Moharrami, A.; Ravanbod, H.; Pourgharib-Shahi, M.H.; Mortazavi, S.M.J. Dislocation incidence and risk factors following direct anterior primary total hip arthroplasty: A consecutive, single-surgeon cohort. BMC Musculoskelet. Disord. 2025, 26, 442. [Google Scholar] [CrossRef]
- Otero, J.E.; Gholson, J.J.; Pugely, A.J.; Gao, Y.; Bedard, N.A.; Callaghan, J.J. Length of Hospitalization After Joint Arthroplasty: Does Early Discharge Affect Complications and Readmission Rates? J. Arthroplast. 2016, 31, 2714–2725. [Google Scholar] [CrossRef]
- Shah, N.V.; Huddleston, H.P.; Wolff, D.T.; Newman, J.M.; Pivec, R.; Naziri, Q.; Shah, V.R.; Maheshwari, A.V. Does Surgical Approach for Total Hip Arthroplasty Impact Infection Risk in the Obese Patient? A Systematic Review. Orthopedics 2022, 45, e67–e72. [Google Scholar] [CrossRef]
- Nizam, I.; Dabirrahmani, D.; Alva, A.; Choudary, D. Bikini anterior hip replacements in obese patients are not associated with an increased risk of complication. Arch. Orthop. Trauma Surg. 2022, 142, 2919–2926. [Google Scholar] [CrossRef]
- Carender, C.N.; Fruth, K.M.; Lewallen, D.G.; Berry, D.J.; Abdel, M.P.; Bedard, N.A. Obesity and Primary Total Hip Arthroplasty: The Absolute versus Relative Risk of Periprosthetic Joint Infection at 15 Years. J. Arthroplast. 2024, 39 (Suppl. 2), S436–S443.e1. [Google Scholar]
- Singh, J.A.; Jensen, M.R.; Harmsen, S.W.; Lewallen, D.G. Are gender, comorbidity, and obesity risk factors for postoperative periprosthetic fractures after primary total hip arthroplasty? J. Arthroplast. 2013, 28, 126–131.e2. [Google Scholar] [CrossRef]
- Dash, A.S.; Hewitt, M.A.; Ruberto, R.A.; Smith, T.A.; Herndon, C.L.; Sarpong, N.O. Body Mass Index Above 35 Has Increased Risk of Complications but Still Achieves Clinically Meaningful Improvement in Patient-Reported Outcomes After Anterior-Based Total Hip Arthroplasty. Arthroplast. Today 2025, 32, 101665. [Google Scholar] [CrossRef]
- Sloan, M.; Sheth, N.; Lee, G.C. Is Obesity Associated With Increased Risk of Deep Vein Thrombosis or Pulmonary Embolism After Hip and Knee Arthroplasty? A Large Database Study. Clin. Orthop. Relat. Res. 2019, 477, 523–532. [Google Scholar] [CrossRef]
- Jayaram, R.H.; Day, W.; Gouzoulis, M.J.; Zhu, J.R.; Grauer, J.N.; Rubin, L.E. Risk Factors for Perioperative Nerve Injury Related to Total Hip Arthroplasty. Arthroplast. Today 2024, 28, 101440. [Google Scholar] [CrossRef]
| BMI Group | n | Age | % Male N (%) | ASA Class I N (%) | ASA Class II N (%) | ASA Class III N (%) | Mean BMI (kg/m2) |
|---|---|---|---|---|---|---|---|
| Class II Obesity | 55 | 62.44 ± 7.50 | 21 (38.2) | 0 (0) | 24 (43.6) | 31 (56.4) | 37.08 ± 1.84 |
| Control | 85 | 66.91 ± 11.07 | 28 (32.9) | 1 (1.8) | 61 (71.8) | 23 (27.1) | 23.20 ± 1.27 |
| p-value | <0.0001 * | 0.53 | 0.36 | 0.0009 * | 0.0005 * | <0.0001 * | |
| Class I Obesity | 142 | 65.53 ± 9.15 | 77 (54.2) | 1 (0.7) | 78 (54.9) | 63 (44.4) | 32.05 ± 1.38 |
| Control | 85 | 66.91 ± 11.07 | 28 (32.9) | 1 (1.8) | 61 (71.8) | 23 (27.1) | 23.20 ± 1.27 |
| p-value | 0.085 | 0.0019 * | 0.71 | 0.0117 * | 0.0093 * | <0.0001 * | |
| Overweight | 197 | 66.84 ± 9.52 | 103 (52.2) | 1 (0.5) | 123 (62.4) | 73 (37.1) | 27.41 ± 1.58 |
| Control | 85 | 66.91 ± 11.07 | 28 (32.9) | 1 (1.8) | 61 (71.8) | 23 (27.1) | 23.20 ± 1.27 |
| p-value | 0.6652 | 0.0028 * | 0.5391 | 0.1445 | 0.0982 | <0.0001 * |
| BMI Group | N | Length of Stay (Days) | Same Day Discharge N (%) | Operative Time (min) | Estimated Blood Loss (mL) | Cases > 300 mL Blood Loss N (%) | Catheterization N (%) |
|---|---|---|---|---|---|---|---|
| Class II Obesity | 55 | 1.33 ± 1.07 | 2 (2.9) | 73.00 ± 15.82 | 370.02 ± 187.19 | 38 (69.1) | 5 (9.1) |
| Control | 85 | 1.15 ± 0.84 | 6 (7.1) | 62.58 ± 14.19 | 271.29 ± 203.15 | 21 (24.7) | 13 (15.3) |
| p-value | 0.36 | 0.23 | <0.0001 * | <0.0001 * | <0.0001 * | 0.28 | |
| Class I Obesity | 142 | 1.18 ± 0.79 | 1 (0.7) | 67.81 ± 12.47 | 298.77 ± 165.79 | 45 (31.7) | 12 (8.5) |
| Control | 85 | 1.15 ± 0.84 | 6 (7.1) | 62.58 ± 14.19 | 271.29 ± 203.15 | 21 (24.7) | 13 (15.3) |
| p-value | 0.59 | 0.0074 * | 0.0007 * | 0.0206 * | 0.26 | 0.11 | |
| Overweight | 197 | 1.10 ± 0.8 | 13 (6.6) | 64.40 ± 12.41 | 264.64 ± 130.32 | 42 (21.3) | 17 (8.6) |
| Control | 85 | 1.15 ± 0.84 | 6 (7.1) | 62.58 ± 14.19 | 271.29 ± 203.15 | 21 (24.7) | 13 (15.3) |
| p-value | 0.38 | 0.89 | 0.13 | 0.31 | 0.53 | 0.10 |
| BMI Group | N | 1-Week N (%) | 3-Week N (%) | 90-Day N (%) | Total N (%) |
|---|---|---|---|---|---|
| Class II Obesity | 55 | 1 (1.8) | 0 (0) | 1 (1.8) | 2 (3.6) |
| Control | 85 | 0 (0) | 0 (0) | 2 (2.4) | 2 (2.4) |
| p-value | 0.21 | 1.0 | 0.83 | 0.84 | |
| Class I Obesity | 142 | 0 (0) | 1 (0.7) | 2 (1.4) | 3 (2.1) |
| Control | 85 | 0 (0) | 0 (0) | 2 (2.4) | 2 (2.4) |
| p-value | 1.0 | 0.44 | 0.60 | 0.91 | |
| Overweight | 197 | 2 (1.0) | 5 (2.5) | 4 (2.0) | 11 (5.6) |
| Control | 85 | 0 (0) | 0 (0) | 2 (2.4) | 2 (2.4) |
| p-value | 0.35 | 0.14 | 0.86 | 0.24 |
| BMI Group | N | Dislocations N (%) | PACU Dislocations N (%) | Superficial Infection N (%) | Deep Infection N (%) | Periprosthetic Fracture N (%) | DVT N (%) | Nerve Injury N (%) | Total N (%) |
|---|---|---|---|---|---|---|---|---|---|
| Class II Obesity | 55 | 0 (0) | 0 (0) | 1 (1.9) | 0 (0) | 0 (0) | 0 (0) | 1 (1.9) | 2 (3.6) |
| Control | 85 | 1 (1.2) | 1 (1.2) | 0 (0) | 0 (0) | 0 (0) | 1 (1.2) | 0 (0) | 3 (3.5) |
| p-value | 0.42 | 0.42 | 0.21 | 1.0 | 1.0 | 0.42 | 0.21 | 0.97 | |
| Class I Obesity | 142 | 0 (0) | 0 (0) | 1 (0.7) | 0 (0) | 2 (1.4) | 0 (0) | 0 (0) | 4 (2.8) |
| Control | 85 | 1 (1.2) | 1 (1.2) | 0 (0) | 0 (0) | 0 (0) | 1 (1.2) | 0 (0) | 3 (3.5) |
| p-value | 0.20 | 0.20 | 0.44 | 1.0 | 0.27 | 0.20 | 1.0 | 0.76 | |
| Overweight | 197 | 3 (1.5) | 1 (0.5) | 1 (0.5) | 0 (0) | 2 (1.0) | 1 (0.5) | 0 (0) | 8 (4.1) |
| Control | 85 | 1 (1.2) | 1 (1.2) | 0 (0) | 0 (0) | 0 (0) | 1 (1.2) | 0 (0) | 3 (3.5) |
| p-value | 0.82 | 0.54 | 0.51 | 1.0 | 0.35 | 0.54 | 1.0 | 0.83 |
| Dislocations N (%) | PACU Dislocations N (%) | Superficial Infection N (%) | Deep Infection N (%) | Periprosthetic Fracture N (%) | DVT N (%) | Nerve Injury N (%) | Total N (%) | |
|---|---|---|---|---|---|---|---|---|
| Total N = 479 | 4 (0.8) | 2 (0.4) | 3 (0.6) | 0 (0) | 4 (0.8) | 2 (0.4) | 1 (0.2) | 16 (3.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fleps, S.W.; Drinkwater, C.J. Impact of BMI on Complications, Readmissions, and Perioperative Metrics in a Mature Direct Anterior Approach Total Hip Arthroplasty (THA) Practice. Complications 2025, 2, 27. https://doi.org/10.3390/complications2040027
Fleps SW, Drinkwater CJ. Impact of BMI on Complications, Readmissions, and Perioperative Metrics in a Mature Direct Anterior Approach Total Hip Arthroplasty (THA) Practice. Complications. 2025; 2(4):27. https://doi.org/10.3390/complications2040027
Chicago/Turabian StyleFleps, Stefan W., and Christopher J. Drinkwater. 2025. "Impact of BMI on Complications, Readmissions, and Perioperative Metrics in a Mature Direct Anterior Approach Total Hip Arthroplasty (THA) Practice" Complications 2, no. 4: 27. https://doi.org/10.3390/complications2040027
APA StyleFleps, S. W., & Drinkwater, C. J. (2025). Impact of BMI on Complications, Readmissions, and Perioperative Metrics in a Mature Direct Anterior Approach Total Hip Arthroplasty (THA) Practice. Complications, 2(4), 27. https://doi.org/10.3390/complications2040027

