Spectroscopic Ellipsometry: Advancements, Applications and Future Prospects in Optical Characterization
Abstract
:1. Introduction
2. Theoretical Foundations of Spectroscopic Ellipsometry
3. Data Analysis
4. Interaction of Light and Materials
4.1. Index of Refraction
4.2. Dielectric Function
5. Model of Dielectric Functions
5.1. Cauchy Model
5.2. Lorentz Model
6. Kramers–Kronig Relationships
7. Applications of Spectroscopic Ellipsometry in Material Science
7.1. Semiconductor Technology
7.2. Thin Film Characterization
7.3. Surface Science
7.4. Optical Constants and Dielectric Function
7.5. Mueller-Matrix Spectroscopic Ellipsometry
7.6. Nanomaterials and Nanostructures
7.7. In Situ and Real-Time Monitoring
7.8. Biomedical Applications of Spectroscopic Ellipsometry
7.9. Micro- and Macro-Imaging Ellipsometry
7.10. Integration of Auxiliary Surface Characterization Techniques with Spectroscopic Ellipsometry
7.11. Advantages and Disadvantages of Spectroscopic Ellipsometry
8. Conclusions and Outlook
8.1. Conclusions
8.2. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Theeten, J.B.; Aspnes, D.E. Ellipsometry in Thin Film Analysis. Annu. Rev. Mater. Sci. 1981, 11, 97–122. [Google Scholar] [CrossRef]
- Zollner, S.; Abadizaman, F.; Emminger, C.; Samarasingha, N. Spectroscopic ellipsometry from 10 to 700 K. Adv. Opt. Technol. 2022, 11, 117–135. [Google Scholar] [CrossRef]
- Riegler, H. A user’s guide to ellipsometry. By Harland G. Tompkins, Academic Press, New York 1993, 260 pp. hardback, ISBN 0-12-603050-0. Adv. Mater. 1993, 5, 778. [Google Scholar] [CrossRef]
- Muller, R.H. Definitions and conventions in ellipsometry. Surf. Sci. 1969, 16, 14–33. [Google Scholar] [CrossRef]
- Hajduk, B.; Bednarski, H.; Trzebicka, B. Temperature-Dependent Spectroscopic Ellipsometry of Thin Polymer Films. J. Phys. Chem. B 2020, 124, 3229–3251. [Google Scholar] [CrossRef]
- Woollam, J.A.; Snyder, P.G. Fundamentals and applications of variable angle spectroscopic ellipsometry. Mater. Sci. Eng. B 1990, 5, 279–283. [Google Scholar] [CrossRef]
- J.A. Woollam Co. WVASE Manual “Guide to Using WVASE32”; J.A. Woollam Co.: Lincoln, NE, USA, 2010. [Google Scholar]
- Woollam, J.A.; Snyder, P.G.; Rost, M.C. Variable angle spectroscopic ellipsometry: A non-destructive characterization technique for ultrathin and multilayer materials. Thin Solid Films 1988, 166, 317–323. [Google Scholar] [CrossRef]
- Vedam, K.; So, S.S. Characterization of real surfaces by ellipsometry. Surf. Sci. 1972, 29, 379–395. [Google Scholar] [CrossRef]
- Schubert, M. Infrared Ellipsometry on Semiconductor Layer Structures Phonons, Plasmons, and Polaritons; Springer: Berlin/Heidelberg, Germany, 2005; Volume 209, pp. 1–190. [Google Scholar]
- Tompkins, H.; Irene, E.A. Handbook of Ellipsometry; William Andrew: Norwich, NY, USA, 2005. [Google Scholar]
- Aspnes, D.E.; Theeten, J.B.; Hottier, F. Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry. Phys. Rev. B 1979, 20, 3292–3302. [Google Scholar] [CrossRef]
- Khardani, M.; Bouaïcha, M.; Bessaïs, B. Bruggeman effective medium approach for modelling optical properties of porous silicon: Comparison with experiment. Phys. Status Solidi C 2007, 4, 1986–1990. [Google Scholar] [CrossRef]
- Veronica, P.R.; Dinescu, M. Spectroscopic ellipsometry. Rom. Rep. Phys. 2012, 64, 135–142. [Google Scholar]
- Fujiwara, H. Spectroscopic Ellipsometry: Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Lucarini, V.; Saarinen, J.J.; Peiponen, K.-E.; Vartiainen, E.M. Kramers-Kronig Relations in Optical Materials Research; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Wooten, F. Optical Properties of Solids; Academic Press: Cambridge, MA, USA, 1972. [Google Scholar]
- Bairagi, S.; Hsiao, C.-L.; Magnusson, R.; Birch, J.; Chu, J.P.; Tarntair, F.-G.; Horng, R.-H.; Järrendahl, K. Zinc gallate (ZnGa2O4) epitaxial thin films: Determination of optical properties and bandgap estimation using spectroscopic ellipsometry. Opt. Mater. Express 2022, 12, 3284–3295. [Google Scholar] [CrossRef]
- Katzenmeyer, A.M.; Luk, T.S.; Bussmann, E.; Young, S.; Anderson, E.M.; Marshall, M.T.; Ohlhausen, J.A.; Kotula, P.; Lu, P.; Campbell, D.M.; et al. Assessing atomically thin delta-doping of silicon using mid-infrared ellipsometry. J. Mater. Res. 2020, 35, 2098–2105. [Google Scholar] [CrossRef]
- Erman, M.; Theeten, J.B.; Chambon, P.; Kelso, S.M.; Aspnes, D.E. Optical properties and damage analysis of GaAs single crystals partly amorphized by ion implantation. J. Appl. Phys. 1984, 56, 2664–2671. [Google Scholar] [CrossRef]
- Liu, X. Infrared Spectroscopic Ellipsometry for Ion-Implanted Silicon Wafers; Basu, S., Ed.; IntechOpen: Rijeka, Croatia, 2011; p. 6. [Google Scholar] [CrossRef]
- Lee, S.; Kim, S.Y.K.S.Y.; Oh, S.O.S.-G. Spectro-ellipsometric Studies of Amorphization and Thermal Annealing in Ion-implanted Silicon. Jpn. J. Appl. Phys. 1996, 35, 5929. [Google Scholar] [CrossRef]
- Shamiryan, D.; Likhachev, D. Spectroscopic Ellipsometry of Ion-Implantation-Induced Damage; Globalfoundries: Dresden, Germany, 2012; pp. 89–104. [Google Scholar] [CrossRef]
- Politano, G.G.; Versace, C. Variable-Angle Spectroscopic Ellipsometry of Graphene-Based Films. Coatings 2021, 11, 462. [Google Scholar] [CrossRef]
- Rajan, G.; Karki, S.; Collins, R.W.; Podraza, N.J.; Marsillac, S. Real-Time Optimization of Anti-Reflective Coatings for CIGS Solar Cells. Materials 2020, 13, 4259. [Google Scholar] [CrossRef] [PubMed]
- Márquez, E.; Blanco, E.; García-Gurrea, M.; Puerta, M.C.; Domínguez de la Vega, M.; Ballester, M.; Mánuel, J.M.; Rodríguez-Tapiador, M.I.; Fernández, S.M. Optical Properties of Reactive RF Magnetron Sputtered Polycrystalline Cu3N Thin Films Determined by UV/Visible/NIR Spectroscopic Ellipsometry: An Eco-Friendly Solar Light Absorber. Coatings 2023, 13, 1148. [Google Scholar] [CrossRef]
- Gioti, M. Spectroscopic Ellipsometry Studies on Solution-Processed OLED Devices: Optical Properties and Interfacial Layers. Materials 2022, 15, 9077. [Google Scholar] [CrossRef]
- Blanco, J.R.; McMarr, P.J.; Vedam, K. Roughness measurements by spectroscopic ellipsometry. Appl. Opt. 1985, 24, 3773–3779. [Google Scholar] [CrossRef]
- Yeung, C.L.; Charlesworth, S.; Iqbal, P.; Bowen, J.; Preece, J.A.; Mendes, P.M. Different formation kinetics and photoisomerization behavior of self-assembled monolayers of thiols and dithiolanes bearing azobenzene moieties. Phys. Chem. Chem. Phys. 2013, 15, 11014–11024. [Google Scholar] [CrossRef]
- Canepa, M.; Maidecchi, G.; Toccafondi, C.; Cavalleri, O.; Prato, M.; Chaudhari, V.; Esaulov, V.A. Spectroscopic ellipsometry of self assembled monolayers: Interface effects. The case of phenyl selenide SAMs on gold. Phys. Chem. Chem. Phys. 2013, 15, 11559–11565. [Google Scholar] [CrossRef] [PubMed]
- Mora, M.F.; Wehmeyer, J.L.; Synowicki, R.; Garcia, C.D. Investigating Protein Adsorption via Spectroscopic Ellipsometry BT—Biological Interactions on Materials Surfaces: Understanding and Controlling Protein, Cell, and Tissue Responses; Puleo, D.A., Bizios, R., Eds.; Springer: New York, NY, USA, 2009; pp. 19–41. [Google Scholar] [CrossRef]
- Politano, G.G.; Castriota, M.; De Santo, M.P.; Pipita, M.M.; Desiderio, G.; Vena, C.; Versace, C. Variable angle spectroscopic ellipsometry characterization of spin-coated MoS2 films. Vacuum 2021, 189, 110232. [Google Scholar] [CrossRef]
- Politano, G.G.; Cazzanelli, E.; Versace, C.; Vena, C.; De Santo, M.P.; Castriota, M.; Ciuchi, F.; Bartolino, R. Graphene oxide on magnetron sputtered silver thin films for SERS and metamaterial applications. Appl. Surf. Sci. 2018, 427, 927–933. [Google Scholar] [CrossRef]
- Politano, G.G.; Vena, C.; Desiderio, G.; Versace, C. Spectroscopic ellipsometry investigation of the optical properties of graphene oxide dip-coated on magnetron sputtered gold thin films. J. Appl. Phys. 2018, 123, 055303. [Google Scholar] [CrossRef]
- Hilfiker, J.N.; Hong, N.; Schoeche, S. Mueller matrix spectroscopic ellipsometry. Adv. Opt. Technol. 2022, 11, 59–91. [Google Scholar] [CrossRef]
- Chen, X.; Gu, H.; Jiamin, L.; Chen, C.; Liu, S. Advanced Mueller matrix ellipsometry: Instrumentation and emerging applications. Sci. China Technol. Sci. 2022, 65, 2007–2030. [Google Scholar] [CrossRef]
- Chattopadhyay, K.K.; Das, N.S. Size-Dependant Optical Properties of Nanoparticles Analyzed by Spectroscopic Ellipsometry BT—Handbook of Nanoparticles; Aliofkhazraei, M., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 265–293. [Google Scholar] [CrossRef]
- Oates, T.W.H.; Wormeester, H.; Arwin, H. Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry. Prog. Surf. Sci. 2011, 86, 328–376. [Google Scholar] [CrossRef]
- Toudert, J. Spectroscopic ellipsometry for active nano- and meta-materials. Nanotechnol. Rev. 2014, 3, 223–245. [Google Scholar] [CrossRef]
- Hilfiker, J.N. 5—In Situ Spectroscopic Ellipsometry (SE) for Characterization of Thin Film Growth; Woodhead Publishing Series in Electronic and Optical Materials; Woodhead Publishing: Sawston, UK, 2011; pp. 99–151. [Google Scholar] [CrossRef]
- Mukherjee, D.; Petrik, P. Real-Time Ellipsometry at High and Low Temperatures. ACS Omega 2023, 8, 3684–3697. [Google Scholar] [CrossRef]
- Jin, G.; Meng, Y.H.; Liu, L.; Niu, Y.; Chen, S.; Cai, Q.; Jiang, T.J. Development of biosensor based on imaging ellipsometry and biomedical applications. Thin Solid Films 2011, 519, 2750–2757. [Google Scholar] [CrossRef]
- Arwin, H. Application of ellipsometry techniques to biological materials. Thin Solid Films 2011, 519, 2589–2592. [Google Scholar] [CrossRef]
- Plikusiene, I.; Maciulis, V.; Juciute, S.; Ramanavicius, A.; Balevicius, Z.; Slibinskas, R.; Kucinskaite-Kodze, I.; Simanavicius, M.; Balevicius, S.; Ramanaviciene, A. Investigation of SARS-CoV-2 nucleocapsid protein interaction with a specific antibody by combined spectroscopic ellipsometry and quartz crystal microbalance with dissipation. J. Colloid Interface Sci. 2022, 626, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Takita, S.; Nabok, A.; Smith, D.; Lishchuk, A. Spectroscopic Ellipsometry Detection of Prostate Cancer Bio-Marker PCA3 Using Specific Non-Labeled Aptamer: Comparison with Electrochemical Detection. Chem. Proc. 2021, 5, 65. [Google Scholar] [CrossRef]
- Rosu, D.; Petrik, P.; Rattmann, G.; Schellenberger, M.; Beck, U.; Hertwig, A. Optical characterization of patterned thin films. Thin Solid Films 2014, 571, 601–604. [Google Scholar] [CrossRef]
- Petrik, P.; Fried, M. Mapping and Imaging of Thin Films on Large Surfaces. Phys. Status Solidi 2022, 219, 2100800. [Google Scholar] [CrossRef]
- Asinovski, L.; Beaglehole, D.; Clarkson, M.T. Imaging ellipsometry: Quantitative analysis. Phys. Status Solidi 2008, 205, 764–771. [Google Scholar] [CrossRef]
- Emam-Ismail, M.; El-Hagary, M.; El-Sherif, H.M.; El-Naggar, A.M.; El-Nahass, M.M. Spectroscopic ellipsometry and morphological studies of nanocrystalline NiO and NiO/ITO thin films deposited by e-beams technique. Opt. Mater. 2021, 112, 110763. [Google Scholar] [CrossRef]
- Emam-Ismail, M.; El-Hagary, M.; Shaaban, E.R.; Moustafa, S.H.; Gad, G.M.A. Spectroscopic ellipsometry and morphological characterizations of nanocrystalline Hg1-xMnxO oxide diluted magnetic semiconductor thin films. Ceram. Int. 2019, 45, 8380–8387. [Google Scholar] [CrossRef]
- Singh, A.K.; Yadav, B.S.; Vishwakarma, A.K.; Kumar, S.; Ahmad, F.; Kumar, P.; Kumar, N. Spectroscopic Ellipsometry Study of Thermally Evaporated Tin Telluride (SnTe) Thin Films. J. Electron. Mater. 2023, 52, 7132–7142. [Google Scholar] [CrossRef]
- Potočnik, T.; Burton, O.; Reutzel, M.; Schmitt, D.; Bange, J.P.; Mathias, S.; Geisenhof, F.R.; Weitz, R.T.; Xin, L.; Joyce, H.J.; et al. Fast Twist Angle Mapping of Bilayer Graphene Using Spectroscopic Ellipsometric Contrast Microscopy. Nano Lett. 2023, 23, 5506–5513. [Google Scholar] [CrossRef] [PubMed]
- Leigh, W.; Mandal, S.; Cuenca, J.A.; Wallis, D.; Hinz, A.M.; Oliver, R.A.; Thomas, E.L.H.; Williams, O. Monitoring of the Initial Stages of Diamond Growth on Aluminum Nitride Using In Situ Spectroscopic Ellipsometry. ACS Omega 2023, 8, 30442–30449. [Google Scholar] [CrossRef] [PubMed]
- Gangwar, M.S.; Agarwal, P. Influence of microstructure on dielectric function and plasmonic properties of silver nanoparticles grown by solid state dewetting: A spectroscopic ellipsometry study. Phys. Scr. 2023, 98, 105944. [Google Scholar] [CrossRef]
- Aspnes, D.E. Spectroscopic ellipsometry—Past; present; future. Thin Solid Films 2014, 571, 334–344. [Google Scholar] [CrossRef]
- Vala, D.; Mičica, M.; Cvejn, D.; Postava, K. Broadband Mueller ellipsometer as an all-in-one tool for spectral and temporal analysis of mutarotation kinetics. RSC Adv. 2023, 13, 6582–6592. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Fu, T.; Du, Y.; Gao, W.; Huang, K.; Liu, Z.; Chandak, P.; Liu, S.; Van Katwyk, P.; Deac, A.; et al. Scientific discovery in the age of artificial intelligence. Nature 2023, 620, 47–60. [Google Scholar] [CrossRef]
- Arunachalam, A.; Berriel, S.N.; Banerjee, P.; Basu, K. Machine learning-enhanced efficient spectroscopic ellipsometry modeling. arXiv 2022, arXiv:2201.04933. [Google Scholar]
- Liu, J.; Zhang, D.; Yu, D.; Ren, M.; Xu, J. Machine learning powered ellipsometry. Light Sci. Appl. 2021, 10, 55. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Politano, G.G.; Versace, C. Spectroscopic Ellipsometry: Advancements, Applications and Future Prospects in Optical Characterization. Spectrosc. J. 2023, 1, 163-181. https://doi.org/10.3390/spectroscj1030014
Politano GG, Versace C. Spectroscopic Ellipsometry: Advancements, Applications and Future Prospects in Optical Characterization. Spectroscopy Journal. 2023; 1(3):163-181. https://doi.org/10.3390/spectroscj1030014
Chicago/Turabian StylePolitano, Grazia Giuseppina, and Carlo Versace. 2023. "Spectroscopic Ellipsometry: Advancements, Applications and Future Prospects in Optical Characterization" Spectroscopy Journal 1, no. 3: 163-181. https://doi.org/10.3390/spectroscj1030014
APA StylePolitano, G. G., & Versace, C. (2023). Spectroscopic Ellipsometry: Advancements, Applications and Future Prospects in Optical Characterization. Spectroscopy Journal, 1(3), 163-181. https://doi.org/10.3390/spectroscj1030014