Mixed Polaron and Bipolaron Transport in (xV2O5–(65–x) Sb2O3–35P2O5) Glasses
Abstract
1. Introduction
Theoretical Background
2. Experimental Section
2.1. Glass Synthesis
2.2. Electrical Resistivity Measurements
2.3. Optical Absorption Spectroscopy
2.4. Density Measurement
2.5. Differential Thermal Analysis
3. Results and Discussion
3.1. Electrical Resistivity
3.2. Optical Absorption Spectrum
3.3. Density
3.4. Glass Transition Temperature (Tg)
4. Conclusions
- i.
- Incorporating Fe2O3 in the same glass system instead of V2O5. The former has been established to contribute mobile small polarons in phosphate glasses.
- ii.
- Using As2O3, known to contribute small bipolarons in glasses, instead of Sb2O3 in a similar glass system, with P2O5 being the principal glass former.
- iii.
- Using different glass formers such as SiO2, GeO2, B2O3, and Te2O2 in place of P2O5 to test the universality of Anderson localization in the transport process of glasses.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AC | Alternating Current |
DC | Direct Current |
DTA | Differential Thermal Analysis |
EMF | Electromotive Force |
MAE | Mixed Alkali Effect |
MIT | Metal–Insulator Transition |
MTE | Mixed Transition Effect |
PBT | Polaron–Bipolaron Transition |
PFM | Phosphate–Fe2O3–MnO Glass |
PS | Phosphate–Sb2O3 Glass |
PV | Phosphate–V2O5 Glass |
PVS | Phosphate–V2O5–Sb2O3 Glass |
SBP | Small Bipolaron |
SP | Small Polaron |
SPH | Small Polaron Hopping |
Tg | Glass Transition Temperature |
TIR | Transition Ion Ratio |
Tis | Transition Ions |
TMI | Transition Metal Ion |
XRD | X-ray Diffraction |
XRF | X-ray Fluorescence |
References
- Dutta, B.; Fahmy, N.A.; Pegg, I.L. Effect of Mixed Transition-Metal Ions in Glasses. I. The P2O5–V2O5–Fe2O3 System. J. Non-Cryst. Solids 2005, 351, 1958–1966. [Google Scholar] [CrossRef]
- Dutta, B.; Fahmy, N.A.; Pegg, I.L. Effect of Mixing Transition Ions in Glasses. II. The P2O5–Fe2O3–MnO System. J. Non-Cryst. Solids 2005, 351, 2552–2561. [Google Scholar] [CrossRef]
- Dutta, B.; Fahmy, N.A.; Pegg, I.L. Effect of Mixed Transition-Metal Ions in Glasses. Part III: The P2O5–V2O5–MnO System. J. Non-Cryst. Solids 2006, 352, 2100–2108. [Google Scholar] [CrossRef]
- Dutta, B.; Pegg, I.L. Mixed Transition Ion Effect in Certain Polaronic Semiconductors. J. Ceram. Soc. Jpn. 2004, 112, S732–S737. [Google Scholar]
- Annamalai, S.; Bhatta, R.P.; Pegg, I.L.; Dutta, B. Mixed Transition-Ion Effect in the Glass System: Fe2O3-MnO-TeO2. J. Non-Cryst. Solids 2012, 358, 1380–1386. [Google Scholar] [CrossRef]
- Doremus, R.H. Mixed-Alkali Effect and Interdiffusion of Na and K Ions in Glass. J. Am. Ceram. Soc. 1974, 57, 478–480. [Google Scholar] [CrossRef]
- Henderson, M.; Bhatta, R.P.; Eufrasio, A.M.; Pegg, I.L.; Dutta, B. Quantum Phase Transition in Phosphate Glasses Containing Multiple Transition Metal Oxides. J. Electron. Mater. 2019, 48, 3105–3114. [Google Scholar] [CrossRef]
- Mott, N.F. Conduction in Non-Crystalline Materials; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Emin, D. Lattice Relaxation and Small-Polaron Hopping Motion in Disordered Materials. J. Non-Cryst. Solids 1972, 8–10, 511–515. [Google Scholar] [CrossRef]
- Edwards, P.P.; Sienko, M.J. Universality Aspects of the Metal-Nonmetal Transition in Condensed Media. Phys. Rev. B 1978, 17, 2575–2581. [Google Scholar] [CrossRef]
- Mott, N.F. The Transition to the Metallic State. Philos. Mag. A J. Theor. Exp. Appl. Phys. 1961, 6, 287–309. [Google Scholar] [CrossRef]
- Hubbard, J.; Flowers, B.H. Electron Correlations in Narrow Energy Bands. Proc. R. Soc. London Ser. A Math. Phys. Sci. 1963, 276, 238–257. [Google Scholar]
- Holstein, T. Studies of Polaron Motion: Part II. The “Small” Polaron. Ann. Phys. 1959, 8, 343–389. [Google Scholar] [CrossRef]
- Alexandrov, A.S.; Mott, N.F. Polarons and Bipolarons; World Scientific: Singapore, 1996. [Google Scholar]
- Greaves, G.N. Small Polaron Conduction in V2O5-P2O5 Glasses. J. Non-Cryst. Solids 1973, 11, 427–446. [Google Scholar] [CrossRef]
- Austin, I.; Mott, N.F. Polarons in crystalline and non-crystalline materials. Adv. Phys. 1969, 18, 41–102. [Google Scholar] [CrossRef]
- Al-Shahrani, A.; Al-Hajry, A.; El-Desoky, M.M. Non-Adiabatic Small Polaron Hopping Conduction in Sodium Borate Tungstate Glasses. Phys. Status Solidi 2003, 200, 378–387. [Google Scholar] [CrossRef]
- Anderson, P.W. Absence of Diffusion in Certain Random Lattices. Phys. Rev. 1958, 109, 1492–1505. [Google Scholar] [CrossRef]
- Mott, N.F.; Davis, E.A. Electronic Processes in Non-Crystalline Materials; OUP: Oxford, UK, 1979. [Google Scholar]
- Kumar, D.; Chakravorty, D. Electrical Properties of Vanadium Phosphate Glasses Containing Antimony and Arsenide Oxide. J. Phys. D Appl. Phys. 1982, 15, 305. [Google Scholar] [CrossRef]
- Datta, A.; Giri, A.K.; Chakravorty, D. Ac Conductivity of Sb2O3-P2O5 Glasses. Phys. Rev. B 1993, 47, 16242–16246. [Google Scholar] [CrossRef]
- Mott, N.F. Conduction in Glasses Containing Transition Metal Ions. J. Non-Cryst. Solids 1968, 1, 1–17. [Google Scholar] [CrossRef]
- Ghosh, A. Electrical Properties of Semiconducting Amorphous Copper-Tellurite Glasses. J. Phys. Condens. Matter 1989, 1, 7819. [Google Scholar] [CrossRef]
- Ghosh, A.; Chakravorty, D. Electrical Conduction in Some Sol-Gel Silicate Glasses. Phys. Rev. B 1993, 48, 5167–5171. [Google Scholar] [CrossRef]
- Lanzara, A.; Saini, N.L.; Brunelli, M.; Natali, F.; Bianconi, A.; Radaelli, P.G.; Cheong, S.-W. Crossover from Large to Small Polarons across the Metal-Insulator Transition in Manganites. Phys. Rev. Lett. 1998, 81, 878–881. [Google Scholar] [CrossRef]
- Capone, M.; Ciuchi, S. Polaron Crossover and Bipolaronic Metal-Insulator Transition in the Half-Filled Holstein Model. Phys. Rev. Lett. 2003, 91, 186405. [Google Scholar] [CrossRef]
- Doremus, R.H.; George, H.S. Glass Science. Phys. Today 1994, 47, 63. [Google Scholar] [CrossRef]
- Elliott, S.R. A Theory of AC Conduction in Chalcogenide Glasses. Philos. Mag. A J. Theor. Exp. Appl. Phys. 1977, 36, 1291–1304. [Google Scholar]
- Emin, D. Optical Properties of Large and Small Polarons and Bipolarons. Phys. Rev. B 1993, 48, 13691–13702. [Google Scholar] [CrossRef]
- Doweidar, H.; El-Damrawi, G.M.; Moustafa, Y.M. Transport Properties of Semiconducting Fe2O3-PbO-B2O3 Glasses. J. Phys. Condens. Matter 1994, 6, 8829. [Google Scholar] [CrossRef]
- Sidebottom, D.L. Connecting Glass-Forming Fragility to Network Topology. Front. Mater. 2019, 6, 114. [Google Scholar] [CrossRef]
- Gohar, I.A.; Moustafa, A.; Megahed, A. Electrical Properties of semiconducting barium vanadate glasses containing iron oxide. Phys. Chem. Glas. 1998, 39, 56–60. [Google Scholar]
Sample Name | [V/(V + P)] | P2O5 (mol%) | V2O5 (mol%) | Glass Transition Temperature (Tg) (°C) | ||
---|---|---|---|---|---|---|
Nominal | XRF-Normalized | Nominal | XRF-Normalized | |||
PV-1 | 0.45 | 55 | 48.95 | 45 | 51.05 | 482 |
PV-2 | 0.55 | 45 | 41.42 | 55 | 58.58 | 488 |
PV-3 | 0.65 | 35 | 30.32 | 65 | 69.68 | 498 |
PV-4 | 0.75 | 25 | 23.49 | 75 | 76.51 | 534 |
Sample Name | [V/(V + Sb)] | P2O5 (mol%) | V2O5 (mol%) | Sb2O3 (mol%) | Glass Transition Temperature (Tg) (°C) | |||
---|---|---|---|---|---|---|---|---|
Nominal | XRF-Normalized | Nominal | XRF-Normalized | Nominal | XRF-Normalized | |||
PS | 0.00 | 35 | 35.20 | 0 | 0.00 | 65 | 64.80 | 469 |
PVS-1 | 0.15 | 35 | 46.6 | 10 | 13.3 | 55 | 40.03 | 476 |
PVS-2 | 0.31 | 35 | 32.55 | 20 | 27.93 | 45 | 39.52 | 475 |
PVS-3 | 0.38 | 35 | 38.55 | 25 | 29.04 | 40 | 32.41 | 512 |
PVS-4 | 0.46 | 35 | 34.11 | 30 | 31.54 | 35 | 34.36 | 521 |
PVS-5 | 0.62 | 35 | 38.28 | 40 | 43.33 | 25 | 18.39 | 464 |
PVS-6 | 0.77 | 35 | 38.84 | 50 | 51.23 | 15 | 9.93 | 447 |
PV | 1.00 | 35 | 30.32 | 65 | 69.68 | 0.00 | 0.00 | 498 |
Sample Name | [V/(V + P)] Nominal | Density (g/cm3) | Activation Energy (W) (eV) | Resistivity (ρ) at 220 °C (Ωcm) | Concentration of Vanadium Ions (cm)−3 (NV) |
---|---|---|---|---|---|
PV-1 | 0.45 | 2.04 | 0.60 | 4.90 × 103 | 3.45 × 1021 |
PV-2 | 0.55 | 2.06 | 0.59 | 1.83 × 103 | 4.16 × 1021 |
PV-3 | 0.65 | 2.53 | 0.42 | 8.37 × 102 | 5.92 × 1021 |
PV-4 | 0.75 | 2.63 | 0.40 | 2.164 × 102 | 6.90 × 1021 |
Sample Name | [V/(V + Sb)] | Activation Energy (W, eV) | Resistivity (ρ) at 220 °C (Ωcm) | Pre-Exponential | Wavelength * (nm) |
---|---|---|---|---|---|
PS | 0.00 | 0.73 | 4.50 × 106 | 10.96 | 849 |
PVS-1 | 0.15 | 0.79 | 4.92 × 105 | 190.55 | 774 |
PVS-2 | 0.31 | 0.67 | 3.00 × 104 | 269.15 | 898 |
PVS-3 | 0.38 | 0.67 | 2.43 × 105 | 11.48 | 984 |
PVS-4 | 0.46 | 0.71 | 1.79 × 106 | 12.59 | 849 |
PVS-5 | 0.62 | 0.65 | 3.20 × 104 | 76.61 | 911 |
PVS-6 | 0.77 | 0.63 | 7.93 × 103 | 275.42 | 984 |
PV | 1.00 | 0.42 | 8.37 × 102 | 20.42 | 1430 |
Sample Name | [V/(V + Sb)] | Density (g/cm3) | N Concentration of Ions (cm)−3 | VV Distance R (nm) | rp (nm) | |
---|---|---|---|---|---|---|
NV | NSb | |||||
PS | 0.00 | 3.74 | 0.00 × 1000 | 6.14 × 1021 | ||
PVS-1 | 0.15 | 3.53 | 9.35 × 1020 | 5.13 × 1021 | 1.02 | 0.41 |
PVS-2 | 0.31 | 3.44 | 1.91 × 1021 | 4.29 × 1021 | 0.81 | 0.32 |
PVS-3 | 0.38 | 3.38 | 2.41 × 1021 | 3.86 × 1021 | 0.75 | 0.30 |
PVS-4 | 0.46 | 3.36 | 2.95 × 1021 | 3.44 × 1021 | 0.70 | 0.28 |
PVS-5 | 0.62 | 3.18 | 3.93 × 1021 | 2.45 × 1021 | 0.63 | 0.26 |
PVS-6 | 0.77 | 3.11 | 5.09 × 1021 | 1.53 × 1021 | 0.58 | 0.23 |
PV | 1.00 | 2.53 | 5.93 × 1021 | 0.00 × 1000 | 0.55 | 0.22 |
Sample Name | PVS-6 | PV-1 | PV | PS |
---|---|---|---|---|
V2O5 | 51.23 | 51.05 | 69.68 | 0.00 |
P2O5 | 38.84 | 48.95 | 30.32 | 35.20 |
Sb2O3 | 9.39 | 0.31 | 0.00 | 64.80 |
Resistivity (ρ) at 220 °C (Ω cm) | 7.93 × 103 | 4.90 × 103 | 8.37 × 102 | 4.50 × 106 |
Activation energy (W) (eV) | 0.63 | 0.60 | 0.42 | 0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alenezi, M.; Kafle, A.P.; Alsubaie, M.; Pegg, I.L.; Albalawi, N.; Dutta, B. Mixed Polaron and Bipolaron Transport in (xV2O5–(65–x) Sb2O3–35P2O5) Glasses. J. Exp. Theor. Anal. 2025, 3, 24. https://doi.org/10.3390/jeta3030024
Alenezi M, Kafle AP, Alsubaie M, Pegg IL, Albalawi N, Dutta B. Mixed Polaron and Bipolaron Transport in (xV2O5–(65–x) Sb2O3–35P2O5) Glasses. Journal of Experimental and Theoretical Analyses. 2025; 3(3):24. https://doi.org/10.3390/jeta3030024
Chicago/Turabian StyleAlenezi, Manar, Amrit Prasad Kafle, Meznh Alsubaie, Ian L. Pegg, Najwa Albalawi, and Biprodas Dutta. 2025. "Mixed Polaron and Bipolaron Transport in (xV2O5–(65–x) Sb2O3–35P2O5) Glasses" Journal of Experimental and Theoretical Analyses 3, no. 3: 24. https://doi.org/10.3390/jeta3030024
APA StyleAlenezi, M., Kafle, A. P., Alsubaie, M., Pegg, I. L., Albalawi, N., & Dutta, B. (2025). Mixed Polaron and Bipolaron Transport in (xV2O5–(65–x) Sb2O3–35P2O5) Glasses. Journal of Experimental and Theoretical Analyses, 3(3), 24. https://doi.org/10.3390/jeta3030024