The INFN-LNF Astrophysics and Cosmology Integrated Test Facility Startup
Abstract
:1. Introduction
2. The INFN-LNF ACT ITF
2.1. Commissioning and Setup of the ‘Pocket’ Cryostat
- it was specifically designed for thermo-vacuum tests and thermal balance tests;
- operational pressure, p < 10−6 mbar, and operational temperature, (80 < T < 380) K (both expandable);
- controllable through remotely operated electronics;
- accessible internal test volume ≈ 8 × 104 cm3 = 80 L (roughly a cylindrical inner copper shroud with diameter = 40 cm and height(cylinder) = 60 cm); overall maximum volume of the whole apparatus < 2 m3 (roughly, length × width × height = 1 m × 1 m × 2 m); overall maximum volume of the whole apparatus including LN2 cooling tank < 3 m3 (roughly, length × width × height = 1 m × 1.5 m × 2 m);
- portability, meaning transportability: while being instrumented in a dedicated space, the hardware was equipped with a wheeled custom-made stand, and, given the aforementioned volumes, it may (and it will) be moved to customer site when in operation.
2.2. Description of Execution of Thermal Balance Tests [22]
- it embeds the LN2 cooling coil;
- it is painted black with Aeroglaze Z306 flat black (or similar), enhancing the black body characteristics of the environment;
- it is blanketed by multiple layers of Coolcat 2 NW insulator, increasing the thermal isolation regarding the outer environment, and decreasing LN2 consumption;
- it is seeded with ≈50 independent PT100 probes for temperature monitoring, together with resistive heater tapes for quick-response return to Standard Temperature and Pressure (STP).
- scroll pump, used to achieve the prevacuum condition of ≈10−1 mbar;
- turbo molecular pump, used to reach the service pressure lower than 10−6 mbar.
- LN2 flux, from the service tank, is remotely controlled by a fluxmeter, which is in turn telecommanded by in-house developed scripts (Figure 2a);
- once the shroud is cooled down, the LN2 is diverted towards the exterior and freed in atmosphere.
- ≈50 independent PT100 probes for temperature monitoring are installed on the cryostat, together with the other necessary payload-dependent probes, and are monitored and fed back to custom developed scripts. Based on temperature reads, the Proportional, Integral, Derivative (PID) can open or close the LN2 flux, thus governing the test;
- resistive heater tapes for quick-response return to STP through the power supplied by external power unit.
2.3. Rationale of Envisaged Irradiation and Diagnostics Tests
3. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Istituto Nazionale di Fisica Nucleare. Available online: https://home.infn.it/ (accessed on 15 May 2024).
- Istituto Nazionale di Fisica Nucleare—Commissione Scientifica Nazionale 2. Available online: https://web.infn.it/csn2/ (accessed on 15 May 2024).
- Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali di Frascati. Available online: https://www.lnf.infn.it/ (accessed on 15 May 2024).
- Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali di Frascati—SCF_Lab. Available online: https://w3.lnf.infn.it/laboratori/scf_lab/ (accessed on 15 May 2024).
- Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali di Frascati—XlabF. Available online: https://w3.lnf.infn.it/laboratori/x-lab-frascati/ (accessed on 15 May 2024).
- Workshop LB-ITA23@INFN-LNF. Available online: https://agenda.infn.it/event/35371/ (accessed on 15 May 2024).
- Porcelli, L.; Monache, G.D.; Dabagov, S.; Hampai, D.; Modestino, G. LNF Thermo-Vacuum Facility and Contribution to LiteBIRD. In Proceedings of the Workshop LB-ITA23@INFN-LNF, Frascati, Italy, 22–24 May 2023; Available online: https://agenda.infn.it/event/35371/ (accessed on 15 May 2024).
- Dell’Agnello, S.; Boni, A.; Cantone, C.; Ciocci, E.; Contessa, S.; Delle Monache, G.; Lops, C.; Martini, M.; Patrizi, G.; Porcelli, L.; et al. Thermo-optical vacuum testing of Galileo In-Orbit Validation laser retroreflectors. Adv. Space Res. 2016, 57, 2347–2358. [Google Scholar] [CrossRef]
- Dell’Agnello, S.; Delle Monache, G.; Porcelli, L.; Boni, A.; Contessa, S.; Ciocci, E.; Martini, M.; Tibuzzi, M.; Intaglietta, N.; Salvatori, L.; et al. INRRI-EDM/2016: The first laser retroreflector on the surface of Mars. Adv. Space Res. 2017, 59, 645–655. [Google Scholar] [CrossRef]
- Porcelli, L.; Boni, A.; Ciocci, E.; Contessa, S.; Dell’Agnello, S.; Delle Monache, G.; Intaglietta, N.; Martini, M.; Mondaini, C.; Patrizi, G.; et al. Thermo-optical vacuum testing of IRNSS laser retroreflector array qualification model. Adv. Space Res. 2017, 60, 1054–1061. [Google Scholar] [CrossRef]
- Ciocci, E.; Martini, M.; Contessa, S.; Porcelli, L.; Mastrofini, M.; Currie, D.; Delle Monache, G.; Dell’Agnello, S. Performance analysis of next-generation lunar laser retroreflectors. Adv. Space Res. 2017, 60, 1300–1306. [Google Scholar] [CrossRef]
- Dell’Agnello, S.; Delle Monache, G.; Ciocci, E.; Contessa, S.; Martini, M.; Mondaini, C.; Porcelli, L.; Salvatori, L.; Tibuzzi, M.; Vittori, R.; et al. LaRRI: Laser Retro-Reflector for InSight Mars Lander. Space Res. Today 2017, 200, 25–32, ISSN: 1752-9298. [Google Scholar]
- Porcelli, L.; Tibuzzi, M.; Mondaini, C.; Salvatori, L.; Muccino, M.; Petrassi, M.; Ioppi, L.; Dell’Agnello, S.; Luongo, O.; Delle Monache, G.; et al. Optical-Performance Testing of the Laser RetroReflector for InSight. Space Sci. Rev. 2018, 215, 1. [Google Scholar] [CrossRef]
- Rubino, L. Motor Control System of Laser Retroreflectors for the return to the Moon and beyond. In Proceedings of the European Lunar Symposium, Teleconference, Virtual, 12–14 May 2020. [Google Scholar]
- Bagolini, A.; Boscardin, M.; Dell’Agnello, S.; Delle Monache, G.; Di Paolo Emilio, M.; Porcelli, L.; Salvatori, L.; Tibuzzi, M. MEMS Mirror Manufacturing and Testing for Innovative Space Applications. arXiv 2006, arXiv:2006.12256. [Google Scholar]
- Rubino, L.; Denni, U.; Tibuzzi, M.; Salvatori, L.; Muccino, M.; Remujo Castro, A.; Mondaini, C.; Porcelli, L.; Di Paolo Emilio, M.; Dell’Agnello, S. MoonLIGHT Pointing Actuator (MPAc): A motor control system for Lunar Laser Ranging. In Proceedings of the Joint NASA Exploration Science Forum & European Lunar Symposium 2021, Teleconference, Virtual, 20–23 July 2021. [Google Scholar]
- Porcelli, L.; Currie, D.G.; Muccin, M.; Dell’Agnello, S.; Wellnitz, D.; Villoresi, P.; Vallone, G.; Capozziello, S.; Carpente, J.; Boersma, N.; et al. Next Generation Lunar Laser Retroreflectors for Fundamental Physics and Lunar Science, Topical White Paper Submitted to the Committee on the Biological and Physical Sciences Research in Space 2023–2032 of The National Academies of Sciences of the USA, October 2021. Available online: https://science.nasa.gov/biological-physical/resources/whitepapers/ (accessed on 15 May 2024).
- Remujo Castro, A.; Rubino, L.; Denni, U.; Muccino, M.; Salvatori, L.; Tibuzzi, M.; Porcelli, L.; Di Paolo Emilio, A.; Trani, M.; Filomena, L.; et al. Status of ESA’s MoonLIGHT Laser Retroreflector for NASA’s CP-11 2024 Mission. In Proceedings of the European Lunar Symposium, Teleconference, Virtual, 24–26 May 2022; Available online: https://www.youtube.com/watch?v=gHjsdtPRBmY (accessed on 15 May 2024).
- Bagolini, A.; Sitar, A.; Porcelli, L.; Boscardin, M.; Dell’Agnello, S.; Delle Monache, G. High Frequency MEMS Capacitive Mirror for Space Applications. Micromachines 2023, 14, 158. [Google Scholar] [CrossRef] [PubMed]
- Hampai, D.; Dabagov, S.; Cappuccio, G. Advanced studies on the Polycapillary Optics use at XLab Frascati. Nucl. Instrum. Methods Phys. Res. Sect. B 2015, 355, 264–267, ISSN: 0168-583X. [Google Scholar] [CrossRef]
- Dabagov, S.B.; Hampai, D.; Guglielmotti, V.; Cappuccio, G.; Capitolo, E.; Gladkikh, Y. X-ray applications and recent advances @ XLab Frascati. Rend. Fis. Acc. Lincei 2020, 31, 443–453. [Google Scholar] [CrossRef]
- Porcelli, L. Innovative Laser Retroreflectors and Their Space Applications. Ph.D. Thesis, University of Calabria, Rende, Italy, 2020, unpublished work. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porcelli, L.; Dabagov, S.; Delle Monache, G.; Hampai, D.; Modestino, G.; Savaglio, S. The INFN-LNF Astrophysics and Cosmology Integrated Test Facility Startup. NDT 2024, 2, 249-254. https://doi.org/10.3390/ndt2030015
Porcelli L, Dabagov S, Delle Monache G, Hampai D, Modestino G, Savaglio S. The INFN-LNF Astrophysics and Cosmology Integrated Test Facility Startup. NDT. 2024; 2(3):249-254. https://doi.org/10.3390/ndt2030015
Chicago/Turabian StylePorcelli, Luca, Sultan Dabagov, Giovanni Delle Monache, Dariush Hampai, Giuseppina Modestino, and Sandra Savaglio. 2024. "The INFN-LNF Astrophysics and Cosmology Integrated Test Facility Startup" NDT 2, no. 3: 249-254. https://doi.org/10.3390/ndt2030015
APA StylePorcelli, L., Dabagov, S., Delle Monache, G., Hampai, D., Modestino, G., & Savaglio, S. (2024). The INFN-LNF Astrophysics and Cosmology Integrated Test Facility Startup. NDT, 2(3), 249-254. https://doi.org/10.3390/ndt2030015