Review of Ground Penetrating Radar Applications for Bridge Infrastructures
Abstract
:1. Introduction
2. Materials and Methods
3. Overview on GPR in Bridges
3.1. Overview on GPR in Masonry Bridges
3.2. Overview of GPR in Laboratory-Scale Reinforced Concrete Model
Paper | Data Processing | GPR Instrument | Frequency Antenna | Other Methods |
---|---|---|---|---|
Rathoda et al. [21] | RADAN, AutoCAD | GSSI | NA | Yes |
Yehia et al. [22] | NA | NA | 1.5 GHz | Yes |
Clem et al. [23] | NA | Handy search JRC 95B | NA | No |
Sultan et al. [24] | RADAN | GSSI SIR-3000 | 1.6 GHz | No |
Jaishankar et al. [25] | RADAN | GSSI SIR-20 system | 1.6 GHz | Yes |
Martino et al. [27] | NA | GSSI SIR-3000 | 2.6 GHz | Yes |
Giannopoulos et al. [28] | GPR FDTD simulator GprMax2D/3D | GSSI SIR-1OH GPR system | 1.5 GHz 900 MHz | No |
Slawski et al. [29] | NA | IDS Alladdin | 2 Ghz | No |
3.3. Overview on GPR in Real Case Reinforced Concrete Bridges
4. Overview of GPR on Data Processing and Visualization
5. Conclusions and Discussion
- Even though GPR has become a highly important tool in the engineering sector, particularly for bridge infrastructures, it is still necessary to conduct laboratory tests, especially to better understand all the variabilities encountered in real cases in terms of concrete deterioration, steel corrosion, moisture influence, etc.
- Current data processing GPR tools have become highly efficient, and even an inexperienced operator can achieve good results up to the visualization of radargrams. However, only an expert can understand how to utilize the results to better comprehend what is being observed.
- Currently, data processing tools allow for obtaining sufficient information to meet the required needs. However, when dealing with large datasets, only automated software operating systems can truly be useful in extracting valuable information. Therefore, artificial intelligence algorithms that analyze radar image data prove to be highly efficient tools for real-world applications. This review of the literature has identified several approaches to the improvement of the data processing phase through programs that allow automatic processing and localization of the rebars to obtain accurate information on the conditions of the bridge. The various methods, therefore, aim to improve and optimize any phase of rehabilitation and restoration of bridges that are often subjected to different external stresses and that in most cases have significant discrepancies in the arrangement of the reinforcements with respect to the actual design.
- The analysis of bridges using GPR techniques represents the perfect blend of the research world and industrial interest because it is necessary to develop tools that make GPR results easy to read and simple to handle.
- GPR has, therefore, proved to be a very valuable tool for assessing the condition of reinforced concrete structures. The various methods proposed will certainly be improved, leading to an update in the management and maintenance system of the work, to make the evaluation of bridges and viaducts faster and more reliable.
- The presence of few articles dedicated to bridge pillars highlights how there is still much to develop and enhance in an area of the bridge that often presents numerous challenges precisely because it represents the contact zone between the bridge and the supporting terrain (critical infrastructure zone).
- The GPR data carried out on the pillar in the viaduct and a circular vision are presented, allowing us to improve the interpretation in terms of the arrangement of the rebars and the variations in the iron cover, and to contribute significantly to the visualization of data.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cruz, P.J.; Topczewski, L.; Fernandes, F.M.; Trela, C.; Lourenco, P.B. Application of radar techniques to the verification of design plans and the detection of defects in concrete bridges. Struct. Infrastruct. Eng. 2010, 6, 395–407. [Google Scholar] [CrossRef]
- Kassir, M.K.; Ghosn, M. Chloride-induced corrosion of reinforced concrete bridge decks. Cem. Concr. Res. 2002, 32, 139–143. [Google Scholar] [CrossRef]
- Lollini, F. Corrosione da carbonatazione: Fenomeno di degrado e prevenzione. IN CONCRETO 2015, 129, 24–25. [Google Scholar]
- Barnes, C.L.; Trottier, J.-F.; Forgeron, D. Improved concrete bridge deck evaluation using GPR by accounting for signal depth–amplitude effects. NDT E Int. 2008, 41, 427–433. [Google Scholar] [CrossRef]
- Alani, A.M.; Aboutalebi, M.; Kilic, G. Applications of ground penetrating radar (GPR) in bridge deck monitoring and assessment. J. Appl. Geophys. 2013, 97, 45–54. [Google Scholar] [CrossRef]
- Wong, P.T.; Lai, W.W.; Sham, J.F.; Poon, C.-S. Hybrid non-destructive evaluation methods for characterizing chloride-induced corrosion in concrete. NDT E Int. 2019, 107, 102123. [Google Scholar] [CrossRef]
- Fornasari, G.; Capozzoli, L.; Rizzo, E. Combined GPR and Self-Potential Techniques for Monitoring Steel Rebar Corrosion in Reinforced Concrete Structures: A Laboratory Study. Remote Sens. 2023, 15, 2206. [Google Scholar] [CrossRef]
- ASTM D6087-08; Standard Test Method for Evaluating Asphalt-Covered Concrete Bridge Decks Using Ground Penetrating Radar. ASTM International: West Conshohocken, PA, USA, 2008.
- Hugenschmidt, J. Concrete bridge inspection with a mobile GPR system. Constr. Build. Mater. 2002, 16, 147–154. [Google Scholar] [CrossRef]
- Trela, C.; Wöstmann, J.; Kruschwitz, S. Contribution of radar measurements to the inspection and condition assessment of railway. In WIT Transactions on The Built Environment; High Performance Structures and Materials IV; WIT Press: Billerica, MA, USA, 2008; Volume 97, p. 535. ISSN 1743-3509. [Google Scholar]
- Kalogeropoulos, A.; Brühwiler, E. High-resolution 3D condition survey of a masonry arch bridge using Ground Penetrating Radar. In Proceedings of the First Middle East Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures, Dubai, United Arab Emirates, 8–10 February 2011; pp. 1–9. [Google Scholar]
- Solla, M.; Lorenzo, H.; Rial, F.; Novo, A. Ground-penetrating radar for the structural evaluation of masonry bridges: Results and interpretational tools. Constr. Build. Mater. 2012, 29, 458–465. [Google Scholar] [CrossRef]
- Solla, M.; Lagüela, S.; Riveiro, B.; Lorenzo, H. Non-destructive testing for the analysis of moisture in the masonry arch bridge of Lubians (Spain). Struct. Control. Health Monit. 2013, 20, 1366–1376. [Google Scholar] [CrossRef]
- Pérez-Gracia, V.; Di Capua, D.; Caselles, O.; Rial, F.; Lorenzo, H.; González-Drigo, R.; Armesto, J. Characterization of a Romanesque Bridge in Galicia (Spain). Int. J. Arch. Heritage 2011, 5, 251–263. [Google Scholar] [CrossRef]
- Bautista-De Castro, Á.; Sánchez-Aparicio, L.J.; Carrasco-García, P.; Ramos, L.F.; González-Aguilera, D. A multidisciplinary approach to calibrating advanced numerical simulations of masonry arch bridges. Mech. Syst. Signal Process. 2019, 129, 337–365. [Google Scholar] [CrossRef]
- Diamanti, N.; Giannopoulos, A.; Forde, M.C. Numerical modelling and experimental verification of GPR to investigate ring separation in brick masonry arch bridges. NDT E Int. 2008, 41, 354–363. [Google Scholar] [CrossRef]
- Solla, M.; Lorenzo, H.; Riveiro, B.; Rial, F. Non-destructive methodologies in the assessment of the masonry arch bridge of Traba, Spain. Eng. Fail. Anal. 2011, 18, 828–835. [Google Scholar] [CrossRef]
- Lubowiecka, I.; Arias, P.; Riveiro, B.; Solla, M. Multidisciplinary approach to the assessment of historic structures based on the case of a masonry bridge in Galicia (Spain). Comput. Struct. 2011, 89, 1615–1627. [Google Scholar] [CrossRef]
- Stavroulaki, M.E.; Riveiro, B.; Drosopoulos, G.A.; Solla, M.; Koutsianitis, P.; Stavroulakis, G.E. Modelling and strength evaluation of masonry bridges using terrestrial photogrammetry and finite elements. Adv. Eng. Softw. 2016, 101, 136–148. [Google Scholar] [CrossRef]
- Sherif, Y.; Osama, A.; Saleh, N.; Ikhlas, A. Detection of Common Defects in Concrete Bridge Decks Using Nondestructive Evaluation Techniques. J. Bridge Eng. 2007, 12, 205–225. [Google Scholar] [CrossRef]
- Rathod, H.; Debeck, S.; Gupta, R.; Chow, B. Applicability of GPR and a rebar detector to obtain rebar information of existing concrete structures. Case Stud. Constr. Mater. 2019, 11, e00240. [Google Scholar] [CrossRef]
- Yehia, S.; Abudayyeh, O.; Abdel-Qader, I.; Zalt, A. Ground-Penetrating Radar, Chain Drag, and Ground Truth. Transp. Res. Rec. J. Transp. Res. Board 2008, 2044, 39–50. [Google Scholar] [CrossRef]
- Clem, D.J.; Schumacher, T.; Deshon, J.P. A consistent approach for processing and interpretation of data from concrete bridge members collected with a hand-held GPR device. Constr. Build. Mater. 2015, 86, 140–148. [Google Scholar] [CrossRef]
- Sultan, A.A.; Washer, G.A. Reliability Analysis of Ground-Penetrating Radar for the Detection of Subsurface Delamination. J. Bridg. Eng. 2018, 23, 04017131. [Google Scholar] [CrossRef]
- Jaishankar, P.; Kanchidurai, S.; Thomas, A.C.; Mohan, K.S.R. Experimental investigation on Non-Destructive behaviour of repaired FRP concrete beams. Mater. Today Proc. 2022, 64, 990–994. [Google Scholar] [CrossRef]
- Darmawan, M.S.; Stewart, M.G. Spatial time-dependent reliability analysis of corroding pretensioned prestressed concrete bridge girders. Struct. Saf. 2007, 29, 16–31. [Google Scholar] [CrossRef]
- Martino, N.; Maser, K.; Birken, R.; Wang, M. Determining Ground Penetrating Radar Amplitude Thresholds for the Corrosion State of Reinforced Concrete Bridge Decks. J. Environ. Eng. Geophys. 2014, 19, 175–181. [Google Scholar] [CrossRef]
- Giannopoulos, A.; Macintyre, P.; Rodgers, S.; Forde, M.C. GPR detection of voids in post-tensioned concrete bridge beams. In Proceedings of the 9th International Conference on Ground Penetrating Radar, Santa Barbara, CA, USA, 29 April–2 May 2002. [Google Scholar] [CrossRef]
- Sławski, Ł.; Kosno, Ł.; Swit, G. Evaluation of Precast Pre-post-tensioned Concrete Bridge Beams with the Use of GPR Method. Procedia Eng. 2016, 156, 443–450. [Google Scholar] [CrossRef]
- Wang, W.; Wang, L.; Xiong, H.; Luo, R. A review and perspective for research on moisture damage in asphalt pavement induced by dynamic pore water pressure. Constr. Build. Mater. 2019, 204, 631–642. [Google Scholar] [CrossRef]
- Varnavina, A.V.; Khamzin, A.K.; Torgashov, E.V.; Sneed, L.H.; Goodwin, B.T.; Anderson, N.L. Data acquisition and processing parameters for concrete bridge deck condition assessment using ground-coupled ground penetrating radar: Some considerations. J. Appl. Geophys. 2015, 114, 123–133. [Google Scholar] [CrossRef]
- Amos, W.; Evgeniy, T.; Anderson, N. Bridge Deck assessment using ground penetrating radar (GPR). In Symposium on the Application of Geophysics to Engineering and Environmental Problems; SEG Library: Houston, TX, USA, 2009. [Google Scholar] [CrossRef]
- Rahman, M.A.; Zayed, T. Developing Corrosion Maps of RC bridge elements based on automated visual image analysis. In Proceedings of the Session of the 2016 Conference of the Transportation Association of Canada, Toronto, ON, Canada, 25–28 September 2016. [Google Scholar]
- Parrillo, R.; Roberts, R. Bridge Deck Condition Assessment using Ground Penetrating Radar. In Proceedings of the 9th European Conference on NDT, Berlin, Germany, 25–29 September 2006. [Google Scholar]
- La, H.M.; Gucunski, N.; Kee, S.-H.; Van Nguyen, L. Data analysis and visualization for the bridge deck inspection and evaluation robotic system. Vis. Eng. 2015, 3, 6. [Google Scholar] [CrossRef]
- Rhee, J.-Y.; Choi, J.-J.; Kee, S.-H. Evaluation of the Depth of Deteriorations in Concrete Bridge Decks with Asphalt Overlays Using Air-Coupled GPR: A Case Study from a Pilot Bridge on Korean Expressway. Int. J. Concr. Struct. Mater. 2019, 13, 23. [Google Scholar] [CrossRef]
- Gagarin, N.; Goulias, D.; Mekemson, J.; Cutts, R.; Andrews, J. Development of Novel Methodology for Assessing Bridge Deck Conditions Using Step Frequency Antenna Array Ground Penetrating Radar. J. Perform. Constr. Facil. 2020, 34, 04019113. [Google Scholar] [CrossRef]
- Dinh, K.; Zayed, T.; Romero, F.; Tarussov, A. Method for Analyzing Time-Series GPR Data of Concrete Bridge Decks. J. Bridg. Eng. 2015, 20, 04014086. [Google Scholar] [CrossRef]
- Alsharqawi, M.; Zayed, T.; Abu Dabous, S. Integrated condition rating and forecasting method for bridge decks using Visual Inspection and Ground Penetrating Radar. Autom. Constr. 2018, 89, 135–145. [Google Scholar] [CrossRef]
- Barnes, C.L.; Trottier, J.-F. Ground-Penetrating Radar for Network-Level Concrete Deck Repair Management. J. Transp. Eng. 2000, 126, 257–262. [Google Scholar] [CrossRef]
- Goulias, D.G.; Cafiso, S.; Di Graziano, A.; Saremi, S.G.; Currao, V. Condition Assessment of Bridge Decks through Ground-Penetrating Radar in Bridge Management Systems. J. Perform. Constr. Facil. 2020, 34, 04020100. [Google Scholar] [CrossRef]
- Dinh, K.; Gucunski, N.; Kim, J.; Duong, T.H. Understanding depth-amplitude effects in assessment of GPR data from concrete bridge decks. NDT E Int. 2016, 83, 48–58. [Google Scholar] [CrossRef]
- Wang, Z.W.; Zhou, M.; Slabaugh, G.G.; Zhai, J.; Fang, T. Automatic Detection of Bridge Deck Condition from Ground Penetrating Radar Images. IEEE Trans. Autom. Sci. Eng. 2010, 8, 633–640. [Google Scholar] [CrossRef]
- Carter, C.R.; Chung, T.; Holt, F.B.; Manning, D.G. An automated signal processing system for the signature analysis of radar waveforms from bridge decks. Can. Electr. Eng. J. 1986, 11, 128–137. [Google Scholar] [CrossRef]
- Barnes, C.L.; Trottier, J.-F. Effectiveness of Ground Penetrating Radar in Predicting Deck Repair Quantities. J. Infrastruct. Syst. 2004, 10, 69–76. [Google Scholar] [CrossRef]
- Rhee, J.-Y.; Park, K.-E.; Lee, K.-H.; Kee, S.-H. A Practical Approach to Condition Assessment of Asphalt-Covered Concrete Bridge Decks on Korean Expressways by Dielectric Constant Measurements Using Air-Coupled GPR. Sensors 2020, 20, 2497. [Google Scholar] [CrossRef]
- Diamanti, N.; Annan, A.P.; Redman, J.D. Concrete Bridge Deck Deterioration Assessment Using Ground Penetrating Radar (GPR). J. Environ. Eng. Geophys. 2017, 22, 121–132. [Google Scholar] [CrossRef]
- Hugenschmidt, J.; Wenk, F.; Bruhwiler, E. GPR chloride inspection of a RC bridge deck slab followed by an examination of the results. In Proceedings of the 15th International Conference on Ground Penetrating Radar—GPR 2014, Brussels, Belgium, 30 June–4 July 2014. [Google Scholar] [CrossRef]
- Pailes, B.M.; Gucunski, N. Understanding Multi-modal Non-destructive Testing Data Through the Evaluation of Twelve Deteriorating Reinforced Concrete Bridge Decks. J. Nondestruct. Eval. 2015, 34, 30. [Google Scholar] [CrossRef]
- D’Amico, F.; Gagliardi, V.; Bianchini Ciampoli, L.; Tosti, F. Integration of InSAR and GPR techniques for monitoring transition areas in railway bridges. NDT E Int. 2020, 115, 102291. [Google Scholar] [CrossRef]
- Pashoutani, S.; Zhu, J. Real Depth-Correction in Ground Penetrating RADAR Data Analysis for Bridge Deck Evaluation. Sensors 2023, 23, 1027. [Google Scholar] [CrossRef]
- Bavusi, M.; Soldovieri, F.; Di Napoli, R.; Loperte, A.; Di Cesare, A.; Ponzo, F.C.; Lapenna, V. Ground penetrating radar and microwave tomography 3D applications for the deck evaluation of the Musmeci bridge in Potenza, Italy. J. Geophys. Eng. 2011, 8, S33–S46. [Google Scholar] [CrossRef]
- Gagarin, N.; Goulias, D.; Mekemson, J. Condition Rating of Bridge Decks with Fuzzy Sets Modeling for SF-GPR Surveys. Remote Sens. 2023, 15, 3631. [Google Scholar] [CrossRef]
- Owerko, P.; Ortyl, Ł.; Salamak, M. Identification of concrete voids in an untypical railway bridge pillar by Ground Penetrating Radar Method. Meas. Autom. Monit. 2015, 61, 3. [Google Scholar]
- Hugenschmidt, J.; Mastrangelo, R. GPR inspection of concrete bridges. Cem. Concr. Compos. 2006, 28, 384–392. [Google Scholar] [CrossRef]
- Yelf, R.; Carse, A. Audit of a road bridge superstructure usign groud penetrating radar. Proc. SPIE 2000, 4084, 249–254. [Google Scholar] [CrossRef]
- Dérobert, X.; Berenger, B. Using ground-penetrating radar (GPR) to assess an eight-span post-tensioned viaduct: A case study. Civ. Struct. Eng. 2010, 2, 574–584. [Google Scholar] [CrossRef]
- Beben, D.; Mordak, A.; Anigacz, W. Identification of viaduct beam parameters using the Ground Penetrating Radar (GPR) technique. NDT E Int. 2012, 49, 18–26. [Google Scholar] [CrossRef]
- Beushausen, H.; Torrent, R.; Alexander, M.G. Performance-based approaches for concrete durability: State of the art and future research needs. Cem. Concr. Res. 2019, 119, 11–20. [Google Scholar] [CrossRef]
- Ghodoosi, F.; Bagchi, A.; Zayed, T.; Hosseini, M.R. Method for developing and updating deterioration models for concrete bridge decks using GPR data. Autom. Constr. 2018, 91, 133–141. [Google Scholar] [CrossRef]
- Dinh, K.; Gucunski, N.; Kim, J.; Duong, T.H. Method for attenuation assessment of GPR data from concrete bridge decks. NDT E Int. 2017, 92, 50–58. [Google Scholar] [CrossRef]
- Dinh, K.; Gucunski, N.; Zayed, T. Automated visualization of concrete bridge deck condition from GPR data. NDT E Int. 2018, 102, 120–128. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Lu, Y.; Zheng, T.; Dong, Z.; Tian, Y.; Jia, Y. In-situ recognition of moisture damage in bridge deck asphalt pavement with time-frequency features of GPR signal. Constr. Build. Mater. 2020, 244, 118295. [Google Scholar] [CrossRef]
- Tarussov, A.; Vandry, M.; De La Haza, A. Condition assessment of concrete structures using a new analysis method: Ground-penetrating radar computer-assisted visual interpretation. Constr. Build. Mater. 2013, 38, 1246–1254. [Google Scholar] [CrossRef]
- Abouhamad, M.; Dawood, T.; Jabri, A.; Alsharqawi, M.; Zayed, T. Corrosiveness mapping of bridge decks using image-based analysis of GPR data. Autom. Constr. 2017, 80, 104–117. [Google Scholar] [CrossRef]
- Benedetto, A. A three dimensional approach for tracking cracks in bridges using GPR. J. Appl. Geophys. 2013, 97, 37–44. [Google Scholar] [CrossRef]
- Shakibabarough, A.; Bagchi, A.; Zayad, T. Automated Detection of Areas of Deterioration in GPR Images for Bridge Condition Assessment Fourt Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures. In Proceedings of the Fourth Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures, Zürich, Switzerland, 13–15 September 2017. [Google Scholar]
- Dinh, K.; Gucunski, N.; Duong, T.H. An algorithm for automatic localization and detection of rebars from GPR data of concrete bridge decks. Autom. Constr. 2018, 89, 292–298. [Google Scholar] [CrossRef]
- Asadi, P.; Gindy, M.; Alvarez, M. A Machine Learning Based Approach for Automatic Rebar Detection and Quantification of Deterioration in Concrete Bridge Deck Ground Penetrating Radar B-scan Images. KSCE J. Civ. Eng. 2019, 23, 2618–2627. [Google Scholar] [CrossRef]
- Rahman, M.A.; Zayed, T.; Bagchi, A. Deterioration Mapping of RC Bridge Elements Based on Automated Analysis of GPR Images. Remote Sens. 2022, 14, 1131. [Google Scholar] [CrossRef]
- Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, Kauai, HI, USA, 8–14 December 2001; Volume 1, pp. I-511–I-518. [Google Scholar]
- Rizzo, E.; Fornasari, G.; De Martino, G.; Boldrin, P. Report Tecnico Sulle Indagini Georadar Effettuate sui Piloni del Viadotto Moliano Nell’ambito Dell’or4; Progetto Mitigo; FESR, PON Ricerca e Innovazione: Rome, Italy, 2022. [Google Scholar]
Paper | Data Processing | GPR Instrument | Frequency Antenna | Other Methods |
---|---|---|---|---|
Trela et al. [10] | NA | SIR-20 GSSI | 500 MHz 900 MHz-1.5 GHz | No |
Kalogeropoulos and Brühwiler [11] | NA | NA | 900 MHz–1.5 GHz | No |
M. Solla et al. [12] | Reflex, GprMax | RAMAC | 250 and 500 MHz | No |
M. Solla et al. [13] | GprMax v.2.0, MATLAB© software, Reflex | RAMAC | 500 MHz | Yes |
Pérez-Gracia et al. [14] | Ramseries software | RAMAC | 800, 500, and 250 MHz | No |
De Castro et al. [15] | TNO Diana | X3M GPR system | 250 MHz | Yes |
Diamanti et al. [16] | NA | GSSI SIR 3000 | 1.5 Ghz | No |
Solla et al. [17] | ReflexW | RAMAC | 250–500 MHz | No |
Lubowiecka et al. [18] | Photomodeler Scanner software | NA | 250 and 500 MHz | Yes |
Stavroulaki et al. [19] | ReflexW | RAMAC | 250and 500 MHz | Yes |
Paper | Data Processing | GPR Instrument | Frequency Antenna | Bridge Element | Other Methods |
---|---|---|---|---|---|
Cruza et al. [1] | NA | -MALA Geoscience | 1.6 GHz, 900 MHz | pillar | Yes |
Rathoda et al. [21] | RADAN | GSSI | - | slab | Yes |
Varnavina et al. [31] | RADAN | GSSI SIR System-3000 unit coupled | 1.5 Ghz | Slab | No |
Amos et al. [32] | RADAN | GSSI SIR System-3000 GPR | 1.5 Ghz | slab | No |
Rahman and Zayed [33] | Matlab and RADAN | GPR GSSI SIR® 3000 | 1.5 Ghz | slab | No |
Parrillo and Roberts [34] | RADAN Bridge, Surfer | GSSI’s BridgeScan system | 1.5 Ghz | slab | No |
Manh La et al. [35] | The NDE software is developed by utilizing Qt development kit and Cpp | NA | 1.5 Ghz | slab | No |
Rhee et al. [36] | RADAN | Geophysical Survey Systems, Inc. (GSSI) | 1 Ghz | slab | No |
Gagarin et al. [37] | NA | SFR GPR | NA | slab | No |
Dinh et al. [38] | GSSI RADAN 7, Matlab, Surfer | GSSI | 1.5 Ghz | slab | No |
Dinh et al. [39] | NA | NA | 1 GHz | slab | yes |
Barnes and Trottier [40] | NA | Penetradar IRIS GPR system | 100 Hz samples frequency | slab | Yes |
Goulias et al. [41] | NA | NA | 600 MHz and 2 Ghz | slab | No |
Dinh et al. [42] | Programclusterbridges | NA | 1.5 GHz | slab | Yes |
Wang et al. [43] | RADAN, Surfer | NA | NA | slab | No |
Carter et al. [44] | NA | NA | NA | slab | No |
Barnes and Trottier [45] | NA | GSSI SIR-10 | 1.5 GHz | slab | Yes |
Rhee et al. [46] | RADAN | Sir Series of Geophysical Survey Systems Inc. (GSSI) | 1 GHz | slab | No |
Diamanti et al. [47] | NA | NA | 1 GHz | slab | No |
Hugenschmidt et al. [48] | Et | OSSI-SIR20 radar | NA | slab | No |
Pailes and Gucunski [49] | NA | NA | 1.5 GHz | slab | Yes |
D’Amico et al. [50] | ENVI SARscape | IDS Georadar | 1 and 2 Ghz | slab | Yes |
Pashoutani and Zhu [51] | GPR Max | SIR-4000 | 1.5 GHz | slab | Yes |
Bavusi et al. [52] | Personal software | SIR 3000 | 900 and 1500 MHz | slab | Yes |
Gagarin et al. [53] | 3d Examiner | 3D-Radar DXG1820 | antenna array 200 MHz–3 GHz | slab | No |
Owerko et al. [54] | Reflex-Win | Mala Geoscience | 1 GHz | Pillar | yes |
Hugenschmidt and Mastrangelo [55] | NA | System GSSI SIR-20 | 1.2 Ghz | beams | No |
Yelf and Carse [56] | NA | Georadar Research Pty Ltd. | 1.5 Ghz | beams | No |
Dérobert et al. [57] | NA | NA | 1.5 Ghz | beams | Yes |
Beben et al. [58] | GRED 3D | NA | 2 Ghz | beams | No |
Paper | Data Processing and Visualization | GPR Instrument | Frequency Antenna | Other Methods |
---|---|---|---|---|
Ghodoosia et al. [60] | Radan | GSSI | 1.5 Ghz | No |
Dinh et at. [61] | MATLAB algorithm | NA | 1.5 GHz | No |
Dinh et al. [62] | MATLAB algorithm | GSSI | 1.5 GHz | Yes |
Zhang et al. [63] | MALÅ GroundVision software | MALÅ ProEx system | 2.3 GHz | No |
Tarussov et al. [64] | Software developed by authors: RADxpert | NA | NA | No |
Abouhamad et al. [65] | RADxpert | GSSI SIR-3000 | 1.5 GHz | No |
Benedetto et al. [66] | Personal Algorithm | RIS Hi Brignt | 2 GHz | No |
Shakibabarough et al. [67] | Personal Algorithm developed in MATLAB applied on radargram images. | GSSI | 1.5 GHz | No |
Dinha et al. [68] | Personal Algorithm developed in MATLAB applied on radargram images. | GSSI | 1.5 GHz | No |
Asadi et al. [69] | Machine Learning (ML) approach on radargram images | GSSI SIR System3000 | 1.6 GHz | No |
Rahman et al. [70] | RADAN, MATLAB | GSSI | 1.6 GHz | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boldrin, P.; Fornasari, G.; Rizzo, E. Review of Ground Penetrating Radar Applications for Bridge Infrastructures. NDT 2024, 2, 53-75. https://doi.org/10.3390/ndt2010004
Boldrin P, Fornasari G, Rizzo E. Review of Ground Penetrating Radar Applications for Bridge Infrastructures. NDT. 2024; 2(1):53-75. https://doi.org/10.3390/ndt2010004
Chicago/Turabian StyleBoldrin, Paola, Giacomo Fornasari, and Enzo Rizzo. 2024. "Review of Ground Penetrating Radar Applications for Bridge Infrastructures" NDT 2, no. 1: 53-75. https://doi.org/10.3390/ndt2010004
APA StyleBoldrin, P., Fornasari, G., & Rizzo, E. (2024). Review of Ground Penetrating Radar Applications for Bridge Infrastructures. NDT, 2(1), 53-75. https://doi.org/10.3390/ndt2010004