The Evolving Landscape of Gout in the Female: A Narrative Review
Abstract
:1. Introduction
2. Mechanisms That Decrease the Gout and Hyperuricemia Sex Ratio after Menopause
2.1. Serum Urate Levels According to Sex
2.2. Effects of Sex Hormones on Urate Transporters
Urate Transporter or Transport Modulator (Function) [References] | Tissue Expression | Estrogen Effects | Progesterone Effects | Testosterone Effects |
---|---|---|---|---|
SLC22A12/URAT1 (reabsorption) [66,89] | RA | ↓ | ↑ | |
SLC2A9/GLUT9 (reabsorption) [62,66,67] | RB, RA | ↓ | ↓ | |
ABCG2 (secretion) [66,68,82] | RB, RA I H | ↓ ↑ ↓ | (-) | |
SLC22A6/OAT1 (excretion) [90] | RB | ↑ | ↓ | |
SLC22A7/OAT2 (secretion) [91] | RB | ↑ | ↓ | |
ABCC2/MRP2 [83] | I, H | ↑ (males) (-) (female) | ↓ (male) (-) (female) | |
SMCT1, SMCT2 (modulators of URAT1 function) [66,89] | RA | (-) | ↓ | ↑ |
SGLT2 (modulator of SLC2A9 and URAT1 function) [92] | RA | ↑ | ↑ |
2.3. Sex Hormones in Purine Metabolism
3. Sex Differences in Risk Factors for Gout
3.1. Age, Race, Ethnicity Demographic Factors
3.2. Diet, Obesity, Alcohol, Smoking
3.3. Comorbidities
3.4. Genetic Studies
4. Differences in Age and Clinical Characteristics of Gout in Females
5. Potential Sex Differences in Gouty Inflammation
6. Treatment Responses in Females with Gout
7. Special Consideration in Treatment of Female Gout: Pregnancy, Breastfeeding
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dalbeth, N.; Gosling, A.L.; Gaffo, A.; Abhishek, A. Gout. Lancet 2021, 397, 1843–1855. [Google Scholar] [CrossRef] [PubMed]
- Dehlin, M.; Jacobsson, L.; Roddy, E. Global epidemiology of gout: Prevalence, incidence, treatment patterns and risk factors. Nat. Rev. Rheumatol. 2020, 16, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Yokose, C.; McCormick, N.; Lu, N.; Tanikella, S.; Lin, K.; Joshi, A.D.; Raffield, L.M.; Warner, E.; Merriman, T.; Hsu, J.; et al. Trends in Prevalence of Gout Among US Asian Adults, 2011-2018. JAMA Netw. Open 2023, 6, e239501. [Google Scholar] [CrossRef] [PubMed]
- Yokose, C.; McCormick, N.; Lu, N.; Joshi, A.D.; Curhan, G.; Choi, H.K. Adherence to 2020 to 2025 Dietary Guidelines for Americans and the Risk of New-Onset Female Gout. JAMA Intern. Med. 2022, 182, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Dehlin, M.; Scheepers, L.; Landgren, A.; Josefsson, L.; Svensson, K.; Jacobsson, L. Lifestyle factors and comorbidities in gout patients compared to the general population in Western Sweden: Results from a questionnaire study. Scand. J. Rheumatol. 2022, 51, 390–393. [Google Scholar] [CrossRef] [PubMed]
- Drivelegka, P.; Sigurdardottir, V.; Svärd, A.; Jacobsson, L.T.H.; Dehlin, M. Comorbidity in gout at the time of first diagnosis: Sex differences that may have implications for dosing of urate lowering therapy. Arthritis Res. Ther. 2018, 20, 108. [Google Scholar] [CrossRef]
- Tin, A.; German Chronic Kidney Disease Study; Marten, J.; Kuhns, V.L.H.; Li, Y.; Wuttke, M.; Kirsten, H.; Sieber, K.B.; Qiu, C.; Gorski, M.; et al. Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nat. Genet. 2019, 51, 1459–1474. [Google Scholar] [CrossRef]
- Major, T.J.; Dalbeth, N.; Stahl, E.A.; Merriman, T.R. An update on the genetics of hyperuricaemia and gout. Nat. Rev. Rheumatol. 2018, 14, 341–353. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, B.; Chen, Y.; Zeng, F.; Wang, W.; Chen, Z.; Cao, L.; Shi, J.; Chen, J.; Zhu, X.; et al. Type II collagen facilitates gouty arthritis by regulating MSU crystallisation and inflammatory cell recruitment. Ann. Rheum. Dis. 2022, 82, 416–427. [Google Scholar] [CrossRef]
- Elsaid, K.; Merriman, T.R.; Rossitto, L.; Liu-Bryan, R.; Karsh, J.; Phipps-Green, A.; Jay, G.D.; Elsayed, S.; Qadri, M.; Miner, M.; et al. Amplification of Inflammation by Lubricin Deficiency Implicated in Incident, Erosive Gout Independent of Hyperuricemia. Arthritis Rheumatol. 2023, 75, 794–805. [Google Scholar] [CrossRef]
- Martinon, F.; Glimcher, L.H. Gout: New insights into an old disease. J. Clin. Investig. 2006, 116, 2073–2075. [Google Scholar] [CrossRef]
- Narang, R.K.; Dalbeth, N. Pathophysiology of Gout. Semin. Nephrol. 2020, 40, 550–563. [Google Scholar] [CrossRef] [PubMed]
- Dalbeth, N.; Saag, K.G.; Palmer, W.E.; Choi, H.K.; Hunt, B.; MacDonald, P.A.; Thienel, U.; Gunawardhana, L. Effects of Febuxostat in Early Gout: A Randomized, Double-Blind, Placebo-Controlled Study. Arthritis Rheumatol. 2017, 69, 2386–2395. [Google Scholar] [CrossRef]
- Chhana, A.; Dalbeth, N. The Gouty Tophus: A Review. Curr. Rheumatol. Rep. 2015, 17, 19. [Google Scholar] [CrossRef] [PubMed]
- McCormick, N.; Lu, N.; Yokose, C.; Joshi, A.D.; Sheehy, S.; Rosenberg, L.; Warner, E.T.; Dalbeth, N.; Merriman, T.R.; Saag, K.G.; et al. Racial and Sex Disparities in Gout Prevalence Among US Adults. JAMA Netw. Open 2022, 5, e2226804. [Google Scholar] [CrossRef] [PubMed]
- Pathmanathan, K.; Robinson, P.C.; Hill, C.; Keen, H. The prevalence of gout and hyperuricaemia in Australia: An updated systematic review. Semin. Arthritis Rheum. 2020, 51, 121–128. [Google Scholar] [CrossRef]
- Park, J.S.; Kang, M.; Song, J.-S.; Lim, H.S.; Lee, C.H. Trends of Gout Prevalence in South Korea Based on Medical Utilization: A National Health Insurance Service Database (2002~2015). J. Rheum. Dis. 2020, 27, 174–181. [Google Scholar] [CrossRef]
- Pisaniello, H.L.; Lester, S.; Gonzalez-Chica, D.; Stocks, N.; Longo, M.; Sharplin, G.R.; Grande, E.D.; Gill, T.K.; Whittle, S.L.; Hill, C.L. Gout prevalence and predictors of urate-lowering therapy use: Results from a population-based study. Arthritis Res. Ther. 2018, 20, 143. [Google Scholar] [CrossRef]
- Kim, J.-W.; Kwak, S.G.; Lee, H.; Kim, S.-K.; Choe, J.-Y.; Park, S.-H. Prevalence and incidence of gout in Korea: Data from the national health claims database 2007–2015. Rheumatol. Int. 2017, 37, 1499–1506. [Google Scholar] [CrossRef]
- Ting, K.; Gill, T.K.; Keen, H.; Tucker, G.R.; Hill, C.L. Prevalence and associations of gout and hyperuricaemia: Results from an Australian population-based study. Intern. Med. J. 2016, 46, 566–573. [Google Scholar] [CrossRef]
- Wändell, P.; Carlsson, A.C.; Ljunggren, G. Gout and its comorbidities in the total population of Stockholm. Prev. Med. 2015, 81, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.-F.; Grainge, M.J.; Mallen, C.; Zhang, W.; Doherty, M. Rising burden of gout in the UK but continuing suboptimal management: A nationwide population study. Ann. Rheum. Dis. 2014, 74, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Soriano, L.C.; Rothenbacher, D.; Choi, H.K.; Rodríguez, L.A.G. Contemporary epidemiology of gout in the UK general population. Arthritis Res. Ther. 2011, 13, R39. [Google Scholar] [CrossRef] [PubMed]
- Guillén, A.G.; Karu, L.T.; Singh, J.A.; Dalbeth, N. Gender and Ethnic Inequities in Gout Burden and Management. Rheum. Dis. Clin. N. Am. 2020, 46, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Burke, B.T.; Köttgen, A.; Law, A.; Grams, M.; Baer, A.N.; Coresh, J.; McAdams-DeMarco, M.A. Gout in Older Adults: The Atherosclerosis Risk in Communities Study. J. Gerontol. Ser. A 2015, 71, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Safiri, S.; Kolahi, A.; Cross, M.; Carson-Chahhoud, K.; Hoy, D.; Almasi-Hashiani, A.; Sepidarkish, M.; Ashrafi-Asgarabad, A.; Moradi-Lakeh, M.; Mansournia, M.A.; et al. Prevalence, Incidence, and Years Lived with Disability Due to Gout and Its Attributable Risk Factors for 195 Countries and Territories 1990–2017: A Systematic Analysis of the Global Burden of Disease Study 2017. Arthritis Rheumatol. 2020, 72, 1916–1927. [Google Scholar] [CrossRef] [PubMed]
- Khurshid, L.; Chaudhari, S.; Kapoor, S.; Malaviya, A. Gout in premenopausal women and in pregnancy—A case-based review. Indian J. Rheumatol. 2020, 15, 234–238. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, C.; Ma, B.; Sun, H.; Chen, Y.; Zhong, Y.; Han, C.; Liu, T.; Li, Y. Global, regional and national burdens of gout in the young population from 1990 to 2019: A population-based study. RMD Open 2023, 9, e003025. [Google Scholar] [CrossRef]
- Choi, H.K.; Curhan, G. Coffee, tea, and caffeine consumption and serum uric acid level: The third national health and nutrition examination survey. Arthritis Care Res. 2007, 57, 816–821. [Google Scholar] [CrossRef]
- Choi, J.W.J.; Ford, E.S.; Gao, X.; Choi, H.K. Sugar-sweetened soft drinks, diet soft drinks, and serum uric acid level: The third national health and nutrition examination survey. Arthritis Care Res. 2007, 59, 109–116. [Google Scholar] [CrossRef]
- Hak, A.E.; Choi, H.K. Menopause, postmenopausal hormone use and serum uric acid levels in US women—The Third National Health and Nutrition Examination Survey. Arthritis Res. Ther. 2008, 10, R116–R117. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.K.; Curhan, G. Coffee consumption and risk of incident gout in women: The Nurses’ Health Study. Am. J. Clin. Nutr. 2010, 92, 922–927. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.K.; Willett, W.; Curhan, G. Fructose-Rich Beverages and Risk of Gout in Women. JAMA 2010, 304, 2270–2278. [Google Scholar] [CrossRef] [PubMed]
- A De Vera, M.; Rahman, M.M.; Bhole, V.; A Kopec, J.; Choi, H.K. Independent impact of gout on the risk of acute myocardial infarction among elderly women: A population-based study. Ann. Rheum. Dis. 2010, 69, 1162–1164. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Pandya, B.J.; Choi, H.K. Comorbidities of Gout and Hyperuricemia in the US General Population: NHANES 2007-2008. Am. J. Med. 2012, 125, 679–687.e1. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Curhan, G.; Merriman, T.; Plenge, R.; Kraft, P.; Choi, H.K. Lack of gene–diuretic interactions on the risk of incident gout: The Nurses’ Health Study and Health Professionals Follow-up Study. Ann. Rheum. Dis. 2015, 74, 1394–1398. [Google Scholar] [CrossRef]
- Merola, J.F.; Wu, S.; Han, J.; Choi, H.K.; A Qureshi, A. Psoriasis, psoriatic arthritis and risk of gout in US men and women. Ann. Rheum. Dis. 2014, 74, 1495–1500. [Google Scholar] [CrossRef]
- Juraschek, S.P.; Gelber, A.C.; Choi, H.K.; Appel, L.J.; Miller, E.R. Effects of the Dietary Approaches to Stop Hypertension (DASH) Diet and Sodium Intake on Serum Uric Acid. Arthritis Rheumatol. 2016, 68, 3002–3009. [Google Scholar] [CrossRef]
- Rho, Y.H.; Lu, N.; E Peloquin, C.; Man, A.; Zhu, Y.; Zhang, Y.; Choi, H.K. Independent impact of gout on the risk of diabetes mellitus among women and men: A population-based, BMI-matched cohort study. Ann. Rheum. Dis. 2014, 75, 91–95. [Google Scholar] [CrossRef]
- Paik, J.M.; Kim, S.C.; Feskanich, D.; Choi, H.K.; Solomon, D.H.; Curhan, G.C. Gout and Risk of Fracture in Women: A Prospective Cohort Study. Arthritis Rheumatol. 2016, 69, 422–428. [Google Scholar] [CrossRef]
- McCormick, N.; Yokose, C.; Lu, N.; Joshi, A.D.; Curhan, G.C.; Choi, H.K. Impact of adiposity on risk of female gout among those genetically predisposed: Sex-specific prospective cohort study findings over >32 years. Ann. Rheum. Dis. 2021, 81, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; McCormick, N.; Yokose, C.; Joshi, A.D.; Lu, N.; Curhan, G.C.; Merriman, T.R.; Saag, K.G.; Ridker, P.M.; Buring, J.E.; et al. Interactions between Genetic Risk and Diet Influencing Risk of Incident Female Gout: Discovery and Replication Analysis of Four Prospective Cohorts. Arthritis Rheumatol. 2023, 75, 1028–1038. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Choi, H.K.; Dalbeth, N.; Wallace, Z.S.; Sparks, J.A.; Lu, N.; Zeng, C.; Li, X.; Wei, J.; Lei, G. Gout and Excess Risk of Severe SARS-CoV-2 Infection Among Vaccinated Individuals: A General Population Study. Arthritis Rheumatol. 2023, 75, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Hak, A.E.; Curhan, G.C.; Grodstein, F.; Choi, H.K. Menopause, postmenopausal hormone use and risk of incident gout. Ann. Rheum. Dis. 2009, 69, 1305–1309. [Google Scholar] [CrossRef] [PubMed]
- Teramura, S.; Yamagishi, K.; Umesawa, M.; Hayama-Terada, M.; Muraki, I.; Maruyama, K.; Tanaka, M.; Kishida, R.; Kihara, T.; Takada, M.; et al. Risk Factors for Hyperuricemia or Gout in Men and Women: The Circulatory Risk in Communities Study (CIRCS). J. Atheroscler. Thromb. 2023, 30, 1483–1491. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.V.; Gaffo, A.L. Managing Gout in Women: Current Perspectives. J. Inflamm. Res. 2022, 15, 1591–1598. [Google Scholar] [CrossRef]
- Lin, C.Y.; Chang, Y.S.; Liu, T.Y.; Huang, C.M.; Chung, C.C.; Chen, Y.C.; Tsai, F.J.; Chang, J.G.; Chang, S.J. Genetic contributions to female gout and hyperuricemia using genome-wide association study and polygenic risk score analyses. Rheumatology 2022, 62, 638–646. [Google Scholar] [CrossRef]
- Eun, Y.; Kim, I.-Y.; Han, K.; Na Lee, K.; Lee, D.-Y.; Shin, D.W.; Kang, S.; Lee, S.; Cha, H.-S.; Koh, E.-M.; et al. Association between female reproductive factors and gout: A nationwide population-based cohort study of 1 million postmenopausal women. Arthritis Res. Ther. 2021, 23, 304. [Google Scholar] [CrossRef]
- Kampe, R.T.; Janssen, M.; van Durme, C.; Jansen, T.L.; Boonen, A. Sex Differences in the Clinical Profile Among Patients with Gout: Cross-sectional Analyses of an Observational Study. J. Rheumatol. 2020, 48, 286–292. [Google Scholar] [CrossRef]
- Huang, X.-B.; Zhang, W.-Q.; Tang, W.-W.; Liu, Y.; Ning, Y.; Huang, C.; Liu, J.-X.; Yi, Y.-J.; Xu, R.-H.; Wang, T.-D. Prevalence and associated factors of hyperuricemia among urban adults aged 35–79 years in southwestern China: A community-based cross-sectional study. Sci. Rep. 2020, 10, 15683. [Google Scholar] [CrossRef]
- Evans, P.L.; Prior, J.A.; Belcher, J.; Hay, C.A.; Mallen, C.D.; Roddy, E. Gender-specific risk factors for gout: A systematic review of cohort studies. Hortic. Bras. 2019, 59, 24. [Google Scholar] [CrossRef] [PubMed]
- Harrold, L.R.; Etzel, C.J.; Gibofsky, A.; Kremer, J.M.; Pillinger, M.H.; Saag, K.G.; Schlesinger, N.; Terkeltaub, R.; Cox, V.; Greenberg, J.D. Sex differences in gout characteristics: Tailoring care for women and men. BMC Musculoskelet. Disord. 2017, 18, 108. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.A. Racial and Gender Disparities Among Patients with Gout. Curr. Rheumatol. Rep. 2012, 15, 307. [Google Scholar] [CrossRef] [PubMed]
- Chohan, S.; Becker, M.A.; MacDonald, P.A.; Chefo, S.; Jackson, R.L. Women with gout: Efficacy and safety of urate-lowering with febuxostat and allopurinol. Arthritis Care Res. 2011, 64, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Dirken-Heukensfeldt, K.J.; Teunissen, T.A.; van de Lisdonk, H.; Lagro-Janssen, A.L. “Clinical features of women with gout arthritis.” A systematic review. Clin. Rheumatol. 2010, 29, 575–582. [Google Scholar] [CrossRef]
- McClory, J.; Said, N. Gout in women. Med. Health R. I. 2009, 92, 363–364, 368. [Google Scholar] [PubMed]
- Maiuolo, J.; Oppedisano, F.; Gratteri, S.; Muscoli, C.; Mollace, V. Regulation of uric acid metabolism and excretion. Int. J. Cardiol. 2016, 213, 8–14. [Google Scholar] [CrossRef]
- Chen-Xu, M.; Yokose, C.; Rai, S.K.; Pillinger, M.H.; Choi, H.K. Contemporary Prevalence of Gout and Hyperuricemia in the United States and Decadal Trends: The National Health and Nutrition Examination Survey, 2007–2016. Arthritis Rheumatol. 2019, 71, 991–999. [Google Scholar] [CrossRef]
- Zitt, E.; Fischer, A.; Lhotta, K.; Concin, H.; Nagel, G. Sex- and age-specific variations, temporal trends and metabolic determinants of serum uric acid concentrations in a large population-based Austrian cohort. Sci. Rep. 2020, 10, 7578. [Google Scholar] [CrossRef]
- Haeckel, R.; Wosniok, W.; Torge, A.; Junker, R. Age- and sex-dependent reference intervals for uric acid estimated by the truncated minimum chi-square (TMC) approach, a new indirect method. J. Lab. Med. 2020, 44, 157–163. [Google Scholar] [CrossRef]
- Cho, S.K.; Winkler, C.A.; Lee, S.-J.; Chang, Y.; Ryu, S. The Prevalence of Hyperuricemia Sharply Increases from the Late Menopausal Transition Stage in Middle-Aged Women. J. Clin. Med. 2019, 8, 296. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, A.; Snaith, M.L.; Scott, J.T. Effect of Oestrogen Therapy on Plasma and Urinary Levels of Uric Acid. BMJ 1973, 1, 449–451. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Lee, J.H.; Cho, H.J.; Ha, Y.-J.; Kang, E.H.; Shin, K.; Byun, S.-S.; Lee, E.Y.; Song, Y.W.; Lee, Y.J. Influence of androgen deprivation therapy on serum urate levels in patients with prostate cancer: A retrospective observational study. PLoS ONE 2018, 13, e0209049. [Google Scholar] [CrossRef] [PubMed]
- Yahyaoui, R.; Esteva, I.; Haro-Mora, J.J.; Almaraz, M.C.; Morcillo, S.; Rojo-Martínez, G.; Martínez, J.; Gómez-Zumaquero, J.M.; González, I.; Hernando, V.; et al. Effect of Long-Term Administration of Cross-Sex Hormone Therapy on Serum and Urinary Uric Acid in Transsexual Persons. J. Clin. Endocrinol. Metab. 2008, 93, 2230–2233. [Google Scholar] [CrossRef] [PubMed]
- Mumford, S.L.; Dasharathy, S.S.; Pollack, A.Z.; Perkins, N.J.; Mattison, D.R.; Cole, S.R.; Wactawski-Wende, J.; Schisterman, E.F. Serum uric acid in relation to endogenous reproductive hormones during the menstrual cycle: Findings from the BioCycle study. Hum. Reprod. 2013, 28, 1853–1862. [Google Scholar] [CrossRef] [PubMed]
- Takiue, Y.; Hosoyamada, M.; Kimura, M.; Saito, H. The Effect of Female Hormones Upon Urate Transport Systems in the Mouse Kidney. Nucleosides, Nucleotides Nucleic Acids 2011, 30, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.; Chen, B.; Qing, Y.; Xie, W.; Dang, W.; Zhao, M.; Zhou, J. Estrogen Receptor β Signaling Induces Autophagy and Downregulates Glut9 Expression. Nucleosides Nucleotides Nucleic Acids 2014, 33, 455–465. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, T.; Shan, L.; Cao, L.; Zhu, X.; Xue, Y. Estradiol regulates intestinal ABCG2 to promote urate excretion via the PI3K/Akt pathway. Nutr. Metab. 2021, 18, 63. [Google Scholar] [CrossRef]
- Yu, K.H.; Chang, P.Y.; Chang, S.C.; Wu-Chou, Y.H.; Wu, L.A.; Chen, D.P.; Lo, F.S.; Lu, J.J. A comprehensive analysis of the association of common variants of ABCG2 with gout. Sci. Rep. 2017, 7, 9988. [Google Scholar] [CrossRef]
- Dong, Z.; Guo, S.; Yang, Y.; Wu, J.; Guan, M.; Zou, H.; Jin, L.; Wang, J. Association between ABCG2 Q141K polymorphism and gout risk affected by ethnicity and gender: A systematic review and meta-analysis. Int. J. Rheum. Dis. 2014, 18, 382–391. [Google Scholar] [CrossRef]
- Wrigley, R.; Phipps-Green, A.J.; Topless, R.K.; Major, T.J.; Cadzow, M.; Riches, P.; Tausche, A.-K.; Janssen, M.; Joosten, L.A.B.; Jansen, T.L.; et al. Pleiotropic effect of the ABCG2 gene in gout: Involvement in serum urate levels and progression from hyperuricemia to gout. Arthritis Res. Ther. 2020, 22, 45. [Google Scholar] [CrossRef] [PubMed]
- Woodward, O.M.; Tukaye, D.N.; Cui, J.; Greenwell, P.; Constantoulakis, L.M.; Parker, B.S.; Rao, A.; Köttgen, M.; Maloney, P.C.; Guggino, W.B. Gout-causing Q141K mutation in ABCG2 leads to instability of the nucleotide-binding domain and can be corrected with small molecules. Proc. Natl. Acad. Sci. USA 2013, 110, 5223–5228. [Google Scholar] [CrossRef] [PubMed]
- Woodward, O.M.; Meegan, J.M.; Ardente, A.J.; Poindexter, J.R.; Baird, M.; Novick, B.; Parry, C.; Jensen, E.D.; Venn-Watson, S.; Sakhaee, K.; et al. ABCG2: The molecular mechanisms of urate secretion and gout. Am. J. Physiol. Physiol. 2015, 309, F485–F488. [Google Scholar] [CrossRef] [PubMed]
- Stiburkova, B.; Pavelcova, K.; Zavada, J.; Petru, L.; Simek, P.; Cepek, P.; Pavlikova, M.; Matsuo, H.; Merriman, T.R.; Pavelka, K. Functional non-synonymous variants of ABCG2 and gout risk. Rheumatology 2017, 56, 1982–1992. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Liu, H.; Qing, Y.; Yang, M.; Tan, X.; Zhao, M.; Lin, M.; Zhou, J. TheABCG2gene Q141K polymorphism contributes to an increased risk of gout: A meta-analysis of 2185 cases. Mod. Rheumatol. 2013, 24, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Petru, L.; Pavelcova, K.; Sebesta, I.; Stiburkova, B. Genetic background of uric acid metabolism in a patient with severe chronic tophaceous gout. Clin. Chim. Acta 2016, 460, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, H.; Takada, T.; Ichida, K.; Nakamura, T.; Nakayama, A.; Takada, Y.; Okada, C.; Sakurai, Y.; Hosoya, T.; Kanai, Y.; et al. Identification ofABCG2Dysfunction as a Major Factor Contributing to Gout. Nucleosides Nucleotides Nucleic Acids 2011, 30, 1098–1104. [Google Scholar] [CrossRef]
- Matsuo, H.; Takada, T.; Ichida, K.; Nakamura, T.; Nakayama, A.; Suzuki, H.; Hosoya, T.; Shinomiya, N. ABCG2/BCRP dysfunction as a major cause of gout. Nucleosides Nucleotides Nucleic Acids 2011, 30, 1117–1128. [Google Scholar] [CrossRef]
- Hoque, K.M.; Dixon, E.E.; Lewis, R.M.; Allan, J.; Gamble, G.D.; Phipps-Green, A.J.; Kuhns, V.L.H.; Horne, A.M.; Stamp, L.K.; Merriman, T.R.; et al. The ABCG2 Q141K hyperuricemia and gout associated variant illuminates the physiology of human urate excretion. Nat. Commun. 2020, 11, 2767. [Google Scholar] [CrossRef]
- Higashino, T.; Takada, T.; Nakaoka, H.; Toyoda, Y.; Stiburkova, B.; Miyata, H.; Ikebuchi, Y.; Nakashima, H.; Shimizu, S.; Kawaguchi, M.; et al. Multiple common and rare variants of ABCG2 cause gout. RMD Open 2017, 3, e000464. [Google Scholar] [CrossRef]
- Cleophas, M.; Joosten, L.; Stamp, L.K.; Dalbeth, N.; Woodward, O.M.; Merriman, T.R. ABCG2 polymorphisms in gout: Insights into disease susceptibility and treatment approaches. Pharm. Pers. Med. 2017, 10, 129–142. [Google Scholar] [CrossRef] [PubMed]
- Eclov, R.J.; Kim, M.J.; Smith, R.P.; Liang, X.; Ahituv, N.; Kroetz, D.L. In Vivo Hepatic Enhancer Elements in the HumanABCG2Locus. Drug Metab. Dispos. 2016, 45, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Simon, F.R.; Iwahashi, M.; Hu, L.-J.; Qadri, I.; Arias, I.M.; Ortiz, D.; Dahl, R.; Sutherland, E. Hormonal regulation of hepatic multidrug resistance-associated protein 2 (Abcc2) primarily involves the pattern of growth hormone secretion. Am. J. Physiol. Liver Physiol. 2006, 290, G595–G608. [Google Scholar] [CrossRef] [PubMed]
- Le, M.T.; Shafiu, M.; Mu, W.; Johnson, R.J. SLC2A9--a fructose transporter identified as a novel uric acid transporter. Nephrol. Dial. Transplant. 2008, 23, 2746–2749. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Guo, C.-Y.; Cupples, L.A.; Levy, D.; Wilson, P.W.; Fox, C.S. Genome-wide search for genes affecting serum uric acid levels: The Framingham Heart Study. Metabolism 2005, 54, 1435–1441. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, D.; Xu, C.; Wu, Y.; Duan, H.; Li, S.; Tan, Q. Heritability and Genome-Wide Association Analyses of Serum Uric Acid in Middle and Old-Aged Chinese Twins. Front. Endocrinol. 2018, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Kolz, M.; Johnson, T.; Sanna, S.; Teumer, A.; Vitart, V.; Perola, M.; Mangino, M.; Albrecht, E.; Wallace, C.; Farrall, M.; et al. Meta-Analysis of 28,141 Individuals Identifies Common Variants within Five New Loci That Influence Uric Acid Concentrations. PLoS Genet. 2009, 5, e1000504. [Google Scholar] [CrossRef] [PubMed]
- Döring, A.; Gieger, C.; Mehta, D.; Gohlke, H.; Prokisch, H.; Coassin, S.; Fischer, G.; Henke, K.; Klopp, N.; Kronenberg, F.; et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat. Genet. 2008, 40, 430–436. [Google Scholar] [CrossRef]
- Hosoyamada, M.; Takiue, Y.; Shibasaki, T.; Saito, H. The Effect of Testosterone Upon the Urate Reabsorptive Transport System in Mouse Kidney. Nucleosides Nucleotides Nucleic Acids 2010, 29, 574–579. [Google Scholar] [CrossRef]
- Euteneuer, A.M.; Seeger-Nukpezah, T.; Nolte, H.; Henjakovic, M. Estrogen receptor α (ERα) indirectly induces transcription of human renal organic anion transporter 1 (OAT1). Physiol. Rep. 2019, 7, e14229. [Google Scholar] [CrossRef]
- Ljubojević, M.; Balen, D.; Breljak, D.; Kušan, M.; Anzai, N.; Bahn, A.; Burckhardt, G.; Sabolić, I. Renal expression of organic anion transporter OAT2 in rats and mice is regulated by sex hormones. Am. J. Physiol. Physiol. 2007, 292, F361–F372. [Google Scholar] [CrossRef] [PubMed]
- Vrhovac, I.; Eror, D.B.; Gerasimova, M.; Rose, M.; Breljak, D.; Ljubojević, M.; Brzica, H.; Sebastiani, A.; Thal, S.C.; Sauvant, C.; et al. Expression of Na+-d-glucose cotransporter SGLT2 in rodents is kidney-specific and exhibits sex and species differences. Am. J. Physiol. Physiol. 2012, 302, C1174–C1188. [Google Scholar] [CrossRef]
- Puig, J.G.; Mateos, F.A.; Miranda, M.E.; Torres, R.J.; de Miguel, E.; de Ayala, C.P.; Gil, A.A. Purine metabolism in women with primary gout. Am. J. Med. 1994, 97, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Watanabe, T.; Otaki, Y.; Murase, T.; Nakamura, T.; Kato, S.; Tamura, H.; Nishiyama, S.; Takahashi, H.; Arimoto, T.; et al. Gender Differences in the Impact of Plasma Xanthine Oxidoreductase Activity on Coronary Artery Spasm. J. Clin. Med. 2021, 10, 5550. [Google Scholar] [CrossRef]
- Budhiraja, R.; Kayyali, U.S.; Karamsetty, M.; Fogel, M.; Hill, N.S.; Chalkley, R.; Finlay, G.A.; Hassoun, P.M. Estrogen Modulates Xanthine Dehydrogenase/Xanthine Oxidase Activity by a Receptor-Independent Mechanism. Antioxidants Redox Signal. 2003, 5, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Torres, R.J.; Puig, J.G. Hypoxanthine-guanine phosophoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome. Orphanet J. Rare Dis. 2007, 2, 48. [Google Scholar] [CrossRef] [PubMed]
- de Brouwer, A.P.M.; Christodoulou, J. Phosphoribosylpyrophosphate Synthetase Superactivity. In GeneReviews®; Adam, M.P., Ed.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Veljković, A.; Hadži-Dokić, J.; Sokolović, D.; Bašić, D.; Veličković-Janković, L.; Stojanović, M.; Popović, D.; Kocić, G. Xanthine Oxidase/Dehydrogenase Activity as a Source of Oxidative Stress in Prostate Cancer Tissue. Diagnostics 2020, 10, 668. [Google Scholar] [CrossRef]
- Urquiaga, M.; Leask, M.; Sumpter, N.; Maxwell, B.; Lewis, S.; Kelley, E.; Merriman, T. The Prostate Plays a Role in Serum Urate Levels and the Risk of Gout in Men. Arthritis Rheumatol. 2022, 74 (Suppl. 9). Available online: https://acrabstracts.org/abstract/the-prostate-plays-a-role-in-serum-urate-levels-and-the-risk-of-gout-in-men/ (accessed on 11 December 2023).
- Darlington, L.G.; Ainsworth, J.G.; Blight, A.; Khong, M.D.; Mann, T.A.; Waldon, R.D.; Warburton, E.A. Changes in urate metabolism after castration of patients suffering from carcinoma of the prostate. Adv. Exp. Med. Biol. 1991, 309, 235–238. [Google Scholar] [CrossRef]
- MacFarlane, L.A.; Kim, S.C. Gout: A review of nonmodifiable and modifiable risk factors. Rheum. Dis. Clin. N. Am. 2014, 40, 581–604. [Google Scholar] [CrossRef]
- A Singh, J.; Reddy, S.G.; Kundukulam, J. Risk factors for gout and prevention: A systematic review of the literature. Curr. Opin. Rheumatol. 2011, 23, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Saag, K.G.; Choi, H. Epidemiology, risk factors, and lifestyle modifications for gout. Arthritis Res. Ther. 2006, 8, S2. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-H.; Yeh, W.-T.; Chuang, S.-Y.; Wu, Y.-Y.; Pan, W.-H. Gender-specific risk factors for incident gout: A prospective cohort study. Clin. Rheumatol. 2011, 31, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Pan, W.; Hsu, C.; Yeh, W.; Chuang, S.; Chen, P.; Chen, H.; Chang, C.; Huang, W. Impact of obesity and hypertriglyceridemia on gout development with or without hyperuricemia: A prospective study. Arthritis Care Res. 2012, 65, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Yokose, C.; McCormick, N.; Lu, N.; Joshi, A.D.; Jackson, L.; Kohler, M.J.; Yinh, J.; Zhang, Y.; Hsu, J.; Dalbeth, N.; et al. Nationwide racial/ethnic disparities in US emergency department visits and hospitalizations for gout. Rheumatology 2022, 62, 2247–2251. [Google Scholar] [CrossRef] [PubMed]
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Beaton, A.Z.; Boehme, A.K.; Buxton, A.E.; et al. Heart Disease and Stroke Statistics—2023 Update: A Report From the American Heart Association. Circulation 2023, 147, E93–E621. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.K.; Atkinson, K.; Karlson, E.W.; Willett, W.; Curhan, G. Purine-Rich Foods, Dairy and Protein Intake, and the Risk of Gout in Men. N. Engl. J. Med. 2004, 350, 1093–1103. [Google Scholar] [CrossRef]
- Karlsson, T.; Hadizadeh, F.; Rask-Andersen, M.; Johansson, Å.; Ek, W.E. Body Mass Index and the Risk of Rheumatic Disease: Linear and Nonlinear Mendelian Randomization Analyses. Arthritis Rheumatol. 2023, 75, 2027–2035. [Google Scholar] [CrossRef]
- Sumpter, N.A.; Takei, R.; Cadzow, M.; Topless, R.K.G.; Phipps-Green, A.J.; Murphy, R.; de Zoysa, J.; Watson, H.; Qasim, M.; Lupi, A.S.; et al. Association of Gout Polygenic Risk Score with Age at Disease Onset and Tophaceous Disease in European and Polynesian Men with Gout. Arthritis Rheumatol. 2023, 75, 816–825. [Google Scholar] [CrossRef]
- Lukkunaprasit, T.; Rattanasiri, S.; Turongkaravee, S.; Suvannang, N.; Ingsathit, A.; Attia, J.; Thakkinstian, A. The association between genetic polymorphisms in ABCG2 and SLC2A9 and urate: An updated systematic review and meta-analysis. BMC Med. Genet. 2020, 21, 210. [Google Scholar] [CrossRef]
- Narang, R.K.; Topless, R.; Cadzow, M.; Gamble, G.; Stamp, L.K.; Merriman, T.R.; Dalbeth, N. Interactions between serum urate-associated genetic variants and sex on gout risk: Analysis of the UK Biobank. Arthritis Res. Ther. 2019, 21, 13. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, Y.; Nakaoka, H.; Nakayama, A.; Okada, Y.; Yamamoto, K.; Higashino, T.; Sakiyama, M.; Shimizu, T.; Ooyama, H.; Ooyama, K.; et al. Genome-wide association study revealed novel loci which aggravate asymptomatic hyperuricaemia into gout. Ann. Rheum. Dis. 2019, 78, 1430–1437. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Mo, Z.; Wu, C.; Yang, H.; Yang, X.; He, Y.; Gui, L.; Zhou, L.; Guo, H.; Zhang, X.; et al. A genome-wide association study identifies common variants influencing serum uric acid concentrations in a Chinese population. BMC Med. Genom. 2014, 7, 10. [Google Scholar] [CrossRef]
- Kottgen, A.; Albrecht, E.; Teumer, A.; Vitart, V.; Krumsiek, J.; Hundertmark, C.; Pistis, G.; Ruggiero, D.; O’Seaghdha, C.M.; Haller, T.; et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat. Genet. 2013, 45, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Reginato, A.M.; Mount, D.B.; Yang, I.; Choi, H.K. The genetics of hyperuricaemia and gout. Nat. Rev. Rheumatol. 2012, 8, 610–621. [Google Scholar] [CrossRef]
- Choi, H.K.; Zhu, Y.; Mount, D.B. Genetics of gout. Curr. Opin. Rheumatol. 2010, 22, 144–151. [Google Scholar] [CrossRef]
- Vitart, V.; Rudan, I.; Hayward, C.; Gray, N.K.; Floyd, J.; NA Palmer, C.; A Knott, S.; Kolcic, I.; Polasek, O.; Graessler, J.; et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat. Genet. 2008, 40, 437–442. [Google Scholar] [CrossRef]
- Dalbeth, N. Gene–Diet Interactions: Beyond Duelling Views of Gout Pathogenesis. Arthritis Rheumatol. 2023, 75, 869–871. [Google Scholar] [CrossRef]
- Topless, R.K.G.; Major, T.J.; Florez, J.C.; Hirschhorn, J.N.; Cadzow, M.; Dalbeth, N.; Stamp, L.K.; Wilcox, P.L.; Reynolds, R.J.; Cole, J.B.; et al. The comparative effect of exposure to various risk factors on the risk of hyperuricaemia: Diet has a weak causal effect. Arthritis Res. Ther. 2021, 23, 75. [Google Scholar] [CrossRef]
- Major, T.J.; Topless, R.K.; Dalbeth, N.; Merriman, T.R. Evaluation of the diet wide contribution to serum urate levels: Meta-analysis of population based cohorts. BMJ 2018, 363, k3951. [Google Scholar] [CrossRef]
- Choi, H.K.; McCormick, N.; Yokose, C. Excess comorbidities in gout: The causal paradigm and pleiotropic approaches to care. Nat. Rev. Rheumatol. 2021, 18, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Lai, B.; Yu, H.-P.; Chang, Y.-J.; Wang, L.-C.; Chen, C.-K.; Zhang, W.; Doherty, M.; Chang, S.-H.; Hsu, J.-T.; Yu, K.-H.; et al. Assessing the causal relationships between gout and hypertension: A bidirectional Mendelian randomisation study with coarsened exposures. Arthritis Res. Ther. 2022, 24, 243. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xian, W.; Wu, D.; Huo, Z.; Hong, S.; Li, Y.; Xiao, H. The role of obesity, type 2 diabetes, and metabolic factors in gout: A Mendelian randomization study. Front. Endocrinol. 2022, 13, 917056. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Hu, T.; Cui, H. Serum urate and heart failure: A bidirectional Mendelian randomization study. Eur. J. Prev. Cardiol. 2022, 29, 1570–1578. [Google Scholar] [CrossRef] [PubMed]
- Wijnands, J.M.A.; van Durme, C.M.P.G.; Driessen, J.H.M.; Boonen, A.; Klop, C.; Leufkens, B.; Cooper, C.; Stehouwer, C.D.A.; de Vries, F. Individuals with Type 2 Diabetes Mellitus Are at an Increased Risk of Gout but This Is Not Due to Diabetes: A Population-Based Cohort Study. Medicine 2015, 94, e1358. [Google Scholar] [CrossRef] [PubMed]
- McCormick, N.; O’connor, M.J.; Yokose, C.; Merriman, T.R.; Mount, D.B.; Leong, A.; Choi, H.K. Assessing the Causal Relationships between Insulin Resistance and Hyperuricemia and Gout Using Bidirectional Mendelian Randomization. Arthritis Rheumatol. 2021, 73, 2096–2104. [Google Scholar] [CrossRef] [PubMed]
- Sumpter, N.A.; Saag, K.G.; Reynolds, R.J.; Merriman, T.R. Comorbidities in gout and hyperuricemia: Causality or epiphenomena? Curr. Opin. Rheumatol. 2020, 32, 126–133. [Google Scholar] [CrossRef]
- Eun, Y.; Han, K.; Lee, S.W.; Kim, K.; Kang, S.; Lee, S.; Cha, H.; Koh, E.; Kim, H.; Lee, J. Altered Risk of Incident Gout According to Changes in Metabolic Syndrome Status: A Nationwide, Population-Based Cohort Study of 1.29 Million Young Men. Arthritis Rheumatol. 2023, 75, 806–815. [Google Scholar] [CrossRef]
- Perez-Ruiz, F.; Aniel-Quiroga, M.A.; Herrero-Beites, A.M.; Chinchilla, S.P.; Erauskin, G.G.; Merriman, T. Renal clearance of uric acid is linked to insulin resistance and lower excretion of sodium in gout patients. Rheumatol. Int. 2015, 35, 1519–1524. [Google Scholar] [CrossRef]
- Mandal, A.K.; Leask, M.P.; Estiverne, C.; Choi, H.K.; Merriman, T.R.; Mount, D.B. Genetic and Physiological Effects of Insulin on Human Urate Homeostasis. Front. Physiol. 2021, 12, 713710. [Google Scholar] [CrossRef]
- Juraschek, S.P.; Kovell, L.C.; Miller, E.R.; Gelber, A.C. Association of kidney disease with prevalent gout in the United States in 1988–1994 and 2007–2010. Semin. Arthritis Rheum. 2013, 42, 551–561. [Google Scholar] [CrossRef] [PubMed]
- García, G.G.; Iyengar, A.; Kaze, F.; Kierans, C.; Padilla-Altamira, C.; Luyckx, V.A. Sex and gender differences in chronic kidney disease and access to care around the globe. Semin. Nephrol. 2022, 42, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Tan, V.S.; Garg, A.X.; McArthur, E.; Lam, N.N.; Sood, M.M.; Naylor, K.L. The 3-Year Incidence of Gout in Elderly Patients with CKD. Clin. J. Am. Soc. Nephrol. 2017, 12, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Bhole, V.M.; Krishnan, E. Chronic kidney disease as a risk factor for incident gout among men and women: Retrospective cohort study using data from the Framingham Heart Study. BMJ Open 2015, 5, e006843. [Google Scholar] [CrossRef]
- Ma, C.A.; Leung, Y.Y. Exploring the Link between Uric Acid and Osteoarthritis. Front. Med. 2017, 4, 225. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Qin, H.; Hua, Y.; Dalbeth, N. Contributions of joint damage-related events to gout pathogenesis: New insights from laboratory research. Ann. Rheum. Dis. 2023, 82, 1511–1515. [Google Scholar] [CrossRef] [PubMed]
- Chhana, A.; Pool, B.; Wei, Y.; Choi, A.; Gao, R.; Munro, J.; Cornish, J.; Dalbeth, N. Human Cartilage Homogenates Influence the Crystallization of Monosodium Urate and Inflammatory Response to Monosodium Urate Crystals: A Potential Link between Osteoarthritis and Gout. Arthritis Rheumatol. 2019, 71, 2090–2099. [Google Scholar] [CrossRef] [PubMed]
- Neogi, T.; Krasnokutsky, S.; Pillinger, M.H. Urate and osteoarthritis: Evidence for a reciprocal relationship. Jt. Bone Spine 2018, 86, 576–582. [Google Scholar] [CrossRef]
- Teng, G.; Leung, Y.; Ang, L.-W.; Yuan, J.-M.; Koh, W.-P. Gout and risk of knee replacement for severe knee osteoarthritis in the Singapore Chinese Health Study. Osteoarthr. Cartil. 2017, 25, 1962–1968. [Google Scholar] [CrossRef]
- Chen, D.; Xu, H.; Sun, L.; Li, Y.; Wang, T. Assessing causality between osteoarthritis with urate levels and gout: A bidirectional Mendelian randomization study. Osteoarthr. Cartil. 2021, 30, 551–558. [Google Scholar] [CrossRef]
- Li, L.; Wang, D.; Wang, X.; Bai, R.; Wang, C.; Gao, Y.; Anastassiades, T. N-Butyrylated hyaluronic acid ameliorates gout and hyperuricemia in animal models. Pharm. Biol. 2019, 57, 717–728. [Google Scholar] [CrossRef] [PubMed]
- Nasi, S.; Castelblanco, M.; Chobaz, V.; Ehirchiou, D.; So, A.; Bernabei, I.; Kusano, T.; Nishino, T.; Okamoto, K.; Busso, N. Xanthine Oxidoreductase Is Involved in Chondrocyte Mineralization and Expressed in Osteoarthritic Damaged Cartilage. Front. Cell Dev. Biol. 2021, 9, 612440. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, A.; Köttgen, A.; Yang, Q.; Hwang, S.-J.; Kao, W.L.; Rivadeneira, F.; Boerwinkle, E.; Levy, D.; Hofman, A.; Astor, B.C.; et al. Association of three genetic loci with uric acid concentration and risk of gout: A genome-wide association study. Lancet 2008, 372, 1953–1961. [Google Scholar] [CrossRef] [PubMed]
- Topless, R.K.; Gaffo, A.; Stamp, L.K.; Robinson, P.C.; Dalbeth, N.; Merriman, T.R. Gout and the risk of COVID-19 diagnosis and death in the UK Biobank: A population-based study. Lancet Rheumatol. 2022, 4, e274–e281. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, R.; Cheung, A.S.; Pang, K.; Saffery, R.; Novakovic, B. Sexual Dimorphism in Innate Immunity: The Role of Sex Hormones and Epigenetics. Front. Immunol. 2021, 11, 604000. [Google Scholar] [CrossRef]
- Li, Y.; Piranavan, P.; Sundaresan, D.; Yood, R. Clinical Characteristics of Early-Onset Gout in Outpatient Setting. ACR Open Rheumatol. 2019, 1, 397–402. [Google Scholar] [CrossRef]
- Jansen, R.; Batista, S.; I Brooks, A.; A Tischfield, J.; Willemsen, G.; van Grootheest, G.; Hottenga, J.-J.; Milaneschi, Y.; Mbarek, H.; Madar, V.; et al. Sex differences in the human peripheral blood transcriptome. BMC Genom. 2014, 15, 33. [Google Scholar] [CrossRef]
- Sultanova, R.F.; Schibalski, R.; Yankelevich, I.A.; Stadler, K.; Ilatovskaya, D.V. Sex differences in renal mitochondrial function: A hormone-gous opportunity for research. Am. J. Physiol. Physiol. 2020, 319, F1117–F1124. [Google Scholar] [CrossRef]
- Gerdts, E.; Regitz-Zagrosek, V. Sex differences in cardiometabolic disorders. Nat. Med. 2019, 25, 1657–1666. [Google Scholar] [CrossRef]
- Gosling, A.L.; Boocock, J.; Dalbeth, N.; Hindmarsh, J.H.; Stamp, L.K.; A Stahl, E.; Choi, H.K.; A Matisoo-Smith, E.; Merriman, T.R. Mitochondrial genetic variation and gout in Māori and Pacific people living in Aotearoa New Zealand. Ann. Rheum. Dis. 2017, 77, 571–578. [Google Scholar] [CrossRef]
- Abderrazak, A.; Syrovets, T.; Couchie, D.; El Hadri, K.; Friguet, B.; Simmet, T.; Rouis, M. NLRP3 inflammasome: From a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol. 2015, 4, 296–307. [Google Scholar] [CrossRef] [PubMed]
- McWherter, C.; Choi, Y.-J.; Serrano, R.L.; Mahata, S.K.; Terkeltaub, R.; Liu-Bryan, R. Arhalofenate acid inhibits monosodium urate crystal-induced inflammatory responses through activation of AMP-activated protein kinase (AMPK) signaling. Arthritis Res. Ther. 2018, 20, 204. [Google Scholar] [CrossRef] [PubMed]
- Zong, Q.; Hu, Y.; Zhang, Q.; Zhang, X.; Huang, J.; Wang, T. Associations of hyperuricemia, gout, and UA-lowering therapy with the risk of fractures: A meta-analysis of observational studies. Jt. Bone Spine 2019, 86, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Choi, H.K.; Dalbeth, N.; Lane, N.E.; Wu, J.; Lyu, H.; Zeng, C.; Lei, G.; Zhang, Y. Lowering Serum Urate with Urate-Lowering Therapy to Target and Incident Fracture Among People with Gout. Arthritis Rheumatol. 2023, 75, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Bergsten, U.; Dehlin, M.; Klingberg, E.; Landgren, A.J.; Jacobsson, L.T.H. Gender differences in illness perceptions and disease management in patients with gout, results from a questionnaire study in Western Sweden. BMC Musculoskelet. Disord. 2023, 24, 300. [Google Scholar] [CrossRef]
- Sato, T.; Cheng, C.; Park, H.; Yang, Y.K.; Yang, M.; Fujita, M.; Kumagai, Y.; Tohkin, M.; Saito, Y.; Sai, K. Real-world evidence of population differences in allopurinol-related severe cutaneous adverse reactions in East Asians: A population-based cohort study. Clin. Transl. Sci. 2020, 14, 1002–1014. [Google Scholar] [CrossRef]
- Yang, C.Y.; Chen, C.H.; Deng, S.T.; Huang, C.S.; Lin, Y.J.; Chen, Y.J.; Wu, C.Y.; Hung, S.I.; Chung, W.H. Allopurinol Use and Risk of Fatal Hypersensitivity Reactions: A Nationwide Population-Based Study in Taiwan. JAMA Intern. Med. 2015, 175, 1550–1557. [Google Scholar] [CrossRef]
- Pierre, K.; Gomez, N.F.; Canha, C.; Masri, G. Gout in Pregnancy: A Rare Phenomenon. Cureus 2020, 12, e11697. [Google Scholar] [CrossRef]
- van Veen, T.R.; Haeri, S. Gout in pregnancy: A case report and review of the literature. Gynecol. Obs. Investig. 2015, 79, 217–221. [Google Scholar] [CrossRef]
- Terkeltaub, R.A. Colchicine Update: 2008. Semin. Arthritis Rheum. 2009, 38, 411–419. [Google Scholar] [CrossRef]
- Anderson, P.O. Treatment of Gout During Breastfeeding. Breastfeed. Med. 2021, 16, 848–850. [Google Scholar] [CrossRef] [PubMed]
Comorbidities | Prevalence in Gout Patients | Causal Effect on Gout (Observed in MR or Cohort Studies) |
---|---|---|
HTN [12,13] | Higher in females | Inconsistent |
T2DM [13,14]. | Higher in females | Causal effect identified for insulin resistance but not T2DM per se |
Obesity [15,16] | Higher in females | Positive causal effect Higher in females |
CKD [17,18,19,20] | Higher in females | Positive causal effect Higher in females |
HF [21,22,23] | Higher in females | Causal effects not identified to date |
OA [24] | Not specifically reported | Causal effects suggested to be due to changes in lubricin, hyaluronan, and the cartilage extracellular matrix in OA |
Potential Factor | Effect on Immune Response |
---|---|
Transcription [25,26] |
|
Mitochondria [27,28] |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Sumpter, N.; Merriman, T.R.; Liu-Bryan, R.; Terkeltaub, R. The Evolving Landscape of Gout in the Female: A Narrative Review. Gout Urate Cryst. Depos. Dis. 2024, 2, 1-16. https://doi.org/10.3390/gucdd2010001
Lee J, Sumpter N, Merriman TR, Liu-Bryan R, Terkeltaub R. The Evolving Landscape of Gout in the Female: A Narrative Review. Gout, Urate, and Crystal Deposition Disease. 2024; 2(1):1-16. https://doi.org/10.3390/gucdd2010001
Chicago/Turabian StyleLee, Jennifer, Nicholas Sumpter, Tony R. Merriman, Ru Liu-Bryan, and Robert Terkeltaub. 2024. "The Evolving Landscape of Gout in the Female: A Narrative Review" Gout, Urate, and Crystal Deposition Disease 2, no. 1: 1-16. https://doi.org/10.3390/gucdd2010001
APA StyleLee, J., Sumpter, N., Merriman, T. R., Liu-Bryan, R., & Terkeltaub, R. (2024). The Evolving Landscape of Gout in the Female: A Narrative Review. Gout, Urate, and Crystal Deposition Disease, 2(1), 1-16. https://doi.org/10.3390/gucdd2010001