Analysis of Malate and Other Di- and Tricarboxylic Acids Using Capillary Electrophoresis and Laser-Induced Photoluminescence Detection After Complexation with Europium Tetracycline
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stern, J.R.; Hegre, C.S. Inducible D-Malic Enzyme in Escherichia coli. Nature 1966, 212, 1611–1612. [Google Scholar] [CrossRef]
- Asano, Y.; Ueda, M.; Yamada, H. Microbial production of D-malate from maleate. Appl. Environ. Microbiol. 1993, 59, 1110–1113. [Google Scholar] [CrossRef]
- Jiang, Y.; Zheng, T.; Ye, X.; Xin, F.; Zhang, W.; Dong, W.; Ma, J.; Jiang, M. Metabolic engineering of Escherichia coli for L-malate production anaerobically. Microb. Cell Factories 2020, 19, 165. [Google Scholar] [CrossRef]
- Shapiro, F.; Silanikove, N. Rapid and accurate determination of malate, citrate, pyruvate and oxaloacetate by enzymatic reactions coupled to formation of a fluorochromophore: Application in colorful juices and fermentable food (yogurt, wine) analysis. Food Chem. 2011, 129, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Gallarta, F.; Sáinz, F.J.; Sáenz, C. Fluorescent sensing layer for the determination of L-malic acid in wine. Anal. Bioanal. Chem. 2007, 387, 2297–2305. [Google Scholar] [CrossRef] [PubMed]
- Vargas, E.; Ruiz, M.A.; Ferrero, F.J.; Campuzano, S.; Montiel, V.R.-V.; Reviejo, A.J.; Pingarrón, J.M. Automatic bionalyzer using an integrated amperometric biosensor for the determination of L-malic acid in wines. Talanta 2016, 158, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Röhlen, D.L.; Pilas, J.; Schöning, M.J.; Selmer, T. Development of an Amperometric Biosensor Platform for the Combined Determination of L-Malic, Fumaric, and L-Aspartic Acid. Appl. Biochem. Biotechnol. 2017, 183, 566–581. [Google Scholar] [CrossRef]
- Giménez-Gómez, P.; Gutiérrez-Capitán, M.; Capdevila, F.; Puig-Pujol, A.; Fernández-Sánchez, C.; Jiménez-Jorquera, C. Robust L-malate bienzymatic biosensor to enable the on-site monitoring of malolactic fermentation of red wines. Anal. Chim. Acta 2017, 954, 105–113. [Google Scholar] [CrossRef]
- Mori, H.; Shiraki, S. Determination of D-Malate Using Immobilized D-Malate Dehydrogenase in a Flow System and its Application to Analyze the D-Malate Content of Beverages. J. Health Sci. 2008, 54, 72–75. [Google Scholar] [CrossRef][Green Version]
- Mei, X.; Lu, D.; Yan, X. Separation and determination of D-malic acid enantiomer by reversed-phase liquid chromatography after derivatization with (R)-1-(1-naphthyl) ethylamine. Braz. J. Pharm. Sci. 2022, 58, e19247. [Google Scholar] [CrossRef]
- Fransson, B.; Ragnarsson, U. Separation of enantiomers of α-hydroxy acids by reversed-phase liquid chromatography after derivatization with 1-(9-fluorenyl)ethyl chloroformate. J. Chromatogr. A 1998, 827, 31–36. [Google Scholar] [CrossRef]
- Qing, G.-Y.; He, Y.-B.; Chen, Z.-H.; Wu, X.-J.; Meng, L.-Z. Sensitive fluorescent sensors for malate based on calix[4]arene bearing anthracene. Tetrahedron Asymmetry 2006, 17, 3144–3151. [Google Scholar] [CrossRef]
- Shriver, D.; Weller, M.; Overton, T.; Rourke, J.; Armstrong, F. Inorganic Chemistry, 6th ed.; WH Freeman and Company: New York, NY, USA, 2014. [Google Scholar]
- Lin, Z.; Wu, M.; Schaeferling, M.; Wolfbeis, O.S. Fluorescent imaging of citrate and other intermediates in the citric acid cycle. Angew. Chem. 2004, 43, 1735–1738. [Google Scholar] [CrossRef]
- Peng, Q.; Ge, X.; Jiang, C. A new spectrofluorometric probe for the determination of trace amounts of CoA in injection, human serum and pig livers. Anal. Sci. 2007, 23, 557–561. [Google Scholar] [CrossRef]
- Peng, Q.; Hou, F.; Ge, X.; Jiang, C.; Gong, S. Fluorimetric study of the interaction between nicotinamide adenine dinucleotide phosphate and tetracycline-europium complex and its application. Anal. Chim. Acta 2005, 549, 26–31. [Google Scholar] [CrossRef]
- Schaferling, M.; Wolfbeis, O.S. Europium tetracycline as a luminescent probe for nucleoside phosphates and its application to the determination of kinase activity. Chemistry 2007, 15, 4342–4349. [Google Scholar] [CrossRef]
- Da Silva, F.R.; Courrol, L.C.; Tarelho, L.V.G.; Gomes, L.; Vieira, N.D. Enhancement of europium luminescence in tetracycline-europium complexes in the presence of urea hydrogen peroxide. J. Fluoresc. 2005, 15, 667–671. [Google Scholar] [CrossRef]
- Durkop, A.; Wolfbeis, O.S. Nonenzymatic direct assay of hydrogen peroxide at neutral pH using the Eu3Tc fluorescent probe. J. Fluoresc. 2005, 15, 755–761. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.Q.; Luo, L. Spectrofluorometric determination of human serum albumin using a tetracycline-europium complex. Anal. Lett. 2004, 37, 1129–1137. [Google Scholar] [CrossRef]
- Zhu, X.J.; Wang, X.L.; Jiang, C.Q. Spectrofluorometric determination of heparin using a tetracycline-europium probe. Anal. Biochem. 2005, 341, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Jiang, C.Q. Spectrofluorimetric determination of lecithin using a tetracycline-europium probe. Anal. Chim. Acta 2006, 561, 204–209. [Google Scholar] [CrossRef]
- Craig, D.B.; Hiebert, Z. Analysis of Complexes of Metabolites with Europium Tetracycline Using Capillary Electrophoresis Coupled with Laser-Induced Luminescence Detection. BioMetals 2017, 30, 449–458. [Google Scholar] [CrossRef]
- Lischynski, J.R.; Goltz, D.M.; Craig, D.B. Measurement of Phosphate in Small Samples Using Capillary Electrophoresis with Laser-Induced Luminescence Detection. J. Liq. Chromatogr. Relat. Technol. 2019, 41, 1092–1097. [Google Scholar] [CrossRef]
- Craig, D.B.; Lischynski, J.R.; Cardoso, I.C.C. Citrate Analysis Using Capillary Electrophoresis and Complexation with Eu3+-Tetracycline. BioMetals 2018, 31, 1043–1049. [Google Scholar] [CrossRef]
- Lin, Z.; Wu, M.; Wolfbeis, O.S. Time-resolved fluorescent chirality sensing and imaging of malate in aqueous solution. Chirality 2005, 17, 464–469. [Google Scholar] [CrossRef]
- Bai, Y.; He, Y.; Wang, Y.; Song, G. Nitrogen, boron-doped Ti3C2 MXene quantum dot-based ratiometric fluorescence sensing platform for point-of-care testing of tetracycline using an enhanced antenna effect by Eu3+. Mikrochim. Acta 2021, 188, 401. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, M.E.; Chimeno-Trinchet, C.; Fernández-González, A.; Badía-Laíño, R. New europium-doped carbon nanoparticles showing long-lifetime photoluminescence: Synthesis, characterization and application to the determination of tetracycline in waters. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 284, 121756. [Google Scholar] [CrossRef] [PubMed]
- Long, Q.-H.; Hong, L.-N.; Han, C.; Li, X.-Y.; Liao, Y.-J.; Yan, X.-L.; Mai, X.; Li, N. Eu3+-functionalized covalent organic framework for ratiometric fluorescence detection and adsorption of tetracycline and information steganography. Mikrochim. Acta 2024, 191, 519. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Fan, K.; Yang, R.; Du, X.; Qu, B.; Miao, X.; Lu, L. A long lifetime ratiometrically luminescent tetracycline nanoprobe based on Ir(III) complex-doped and Eu3+-functionalized silicon nanoparticles. J. Hazard. Mater. 2020, 386, 121929. [Google Scholar] [CrossRef]
- Zhu, Z.; Xu, J.; Chen, X.; Li, Y.; Zhang, L.; Jia, L.; Li, J.; Zhu, T.; Zhao, T. Intelligent detection and classification of tetracycline drugs by rare earth fluorescence sensing platform based on deep learning algorithm and STM32 microcontroller. Sens. Actuators B Chem. 2025, 445, 138638. [Google Scholar] [CrossRef]
- Hijaz, F.; Nehela, Y.; Gonzalez-Blanco, P.; Killiny, N. Development of europium-sensitized fluorescence-based method for sensitive detection of oxytetracycline in citrus tissues. Antibiotics 2021, 10, 224. [Google Scholar] [CrossRef] [PubMed]
- Gan, Z.; Hu, X.; Xu, X.; Zhang, W.; Zou, X.; Shi, J.; Zheng, K.; Arslan, M. A portable test strip based on fluorescent europium-based metal-organic framework for rapid and visual detection of tetracycline in food samples. Food Chem. 2021, 354, 129501. [Google Scholar] [CrossRef] [PubMed]
- Craig, D.B.; Hollett, J.W.; Abas, S.; Riehl, B.K. Stereoselective Analysis of Tartaric Acid Using Complexation with Eu3+-Tetracycline and Capillary Electrophoresis. J. Pharmacol. Clin. Toxicol. 2023, 11, 1176. [Google Scholar]
- Craig, D.B.; Arriaga, E.A.; Banks, P.; Zhang, Y.; Renborg, A.; Palcic, M.M.; Dovichi, N.J. Fluorescently-based enzymatic assay by capillary electrophoresis laser-induced fluorescence detection for the determination of a few β-galactosidase molecules. Anal. Biochem. 1995, 226, 147–153. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Craig, D.B.; Abas, S.; Riehl, B.K.; Pathak, W.; Hollett, J.W. Analysis of Malate and Other Di- and Tricarboxylic Acids Using Capillary Electrophoresis and Laser-Induced Photoluminescence Detection After Complexation with Europium Tetracycline. Spectrosc. J. 2025, 3, 30. https://doi.org/10.3390/spectroscj3040030
Craig DB, Abas S, Riehl BK, Pathak W, Hollett JW. Analysis of Malate and Other Di- and Tricarboxylic Acids Using Capillary Electrophoresis and Laser-Induced Photoluminescence Detection After Complexation with Europium Tetracycline. Spectroscopy Journal. 2025; 3(4):30. https://doi.org/10.3390/spectroscj3040030
Chicago/Turabian StyleCraig, Douglas B., Sumaiya Abas, Brynne K. Riehl, Winner Pathak, and Joshua W. Hollett. 2025. "Analysis of Malate and Other Di- and Tricarboxylic Acids Using Capillary Electrophoresis and Laser-Induced Photoluminescence Detection After Complexation with Europium Tetracycline" Spectroscopy Journal 3, no. 4: 30. https://doi.org/10.3390/spectroscj3040030
APA StyleCraig, D. B., Abas, S., Riehl, B. K., Pathak, W., & Hollett, J. W. (2025). Analysis of Malate and Other Di- and Tricarboxylic Acids Using Capillary Electrophoresis and Laser-Induced Photoluminescence Detection After Complexation with Europium Tetracycline. Spectroscopy Journal, 3(4), 30. https://doi.org/10.3390/spectroscj3040030

