Identifying Ultrasonic Testing Based Nondestructive Qualification Parameters for Laser DED Processed IN718
Abstract
:1. Introduction
2. Methods and Materials
2.1. Materials
2.2. Ultrasonic Testing
3. Proposed Qualification Parameters
3.1. Anisotropy Index
3.2. Heterogeneity Parameter
3.3. Attenuation Coefficient
4. Results
4.1. Anisotropy Index
4.2. Heterogeneity Parameter
4.3. Attenuation Coefficient
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DED | Directed Energy Deposition |
IN718 | Inconel 718 |
AM | Additive Manufacturing |
NDE | Nondestructive Evaluation |
UT | Ultrasonic Testing |
References
- Aydogan, B.; O’Neil, A.; Sahasrabudhe, H. Microstructural and mechanical characterization of stainless steel 420 and Inconel 718 multi-material structures fabricated using laser directed energy deposition. J. Manuf. Process. 2021, 68, 1224–1235. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, J.; Lin, X.; Huang, W. Study on microstructure and mechanical properties of laser rapid forming Inconel 718. Mater. Sci. Eng. A 2008, 478, 119–124. [Google Scholar] [CrossRef]
- Hosseini, E.; Popovich, V.A. A review of mechanical properties of additively manufactured Inconel 718. Addit. Manuf. 2019, 30, 100877. [Google Scholar] [CrossRef]
- Parimi, L.L.; Ravi, G.; Clark, D.; Attallah, M.M. Microstructural and texture development in direct laser fabricated IN718. Mater. Charact. 2014, 89, 102–111. [Google Scholar] [CrossRef]
- Holland, S.; Wang, X.; Fang, X.; Guo, Y.; Yan, F.; Li, L. Grain boundary network evolution in Inconel 718 from selective laser melting to heat treatment. Mater. Sci. Eng. A 2018, 725, 406–418. [Google Scholar] [CrossRef]
- Rezaei, A.; Rezaeian, A.; Kermanpur, A.; Badrossamay, M.; Foroozmehr, E.; Marashi, M.; Foroozmehr, A.; Han, J. Microstructural and mechanical anisotropy of selective laser melted IN718 superalloy at room and high temperatures using small punch test. Mater. Charact. 2020, 162, 110200. [Google Scholar] [CrossRef]
- Ni, M.; Chen, C.; Wang, X.; Wang, P.; Li, R.; Zhang, X.; Zhou, K. Anisotropic tensile behavior of in situ precipitation strengthened Inconel 718 fabricated by additive manufacturing. Mater. Sci. Eng. A 2017, 701, 344–351. [Google Scholar] [CrossRef]
- Du, D.; Dong, A.; Shu, D.; Zhu, G.; Sun, B.; Li, X.; Lavernia, E. Influence of build orientation on microstructure, mechanical and corrosion behavior of Inconel 718 processed by selective laser melting. Mater. Sci. Eng. A 2019, 760, 469–480. [Google Scholar] [CrossRef]
- Li, Z.; Chen, J.; Sui, S.; Zhong, C.; Lu, X.; Lin, X. The microstructure evolution and tensile properties of Inconel 718 fabricated by high-deposition-rate laser directed energy deposition. Addit. Manuf. 2020, 31, 100941. [Google Scholar] [CrossRef]
- Koester, L.W.; Bond, L.J.; Taheri, H.; Collins, P.C. Nondestructive evaluation of additively manufactured metallic parts: In situ and post deposition. In Additive Manufacturing for the Aerospace Industry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 401–417. [Google Scholar]
- Dutta, B.; Babu, S.; Jared, B.H. Science, Technology and Applications of Metals in Additive Manufacturing; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Gorelik, M. Additive manufacturing in the context of structural integrity. Int. J. Fatigue 2017, 94, 168–177. [Google Scholar] [CrossRef]
- Koester, L.; Taheri, H.; Bond, L.; Barnard, D.; Gray, J. Additive manufacturing metrology: State of the art and needs assessment. In Proceedings of the AIP Conference Proceedings, 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation: Incorporating the 6th European-American Workshop on Reliability of NDE, Minneapolis, MN, USA, 26–31 July 2015; AIP Publishing: Melville, NY, USA, 2016; Volume 1706. [Google Scholar]
- Slotwinski, J.A. Additive manufacturing: Overview and NDE challenges. In Proceedings of the AIP Conference Proceedings, 40th Annual Review of Progress in Quantitative Nondestructive Evaluation: Incorporating the 10th International Conference on Barkhausen Noise and Micromagnetic Testing, Baltimore, MD, USA, 21–26 July 2013; American Institute of Physics: College Park, MD, USA, 2014; Volume 1581, pp. 1173–1177. [Google Scholar]
- Lu, Q.Y.; Wong, C.H. Applications of non-destructive testing techniques for post-process control of additively manufactured parts. Virtual Phys. Prototyp. 2017, 12, 301–321. [Google Scholar] [CrossRef]
- Lu, Q.Y.; Wong, C.H. Additive manufacturing process monitoring and control by non-destructive testing techniques: Challenges and in-process monitoring. Virtual Phys. Prototyp. 2018, 13, 39–48. [Google Scholar] [CrossRef]
- Hirsch, M.; Patel, R.; Li, W.; Guan, G.; Leach, R.K.; Sharples, S.D.; Clare, A.T. Assessing the capability of in-situ nondestructive analysis during layer based additive manufacture. Addit. Manuf. 2017, 13, 135–142. [Google Scholar] [CrossRef]
- Carl, V. Monitoring system for the quality assessment in additive manufacturing. In Proceedings of the AIP Conference Proceedings,41st Annual Review Of Progress in Quantitative Nondestructive Evaluation: Volume 34, Boise, ID, USA, 20–25 July 2014; American Institute of Physics: College Park, MD, USA, 2015; Volume 1650, pp. 171–176. [Google Scholar]
- Seifi, M.; Gorelik, M.; Waller, J.; Hrabe, N.; Shamsaei, N.; Daniewicz, S.; Lewandowski, J.J. Progress towards metal additive manufacturing standardization to support qualification and certification. JOM 2017, 69, 439–455. [Google Scholar] [CrossRef]
- Babu, S.S.; Raghavan, N.; Raplee, J.; Foster, S.J.; Frederick, C.; Haines, M.; Dinwiddie, R.; Kirka, M.; Plotkowski, A.; Lee, Y.; et al. Additive manufacturing of nickel superalloys: Opportunities for innovation and challenges related to qualification. Metall. Mater. Trans. A 2018, 49, 3764–3780. [Google Scholar] [CrossRef]
- Honarvar, F.; Varvani-Farahani, A. A review of ultrasonic testing applications in additive manufacturing: Defect evaluation, material characterization, and process control. Ultrasonics 2020, 108, 106227. [Google Scholar] [CrossRef]
- Khabouchi, A.; Ventura, P.; Leymarie, N.; Hazotte, A.; Germain, L. Crystallographic texture and velocities of ultrasonic waves in a Ni-based superalloy manufactured by laser powder bed fusion. Mater. Charact. 2020, 169, 110607. [Google Scholar] [CrossRef]
- Cowles, B. Summary Report: The Second Joint Federal Aviation Administration—Air Force Workshop on Qualification. In Certification of Additively Manufactured Part; United States Department of Transportation Federal Aviation Administration, William J. Hughes Technical Center: Atlantic City, NJ, USA, 2017. [Google Scholar]
- Chen, Z.; Han, C.; Gao, M.; Kandukuri, S.Y.; Zhou, K. A review on qualification and certification for metal additive manufacturing. Virtual Phys. Prototyp. 2022, 17, 382–405. [Google Scholar] [CrossRef]
- Shaloo, M.; Schnall, M.; Klein, T.; Huber, N.; Reitinger, B. A review of non-destructive testing (NDT) techniques for defect detection: Application to fusion welding and future wire arc additive manufacturing processes. Materials 2022, 15, 3697. [Google Scholar] [CrossRef]
- Rao, J.; Leong Sing, S.; Liu, P.; Wang, J.; Sohn, H. Non-destructive testing of metal-based additively manufactured parts and processes: A review. Virtual Phys. Prototyp. 2023, 18, e2266658. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, J.; Li, X.; Yuan, S.; Ma, G.; Xue, Z.; Jing, X.; Cao, J. Intelligent denoise laser ultrasonic imaging for inspection of selective laser melting components with rough surface. NDT E Int. 2022, 125, 102548. [Google Scholar] [CrossRef]
- Ledbetter, H.; Migliori, A. A general elastic-anisotropy measure. J. Appl. Phys. 2006, 100, 063516. [Google Scholar] [CrossRef]
- Schmerr, L.W. Fundamentals of Ultrasonic Nondestructive Evaluation; Springer: New York, NY, USA, 2016; Volume 122. [Google Scholar]
- Margetan, F.; Thompson, R.; Yalda-Mooshabad, I.; Han, Y. Detectability of Small Flaws in Advanced Engine Alloys; U.S. Air Force Technical Report; Center for NDE, Iowa State University: Ames, IA, USA, 1993.
- Ono, K. A comprehensive report on ultrasonic attenuation of engineering materials, including metals, ceramics, polymers, fiber-reinforced composites, wood, and rocks. Appl. Sci. 2020, 10, 2230. [Google Scholar] [CrossRef]
- Danilov, V.; Ushakov, V.; Rymkevich, A. Investigating the possibilities of assessing the state of the metal structure of pipelines in service by ultrasonic method. Russ. J. Nondestruct. Test. 2021, 57, 635–646. [Google Scholar] [CrossRef]
- Danilov, V.; Ushakov, V. Estimation of the average grain sizes in metal and their dispersion by changing the amplitudes of bottom echoes of longitudinal waves with a different number of reflections. J. Kontrol. Diagn. 2024, 8, 4–16. [Google Scholar] [CrossRef]
- Miles, Z.; Aydogan, B.; Huanes-Alvan, G.; Sahasrabudhe, H.; Chakrapani, S.K. Characterizing the as-fabricated state of additively fabricated in718 using ultrasonic nondestructive evaluation. Appl. Sci. 2023, 13, 8137. [Google Scholar] [CrossRef]
- Miles, Z.; Aydogan, B.; Huanes-Alvan, G.; Sahasrabudhe, H.; Chakrapani, S.K. Ultrasonic Properties of Multi-material SS420-IN718 Structures Fabricated Using Laser Directed Energy Deposition. Int. J. Precis. Eng. Manuf. 2025, 26, 689–700. [Google Scholar] [CrossRef]
Parameter | PP1 | PP2 |
---|---|---|
Oxygen and moisture | <20 ppm | <20 ppm |
Laser power | 900 W | 1000 W |
Speed | 20 mm/s | 15 mm/s |
Powder feed rate | 12.3 g/min | 12.3 g/min |
Powder particle size | 16–44 μm | 44–16 μm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huanes-Alvan, G.; Sahasrabudhe, H.; Chakrapani, S.K. Identifying Ultrasonic Testing Based Nondestructive Qualification Parameters for Laser DED Processed IN718. NDT 2025, 3, 12. https://doi.org/10.3390/ndt3020012
Huanes-Alvan G, Sahasrabudhe H, Chakrapani SK. Identifying Ultrasonic Testing Based Nondestructive Qualification Parameters for Laser DED Processed IN718. NDT. 2025; 3(2):12. https://doi.org/10.3390/ndt3020012
Chicago/Turabian StyleHuanes-Alvan, Guillermo, Himanshu Sahasrabudhe, and Sunil Kishore Chakrapani. 2025. "Identifying Ultrasonic Testing Based Nondestructive Qualification Parameters for Laser DED Processed IN718" NDT 3, no. 2: 12. https://doi.org/10.3390/ndt3020012
APA StyleHuanes-Alvan, G., Sahasrabudhe, H., & Chakrapani, S. K. (2025). Identifying Ultrasonic Testing Based Nondestructive Qualification Parameters for Laser DED Processed IN718. NDT, 3(2), 12. https://doi.org/10.3390/ndt3020012