Integral UV Spectrophotometric Methods for Determination of Clopidogrel Bisulphate and Metamizole Sodium in Rinse Waters from Industrial Equipment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Equipment
2.2. Preparation of Solutions from Pharmaceutical Substances
2.3. Preparation of Solutions from Tablets
2.4. Preparation of Model Rinse Waters
2.5. Construction of Calibration Graphs
2.6. General Procedure for Determination
2.7. Processing of Experimental Results
3. Results
3.1. Analytical Performance
3.2. Linearity
3.3. Interfering Effect of Commonly Used Excipients
3.4. Accuracy and Precision
3.5. Accuracy and Precision for Model Rinse Waters
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zaazaa, H.E.; Abbas, S.S.; Abdelkawy, M.; Abdelrahman, M.M. Spectrophotometric and spectrodensitometric determination of Clopidogrel Bisulfate with kinetic study of its alkaline degradation. Talanta 2009, 78, 874–884. [Google Scholar] [CrossRef] [PubMed]
- Antypenko, L.; Gladysheva, S.; Vasyuk, S. Development and validation of clopidogrel bisulphate determination in bulk by UV spectrophotometric method. Scr. Sci. Pharm. 2016, 3, 25–30. [Google Scholar] [CrossRef]
- Dermiş, S.; Aydoğan, E. Rapid and accurate determination of clopidogrel in tablets by using spectrophotometric and chromatographic techniques. Commun. Fac. Sci. Univ. Ank. Ser. B Chem. Chem. Eng. 2009, 55, 1–16. [Google Scholar] [CrossRef]
- Rao, K.M.; Amperayani, K.R.; Deepti, K.; Devi, P.U. Determination of clopidogrel by visible spectrophotometry in pure form and pharmaceutical formulations. J. Indian Chem. Soc. 2016, 93, 1–8. [Google Scholar]
- Shireesha, M.; Madhavi, L.; Tuljarani, G. Spectrophotometric Determination of Clopidogrel in Pharmaceutical Formulations. Asian J. Res. Chem. 2011, 4, 1566–1568. [Google Scholar]
- Koçak, Ö.F.; Kadıoğlu, Y.; Şenol, O. Determination of Clopidogrel in Pharmaceutical Preparation by UV Spectrophotometry and High Performance Liquid Chromatography Methods. Int. J. Innov. Res. Rev. 2020, 4, 14–19. [Google Scholar]
- Cholke, P.B.; Ahmed, R.; Chemate, S.Z.; Jadhav, K.R. Development and Validation of Spectrophotometric Method for lopidogrel bisulfate in pure and in film coated tablet dosage form. Arch. Appl. Sci. Res. 2012, 4, 59–64. [Google Scholar]
- Cholke, P.; Ingale, Y.N.; Gopale, A.S.; Jadhav, K.; Chemate, S.Z. Development and validation of spectrophotometric method for clopidogrel bisulfate in bulk and formulations. Int. J. Chem. Sci. 2012, 10, 449–456. [Google Scholar]
- Mohamed, S.H.; Issa, Y.M.; Salim, A.I. Quantitative Determination of Clopidogrel Bisulfate using Validated Spectrophotometric Methods. Asian J. Adv. Res. 2020, 3, 180–190. [Google Scholar]
- Gurav, S.; Venkatamahesh, R. Development and Validation of Derivative UV-Spectropotometric Methods for Quantitative Estimation of Clopidogrel in Bulk and Pharmaceutical Dosage Form. Int. J. ChemTech Res. 2012, 4, 497–501. [Google Scholar]
- Padmalatha, M.; Prakash, K.V. Extractive Spectrophotometric Determination of Clopidogrel Bisulphite In Pharmaceutical Formulation. Res. J. Pharm. Technol. 2009, 2, 727–729. [Google Scholar]
- Rajendra, V.B.; Deshmukh, O.J.; Rawat, P.K.; Gulecha, B.S.; Khushwaha, S.; Ghadlinge, S.V. Spectrophotometric method for the estimation of Clopidogrel bisulphate residue in swab samples. World J. Pharm. Res. 2012, 1, 850–858. [Google Scholar]
- Jane, J.; Jasminkumar, M.V.; Prasanth, D. Estimation of Clopidogrel in Bulk and Pharmaceutical Formulations. Asian J. Res. Chem. 2010, 3, 1086–1089. [Google Scholar]
- Gurav, S.; Tembare, R.; Salunkhe, V.; Devprakash, A. Spectrophotometric determination of clopidogrel bisulfate in pharmaceutical formulations. Am. J. PharmTech Res. 2011, 1, 258–263. [Google Scholar]
- Thejomoorthy, K.; Tumma, N.; Sowmya, P.S.; Padma, A.; Snehith, B. Method Development and Validation for the Quantification of Clopidogrel Bisulphate in Bulk and its Dosage form. Int. J. Pharma Res. Health Sci. 2019, 7, 2882–2885. [Google Scholar] [CrossRef]
- Gavat, C.C. Quantitative Analysis Method of Sodium Metamizole in Tablets by Visible (VIS) Spectrophotometry: Spectrophotometric Analysis Method in Visible Range (VIS). ScienceOpen Prepr. 2024, 1–25. [Google Scholar] [CrossRef]
- Chiruță, C.; Gavăt, C.C.; Vasilescu, L.V.; Earar, K.; Trofin, A.E.; Trincă, L.C.; Mărculescu, A.D. The Spectrophotometric Analysis Method of Metamizole from Pharmaceutical Tablets: Investigation of Linearity, Limit of Detection and Limit of Quantification. Revista Lucrări Știinţifice Universității de Științele Vieții “Ion Ionescu de la Brad”, din Iași, Seria Horticultura 2018, 61, 47–52. [Google Scholar]
- Bautista, J.A.G.; Zamora, L.L.; Mateo, J.G.; Calatayud, J.M. Indirect catalytic spectrophotometric determination of metamizol following oxidation by lead dioxide immobilized in a polyester resin bed. Anal. Lett. 1996, 29, 2667–2678. [Google Scholar] [CrossRef]
- Al-Shwaiyat, M.; Vishnikin, A.B.; Tsiganok, L.P.; Kabashnaya, E.V.; Khmelovskaya, S.A.; Andruch, V.; Bazel, Y.R.; Sklenářová, H.; Solich, P. Sequential injection spectrophotometric determination of analgine in pharmaceutical formulations using 18-molybdo-2-phosphate heteropoly anion as chromogenic reagent. J. Chem. Technol. 2013, 19, 7–18. [Google Scholar] [CrossRef]
- Sakiara, K.A.; Pezza, L.; Melios, C.B.; Pezza, H.R.; de Moraes, M. Spectrophotometric determination of dipyrone in pharmaceutical preparations by using chromotropic acid. Il Farm. 1999, 54, 629–635. [Google Scholar] [CrossRef]
- Abdine, H.; Soliman, S.A.; Morcos, M.G. Colorimetric determination of dipyrone. J. Pharm. Sci. 1973, 62, 1834–1836. [Google Scholar] [CrossRef] [PubMed]
- Suarez, W.T.; Pessoa-Neto, O.D.; Vicentini, F.C.; Janegitz, B.C.; Faria, R.C.; Fatibello-Filho, O. Flow injection spectrophotometric determination of dipyrone in pharmaceutical formulations using Fe (III) as reagent. Anal. Lett. 2011, 44, 340–348. [Google Scholar] [CrossRef]
- Lima, J.L.F.C.; Sá, S.M.O.; Santos, J.L.; Zagatto, E.A. Multi-pumping flow system for the spectrophotometric determination of dipyrone in pharmaceutical preparations. J. Pharm. Biomed. Anal. 2003, 32, 1011–1017. [Google Scholar] [CrossRef]
- da Costa Lopes, F.C.; Fonseca, L.; Moita, G.C.; de Moura Ribeiro, M.V. Development and validation of methods using derivative spectro-photometry for determination of dipyrone in pharmaceutical formulations. Int. J. Pharm. Sci. Res. 2018, 9, 2201–2210. [Google Scholar] [CrossRef]
- Abdel-Hadyá Elsayed, M.; Abdine, H.; Abdel-Hamid, M.E. Application of difference spectrophotometry to the determination of dipyrone. Analyst 1979, 104, 568–572. [Google Scholar] [CrossRef] [PubMed]
- Marcolino-Júnior, L.H.; Sousa, R.A.; Fatibello-Filho, O.; Moraes, F.C.; Teixeira, M.F. Flow-injection spectrophotometric determination of dipyrone in pharmaceutical formulations using ammonium molybdate as chromogenic reagent. Anal. Lett. 2005, 38, 2315–2326. [Google Scholar] [CrossRef]
- Ribeiro, P.C.; Santos, A.K.F.; Santos, V.N.; Sousa, B.R.; Duarte, S.F.P.; David, I.R.; de Oliveira, C.D.R. Determination of dipirone 500 mg by spectrophotometry of molecular absorption-UV, marketed in drugs. Int. J. Adv. Eng. Res. Sci. 2019, 6, 720–724. [Google Scholar] [CrossRef]
- Bonifácio, V.; Filho, O.; Marcolino-Júnior, L. Flow-injection spectrophotometric determination of dipyrone in pharmaceutical formulations using a solid-phase reactor with copper (II) phosphate. Cent. Eur. J. Chem. 2013, 11, 1830–1836. [Google Scholar] [CrossRef]
- Salih, E.S.; Al-Sharook, M.M. Spectrophotometric Assay of Dipyrone in Pharmaceutical Preparations Via Oxidative Coupling Reaction with m-Toluidine and Potassium Hexacyanoferrate (III). J. Educ. Sci. 2008, 21, 28–38. [Google Scholar] [CrossRef]
Medium | Used Reagents | Wavelength, nm | Linearity Range, mg/L | Accuracy, % | Precision, % | Ref. |
---|---|---|---|---|---|---|
Acetonitrile | No | 220, 270, 274, 278 | 4–37 | 0.9 | 0.5 | [1] |
Acetonitrile | No | 218, 229 | 5–38 | 0.9 | 0.5 | [1] |
Acetonitrile | No | 210, 225 | 5–38 | 1.2 | 0.8 | [1] |
Methanol | No | 203 | 10–26 | 2.9 | 4.1 | [2] |
Water | 0.1 M HCl | 271 | 42–336 | 1.3 | 1.9 | [3] |
Water | 0.1 M HCl | 280 | 42–336 | 2.5 | 0.8 | [3] |
Water | 0.1 M HCl | 269 | 42–336 | 0.5 | 1.2 | [3] |
Water | 0.1 M HCl | 276 | 42–336 | 0.5 | 1.2 | [3] |
Methanol + 1,4-dioxane | 2,3-dichloro-5,6-dicyano-1,4-benzoquinone | 450 | 5–35 | 1.5 | 1.3 | [10] |
Methanol | Citric acid, acetic anhydride | 560 | 10–20 | 1.3 | 1.2 | [10] |
Water | N-bromosuccinimide, sulphanilamide | 520 | 4–16 | 1.8 | 1.6 | [10] |
Water | Fe3+, 1,10-phenanthroline | 510 | 10–50 | 0.4 | 0.4 | [10] |
Water/chloroform | Orange G | Not specified | 50–250 | Not specified | Not specified | [11] |
Water/nitrobenzene | Cobalt thiocyanate | Not specified | 100–500 | Not specified | Not specified | [11] |
Methanol + acetonitrile | No | 202 | 1.25–25 | 3.6 | 3.8 | [4] |
Water | 0.1 M HCl | 222 | 40–70 | 1.2 | 0.9 | [12,13] |
Ethanol + water/chloroform | Bromophenol blue | 407 | 15–80 | 0.8 | 0.8 | [14] |
Ethanol + water/chloroform | Bromocresol purple | 407 | 25–115 | 0.9 | 1.0 | [14] |
Water | 0.1 M HCl | 219 | 10–30 | 1.7 | 0.5 | [5] |
Water/chloroform | Bromothymol blue | 440 | 2.5–25 | Not specified | Not specified | [15] |
Water/chloroform | Orange II | 490 | 2.5–20 | Not specified | Not specified | [15] |
Water/chloroform | Metanil yellow | 410 | 2.5–15 | Not specified | Not specified | [15] |
Methanol + water | No | 217 | 2.5–20 | 1.1 | 1.6 | [6] |
Water | Vanillin | 517 | 5–40 | Not specified | Not specified | [7] |
Water | No | 235 | 5–40 | Not specified | Not specified | [7] |
Water | 0.1 M HCl | 220 | 25–50 | 0.9 | 0.5 | [8] |
Ethanol | No | 218 | 2–12 | 1.1 | 0.6 | [9] |
Water | No | 210–290 | 1–100 | 3.8 | 4.1 | This work |
Medium | Used Reagents | Wavelength, nm | Linearity Range, mg/L | Accuracy, % | Precision, % | Ref. |
---|---|---|---|---|---|---|
Water | (NH4)2MoO4 | 690 | 1–40 | 1.9 | 1.6 | [18,19] |
Water | Pb2+, pyrogallol red | 520 | 2–16 | 2.9 | 0.8 | [20] |
Water | (NH4)6P2Mo18O62 | 760 | 0.5–80 | Not specified | 4.0 | [21] |
Water | Chromotropic acid | 575 | 0.57–5.7 | 1.3 | 1.7 | [22] |
Water | Nitrous acid | 403 | 32–96 | 0.8 | Not specified | [23] |
Water | Fe3+ | 642 | 3.5–281 | 4.0 | 0.8 | [24] |
Water | p-dimethylaminobenzaldehyde | 430 | 10–400 | 1.0 | 2.2 | [25] |
Water | No | 244 | 10–70 | 2.0 | 2.5 | [16] |
Water | No | 285 | 10–70 | 2.0 | 3.4 | [16] |
Water | No | 296 | 10–70 | 2.0 | 3.2 | [16] |
Water | 0.05 M H2SO4, 0.025 M Na2CO3 | 236–278 | 80–320 | 1.2 | Not specified | [26] |
Methanol | Bromine | 232 | 40–320 | 3.7 | Not specified | [26] |
Water | (NH4)2MoO4 | 620 | 155–2490 | 4.7 | 5.0 | [27] |
Water | No | 258 | 8–40 | 7.0 | 8.3 | [17] |
Cu3(PO4)2, alizarin red | 540 | 16–125 | 4.0 | 4.0 | [28] | |
Water | m-toluidine, K3[Fe(CN)6] | 530 | 0.4–10 | 2.0 | 0.7 | [29] |
Water | No | 220–320 | 1–100 | 4.2 | 5.0 | This work |
Parameter | Value | |
---|---|---|
Substance being determined | Clopidogrel bisulphate | Metamizole sodium |
Slope of regression line and its confidence interval (f = 10, p = 95%) (L/mg) | 5.00 ± 0.04 | 8.32 ± 0.04 |
Intercept and its confidence interval (f = 10, p = 95%) | 1.7 ± 0.1 | 26 ± 1 |
R2 value | 0.9992 | 0.9998 |
Linearity range (mg/L) | 1–100 | 1–100 |
Limit of detection (mg/L) | 0.62 | 0.67 |
Limit of quantification (mg/L) | 1.89 | 2.21 |
Test Solution | Relative Uncertainty, % | Relative Standard Deviation Within One Day, % | Relative Standard Deviation Within Several Days, % |
---|---|---|---|
Clopidogrel bisulphate working solution, 30 mg/L | 3.1 | 4.1 | 5.4 |
Clopidogrel bisulphate solution from tablets, 75 mg/L | 4.1 | 4.9 | 5.8 |
Metamizole sodium working solution, 30 mg/L | 4.5 | 5.4 | 5.9 |
Metamizole sodium solution from tablets, 50 mg/L | 5.8 | 5.8 | 6.4 |
Test Solution | Relative Uncertainty, % | Relative Standard Deviation, % |
---|---|---|
Model rinse water from working solution of clopidogrel bisulphate, 30 mg/L | 8.7 | 9.4 |
Model rinse water from clopidogrel bisulphate solution from tablets, 75 mg/L | 10.2 | 10.9 |
Model rinse water from working solution of metamizole sodium, 30 mg/L | 8.7 | 10.2 |
Model rinse water from solution of metamizole sodium from tablets, 50 mg/L | 10.0 | 10.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolaychuk, P.A. Integral UV Spectrophotometric Methods for Determination of Clopidogrel Bisulphate and Metamizole Sodium in Rinse Waters from Industrial Equipment. Spectrosc. J. 2025, 3, 2. https://doi.org/10.3390/spectroscj3010002
Nikolaychuk PA. Integral UV Spectrophotometric Methods for Determination of Clopidogrel Bisulphate and Metamizole Sodium in Rinse Waters from Industrial Equipment. Spectroscopy Journal. 2025; 3(1):2. https://doi.org/10.3390/spectroscj3010002
Chicago/Turabian StyleNikolaychuk, Pavel Anatolyevich. 2025. "Integral UV Spectrophotometric Methods for Determination of Clopidogrel Bisulphate and Metamizole Sodium in Rinse Waters from Industrial Equipment" Spectroscopy Journal 3, no. 1: 2. https://doi.org/10.3390/spectroscj3010002
APA StyleNikolaychuk, P. A. (2025). Integral UV Spectrophotometric Methods for Determination of Clopidogrel Bisulphate and Metamizole Sodium in Rinse Waters from Industrial Equipment. Spectroscopy Journal, 3(1), 2. https://doi.org/10.3390/spectroscj3010002