Montana Statewide Google Earth Engine-Based Wildfire Hazardous Particulate (PM2.5) Concentration Estimation
Abstract
:1. Introduction
1.1. PM2.5 Prediction Using Satellite-Based Data
1.2. Objectives of the Study
2. Study Area
3. Methods
3.1. Data Sources
3.1.1. PM 2.5 Concentrations
3.1.2. Google Earth Engine Cloud Platform
3.1.3. MCD19A2 AOD
3.1.4. Other Satellite-Based Weather Data Sources
3.2. Generated Tables of PM2.5 and Corresponding Satellite Data
3.3. Predicting PM2.5 with Satellite-Based Data
3.4. Cross Validation
3.5. Montana State-Wide PM2.5 Concentration Map
4. Results and Discussion
4.1. PM2.5 Concentrations in the State of Montana
4.2. PM2.5 Random Forest Predictive Model
4.3. Montana State-Wide PM2.5 Concentration Map
5. Discussion
5.1. Estimating PM2.5 Concentrations Using Ensemble Machine Learning Models
5.2. Using Google Earth Engine from Beginning to End
5.3. Future Work to Improve the PM2.5 Prediciton Model
Evaluating Other Machine Learning Methods and Additional Data Sets
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Supplementary Data
Feature | AOD | DPT | RH | WIND | WDIR | PRES | TMP | PBLH |
---|---|---|---|---|---|---|---|---|
AOD | 1 | |||||||
DPT | 0.13 | 1 | ||||||
RH | −0.08 | 0.09 | 1 | |||||
WIND | −0.08 | −0.21 | −0.19 | 1 | ||||
WDIR | −0.03 | −0.13 | −0.15 | 0.21 | 1 | |||
PRES | −0.02 | 0.15 | 0.18 | 0.03 | −0.10 | 1 | ||
TMP | 0.17 | 0.70 | −0.63 | −0.03 | 0.01 | −0.01 | 1 | |
PBLH | 0.05 | 0.35 | −0.52 | 0.015 | 0.05 | −0.17 | 0.64 | 1 |
Feature | VIF |
---|---|
DPT | 1.95 |
PBLH | 13.79 |
PRES | 44.59 |
RH | 13.30 |
WDIR | 6.74 |
WIND | 3.04 |
AOD | 1.55 |
Feature | VIF |
---|---|
AOD | 1.49 |
WIND | 2.62 |
RH | 3.39 |
DPT | 1.82 |
PBLH | 4.88 |
Variable | Relative Importance |
---|---|
AOD—Aerosol Optical Depth | 29.6% |
DPT—Dewpoint | 14.5% |
RH—Relative Humidity | 12.9% |
WIND—Wind Speed | 12.4% |
PRES—Pressure | 11.1% |
PBLH—Planetary Boundary Height | 10.9% |
WDIR—Wind Direction | 8.5% |
References
- Urbanski, S. Wildland fire emissions, carbon, and climate: Emission factors. For. Ecol. Manag. 2013, 317, 51–60. [Google Scholar] [CrossRef]
- Montana Department of Natural Resources and Conservation. Fire Prevention and Preparedness. Available online: https://dnrc.mt.gov/Forestry/Wildfire/fire-prevention-and-preparedness (accessed on 20 March 2024).
- Jimenez-Ruano, A.; Jolly, W.; Freeborn, P.; Vega-Nieva, D.; Monjaras-Vega, N.; Briones-Herrera, C.; Rodrigues, M. Spatial Predictions of Human and Natural-Causes Wildfire Likelihood across Montana (USA). Forests 2022, 13, 1200. [Google Scholar] [CrossRef]
- Dockery, D.; Pope, C.; Xu, X.; Spengler, J.; Ware, J.; Fay, M.; Ferris, B.; Speizer, F. An association between air pollution and mortality in six U.S. cities. N. Engl. J. Med. 1993, 329, 1753–1759. [Google Scholar] [CrossRef]
- HEI. State of Global Air 2019: Air Pollution a Significant Risk Factor Worldwide. 2019. Available online: https://www.healtheffects.org/announcements/state-global-air-2019-air-pollution-significant-risk-factor-worldwide (accessed on 11 November 2023).
- Zhang, Y.; Li, Z.; Bai, K.; Wei, Y.; Xie, Y.; Zhang, Y.; Ou, Y.; Cohen, J.; Zhang, Y.; Peng, Z.; et al. Satellite remote sensing of atmospheric particulate matter mass concentration: Advances, challenges, and perspectives. Fundam. Res. 2021, 1, 240–258. [Google Scholar] [CrossRef]
- US EPA. Particulate Matter (PM2.5) Trends. 2022. Available online: https://www.epa.gov/air-trends/particulate-matter-pm25-trends (accessed on 20 November 2022).
- United Nations (UN). World Urbanization Prospects: The 2018 Revision, New York. 2019. Available online: https://population.un.org/wup/ (accessed on 3 December 2022).
- Gitahi, J.; Hahn, M. High-resolution urban air quality monitoring using sentinel satellite images and low-cost ground-based sensor networks. E3S Web Conf. 2020, 171, 02002. [Google Scholar] [CrossRef]
- (NIFC) National Interagency Fire Center. Wildfire and Acres (1983–2022). 2023. Available online: https://www.nifc.gov/fire-information/statistics/wildfires (accessed on 11 November 2023).
- Burke, M.; Driscoll, A.; Heft-Neal, S.; Xue, J.; Burney, J.; Wara, M. The changing risk and burden of wildfire in the United States. Proc. Natl. Acad. Sci. USA 2021, 118, e2011048118. [Google Scholar] [CrossRef]
- Montana DEQ. Today’s Air. 2023. Available online: https://gis.mtdeq.us/portal/apps/experiencebuilder/experience/?id=000f42b119c44c7f9c3b4336470c721e (accessed on 11 November 2023).
- Sentinels Data Products List. European Space Agency. 2014. Available online: https://sentiwiki.copernicus.eu/__attachments/1673407/COPE-GSEG-EOPG-PD-14-0017%20-%20Sentinels%20Data%20Product%20List%202014%20-%201.1.pdf?inst-v=f4cc6bc1-1fed-4872-9c8b-0177f35b0583 (accessed on 15 March 2024).
- Google Earth Engine Guides. Google Earth Engine for Developers. 2023. Available online: https://developers.google.com/earth-engine/guides/ (accessed on 8 December 2022).
- NASA. Aerosol Optical Depth-NASA. 2022. Available online: https://aeronet.gsfc.nasa.gov/new_web/Documents/Aerosol_Optical_Depth.pdf (accessed on 8 December 2022).
- NASA. MODIS-Moderate Resolution Imaging Spectroradiometer. 2022. Available online: https://modis.gsfc.nasa.gov/about/ (accessed on 8 December 2022).
- Wang, J.; Christopher, S.A. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies. Geophys. Res. Lett. 2003, 30, 2095. [Google Scholar] [CrossRef]
- Kloog, I.; Koutrakis, P.; Coull, B.A.; Lee, H.J.; Schwartz, J. Assessing temporally and spatially resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements. Atmos. Environ. 2011, 45, 6267–6275. [Google Scholar] [CrossRef]
- Hu, X.; Belle, J.H.; Meng, X.; Wildani, A.; Waller, L.A.; Matthew, J. Strickland, and Liu, Y. Estimating PM2.5 Concentrations in the Conterminous United States Using the Random Forest Approach. Environ. Sci. Technol. 2017, 51, 6936–6944. [Google Scholar] [CrossRef] [PubMed]
- Brokamp, C.; Jandarov, R.; Hossain, M.; Ryan, P. Predicting Daily Urban Fine Particulate Matter Concentrations Using a Random Forest Model. Environ. Sci. Technol. 2018, 52, 4173–4179. [Google Scholar] [CrossRef] [PubMed]
- Di, Q.; Amini, H.; Shi, L.; Kloog, I.; Silvern, R.; Kelly, J.; Sabath, M.B.; Choirat, C.; Koutrakis, P.; Lyapustin, A.; et al. An ensemble-based model of PM2.5 concentration across the contiguous United States with high spatiotemporal resolution. Environ. Int. 2019, 130, 104909. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Xu, H.; Yu, S. Estimating PM2.5 concentrations in Yangtze River Delta region of China using random forest model and the Top-of-Atmosphere reflectance. J. Environ. Manag. 2020, 272, 111061. [Google Scholar] [CrossRef]
- Ghahremanloo, M.; Choi, Y.; Sayeed, A.; Salman, A.K.; Pan, S.; Amani, M. Estimating daily high-resolution PM2.5 concentrations over Texas: Machine Learning approach. Atmos. Environ. 2021, 247, 118209. [Google Scholar] [CrossRef]
- Montana State Library. Area of Montana Counties. 2023. Available online: https://msl.mt.gov/geoinfo/geography/geography_facts/area_of_montana_counties (accessed on 11 November 2023).
- US Census Bureau. QuickFacts Montana. 2023. Available online: https://www.census.gov/quickfacts/fact/table/MT/PST045222 (accessed on 11 November 2023).
- Montana Wood Products Association. Healthy Forests. 2023. Available online: https://www.montanaforests.com/healthy-forests (accessed on 11 November 2023).
- Montana Fish, Wildlife, and Parks. Public Land Hunting Opportunities. 2023. Available online: https://fwp.mt.gov/hunt/access/public-lands (accessed on 11 November 2023).
- Global Forest Watch. Global Forest Watch Dashboard Montana Fires. 2023. Available online: https://www.globalforestwatch.org/dashboards/country/USA/27/?category=fires (accessed on 11 November 2023).
- Li, Y.; Tong, D.; Ma, S.; Zhang, X.; Kondragunta, S.; Li, F.; Saylor, R. Dominance of wildfires impact on air quality exceedances during the record-breaking wildfire season in the United States. Geophys. Res. Lett. 2021, 48, e2021GL094908. [Google Scholar] [CrossRef]
- Jaffe, D.; Hafner, W.; Chand, D.; Westerling, A.; Spracklen, D. Interannual variations in PM2.5 due to wildfires in the Western United States. Environ. Sci. Technol. 2008, 42, 2812–2818. [Google Scholar] [CrossRef]
- Weber, K.T.; Yadav, R. Spatiotemporal trends in wildfires across the Western United States (1950–2019). Remote Sens. 2020, 12, 2959. [Google Scholar] [CrossRef]
- Ford, B.; Val Martin, M.; Zelasky, S.E.; Fischer, E.V.; Anenberg, S.C.; Heald, C.L.; Pierce, J.R. Future fire impacts on smoke concentrations, visibility, and health in the contiguous United States. GeoHealth 2018, 2, 229–247. [Google Scholar] [CrossRef]
- Montana DEQ. Montana Air Quality Monitoring Data. 2023. Available online: https://discover-mtdeq.hub.arcgis.com/datasets/MTDEQ::montana-air-quality-monitoring-data/explore (accessed on 20 August 2023).
- Lawrence, M.G. The Relationship between Relative Humidity and the Dewpoint Temperature in Moist Air: A Simple Conversion and Applications. Bull. Am. Meteorol. Soc. 2005, 86, 225–234. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y. MODIS/Terra+Aqua Land Aerosol Optical Depth Daily L2G Global 1 km SIN Grid V061 [Data Set]; NASA EOSDIS Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2022. [Google Scholar] [CrossRef]
- (MCST) MODIS Characterization Support Team. MODIS Geolocation Fields Produc; NASA MODIS Adaptive Processing System, Goddard Space Flight Center: Greenbelt, MD, USA, 2017. [Google Scholar] [CrossRef]
- De Pondeca, M.S.F.V.; Manikin, G.S.; DiMego, G.; Benjamin, S.G.; Parrish, D.F.; Purser, R.J.; Wu, W.S.; Horel, J.D.; Myrick, D.T.; Lin, Y.; et al. The real-time mesoscale analysis at NOAA’s National Centers for Environmental Prediction: Current status and development. Wea. Forecast. 2011, 26, 593–612. [Google Scholar] [CrossRef]
- Global Modeling and Assimilation Office (GMAO). tavg1_2d_flx_Nx: MERRA-2 3D IAU State, Meteorology Instantaneous 3-Hourly, Version 5.12.4; Goddard Space Flight Center Distributed Active Archive Center (GSFC DAAC): Greenbelt, MD, USA, 2015. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R.; Taylor, J. An Introduction to Statistical Learning with Applications in Python; Springer: Berlin/Heidelberg, Germany, 2023; pp. 201–214, 331–348. [Google Scholar]
- Orr, A.; Migliaccio, C.A.L.; Buford, M.; Ballou, S.; Migliaccio, C.T. Sustained Effects on Lung Function in Community Members Following Exposure to Hazardous PM2.5 Levels from Wildfire Smoke. Toxics 2020, 8, 53. [Google Scholar] [CrossRef]
- Strobl, C.; Boulesteix, A.L.; Kneib, T.; Augustin, T.; Zeileis, A. Conditional variable importance for random forests. BMC Bioinform. 2008, 9, 307. [Google Scholar] [CrossRef]
- Janitza, S.; Hornung, R. On the overestimation of random forest’s out-of-bag error. PLoS ONE 2018, 13, e0201904. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, D.; Gupta, P.; Wang, K.; Jena, C.; Zhang, Y.; Lu, Z.; Streets, D. Using gap-filled MAIAC AOD and WRF-Chem to estimate daily PM2.5 concentrations at 1 km resolution in the Eastern United States. Atmos. Environ. 2018, 199, 443–452. [Google Scholar] [CrossRef]
- Di, Q.; Kloog, I.; Koutrakis, P.; Lyapustin, A.; Wang, Y.; Schwartz, J. Assessing PM2.5 Exposures with High Spatiotemporal Resolution across the Continental United States. Environ. Sci. Technol. 2016, 50, 4712–4721. [Google Scholar] [CrossRef] [PubMed]
Citation/ Setting/ Prediction Model Resolution | Features | Methods | Random Forest CV Metrics |
---|---|---|---|
[19] Contiguous USA 2011 Daily at 12 km | Aerosol optical depth Air temperature Dewpoint temperature Visibility Pressure Potential Evaporation Downward longwave-radiation flux Downward shortwave-radiation flux Connective available potential energy Coordinates of ground stations Relative humidity U-wind, V-wind Land use variables * Dummy variables: climate region, day, month Daily 24 h averaged ground-level PM2.5 measurements | Used GEOS-Chem model for imputing missing aerosol optical depth. Convolutional layers (inverse-distance-weighted average function) for nearby PM2.5 measurements and land use variables. | R2: 0.80 RMSE: 2.83 µg/m3 |
[20] Cincinnati, USA 2000–2015 Daily at 1 km | Aerosol optical depth (AOD) Visibility Planetary-boundary-layer height Temperature Relative humidity Precipitation Pressure U-wind, V-wind Land use variables * Median PM2.5 from three close days Grid identifier, year, day of year | Removed aerosol optical depth above 1.5, since it indicates rare event for the area. Convolutional layer for nearby PM2.5 values. Combined two random forest models: (1) when AOD was unavailable and (2) when AOD depth was available. Essentially used the missingness of AOD as a predictor. | R2: 0.91 RMSE: N/A |
[21] Contiguous USA 2000–2015 Daily at 1 km | Aerosol optical depth Surface reflectance Absorbing aerosol index Land use variables * Spatially lagged PM2.5 Latitude Longitude Surface temperature Upward longwave radiation GEOS-Chem PM2.5 estimate | Removed aerosol optical depth over 1.5, based on quality flags. Used random forest to impute AOD using other model variables. Combined gradient boosting, random forest, and neural network in generalized additive model to improve results. | R2: 0.73 to 0.901 depending on year RMSE: N/A |
[22] Yangtze River Delta, China 2018 Daily at 1 km | Aerosol optical depth Top-of-atmosphere reflectance Planetary-boundary-layer height Surface temperature U-wind, V-wind Relative humidity Pressure Land use variables * Solar zenith and azimuth Sensor zenith and azimuth | Top-of-atmospheric reflectance is the main independent variable, since aerosol optical depth has significant missing data. | R2: 0.96 RMSE: 4.21 µg/m3 |
[23] Texas, USA 2014–2018 Daily at 1 km | Aerosol optical depth Air temperature Relative humidity Pressure Wind speed Wind direction Visibility Precipitation Planetary-boundary-layer height Land use variables * Total column densities of dust, sea salt, OC, BC, SO2, and SO4 | Random forest outperformed linear-regression and mixed-effects models. | R2: 0.83 to 0.90 depending on year RMSE: N/A |
Dataset | Variable | Units | Spatial Resolution | Temporal Frequency | Available After |
---|---|---|---|---|---|
Montana DEQ Ground-Stations | PM2.5 | µg/m3 | NA | Hourly | 1 January 2012 |
MCD19A2 | OPTICAL DEPTH 047 (AOD) | 1 km | Daily | 24 February 2000 | |
NOAA NWS RTMA | RH * TMP | % C | 2.5 km | Hourly | 1 January 2011 |
DPT | C | ||||
WIND | m/s | ||||
WDIR | deg | ||||
PRES | Pa | ||||
M2T1NXFLX | PBLH | m | (70, 55) km | Hourly | 1 January 1980 |
Variable | PM25 | AOD | Cloud Mask | DPT, PRES, RH | WIND | WDIR |
---|---|---|---|---|---|---|
Observations | 123,932 | 31,511 | 19,151 | 18,950 | 18,943 | 18,800 |
Cross Validated R2 | |||
---|---|---|---|
Simple Linear Regression | Multiple Linear Regression | Random Forest | |
Cloud Mask | 0.532 | 0.541 | 0.572 |
No Cloud Mask | 0.485 | 0.498 | 0.557 |
Parameter | Range | Optimal Value |
---|---|---|
Bag fraction | [0.1, 0.2, …, 0.9] | 0.9 |
Minimum leaf value | [1, 2, …, 10] | 3 |
Variables per split | [1, 2, …, 7] | 3 |
Station Name | Good [0.0–12.0) | Moderate [12.0–35.5) | Unhealthy for Sensitive Groups [35.5–55.5) | Unhealthy [55.5–150.5) | Very Unhealthy [150.5–250.5) | Hazardous [250.5–500.0) | [500.0–1000.0) | Total Measurements * |
---|---|---|---|---|---|---|---|---|
Billings Lockwood | 665 | 55 | 3 | 0 | 0 | 0 | 1 | 753 |
Bozeman | 6062 | 1514 | 160 | 29 | 0 | 0 | 0 | 8760 |
Broadus | 5737 | 1578 | 256 | 147 | 2 | 0 | 0 | 8760 |
Butte | 4951 | 2170 | 462 | 167 | 7 | 0 | 0 | 8760 |
Flathead Valley | 5996 | 1606 | 163 | 101 | 67 | 2 | 0 | 8760 |
Frenchtown | 6010 | 2106 | 260 | 215 | 15 | 8 | 0 | 8760 |
Great Falls | 6854 | 1256 | 92 | 19 | 0 | 0 | 0 | 8760 |
Hamilton | 5562 | 1863 | 518 | 395 | 10 | 0 | 0 | 8760 |
Helena | 5316 | 1999 | 459 | 277 | 0 | 0 | 0 | 8760 |
Lewistown | 6129 | 993 | 125 | 63 | 0 | 0 | 0 | 8760 |
Libby | 4689 | 3078 | 359 | 135 | 30 | 0 | 0 | 8760 |
Malta | 6292 | 923 | 64 | 33 | 0 | 0 | 0 | 8760 |
Missoula | 5997 | 1714 | 254 | 283 | 20 | 4 | 0 | 8760 |
NCore | 6384 | 709 | 194 | 68 | 6 | 0 | 0 | 8760 |
Seeley Lake | 3628 | 2954 | 779 | 594 | 96 | 181 | 193 | 8760 |
Sidney | 4539 | 751 | 51 | 35 | 0 | 0 | 0 | 5969 |
Thompson Falls | 2841 | 1409 | 156 | 67 | 72 | 40 | 1 | 4682 |
West Yellowstone | 6152 | 767 | 67 | 15 | 2 | 1 | 2 | 8755 |
Type of Validation | R2 | RMSE (µg/m3) |
---|---|---|
Simple Linear Regression | ||
Cross Validation | 0.532 | 10.46 |
Held-out Data | 0.440 | 11.16 |
Multiple Regression | ||
Cross Validation | 0.541 | 10.36 |
Held-out Data | 0.448 | 11.07 |
Random Forest | ||
Cross Validation | 0.572 | 9.98 |
Held-out data | 0.487 | 10.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morgan, A.; Crowley, J.; Nagisetty, R.M. Montana Statewide Google Earth Engine-Based Wildfire Hazardous Particulate (PM2.5) Concentration Estimation. Air 2024, 2, 142-161. https://doi.org/10.3390/air2020009
Morgan A, Crowley J, Nagisetty RM. Montana Statewide Google Earth Engine-Based Wildfire Hazardous Particulate (PM2.5) Concentration Estimation. Air. 2024; 2(2):142-161. https://doi.org/10.3390/air2020009
Chicago/Turabian StyleMorgan, Aspen, Jeremy Crowley, and Raja M. Nagisetty. 2024. "Montana Statewide Google Earth Engine-Based Wildfire Hazardous Particulate (PM2.5) Concentration Estimation" Air 2, no. 2: 142-161. https://doi.org/10.3390/air2020009
APA StyleMorgan, A., Crowley, J., & Nagisetty, R. M. (2024). Montana Statewide Google Earth Engine-Based Wildfire Hazardous Particulate (PM2.5) Concentration Estimation. Air, 2(2), 142-161. https://doi.org/10.3390/air2020009