Background Influence of PM2.5 in Dallas–Fort Worth Area and Recommendations for Source Apportionment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Download and Data Processing
2.2. Total PM2.5 Descriptive Statistics
2.3. Fixed Effects Model Controlling for Temporal Variability
2.4. Pairwise Correlation Matrices
2.5. Inverse Distance Weighted Background Average Correlations
2.6. Inverse Distance Weighted Background Average Multivariate Regressions
β6Pi + δy+ δm + δd + εijymd,
2.7. Sensitivity Analysis: Texas Correlations
3. Results
3.1. Data Download and Data Processing
3.2. Total PM2.5 Descriptive Statistics
3.3. Fixed Effects Model Controlling for Temporal Variability
3.4. Pairwise Correlation Matrices
3.5. Inverse Distance Weighted Background Average Correlations
3.6. Inverse Distance Weighted Background Average Multivariate Regressions
3.7. Sensitivity Analysis: Texas Correlations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Multivariate Regression Relating Mean Local Effect to Distance to Roadway and Rail Line
References
- Anastasopolos, A.T.; Hopke, P.K.; Sofowote, U.M.; Zhang, J.J.Y.; Johnson, M. Local and regional sources of urban ambient PM2.5 exposures in Calgary, Canada. Atmos. Environ. 2022, 290, 119383. [Google Scholar] [CrossRef]
- World Health Organization. Health Effects of Particulate Matter: Policy Implications for Countries in Eastern Europe, Caucasus, and Central Asia; World Health Organization: Geneva, Switzerland, 2021; ISBN 978-92-890-0001-7. [Google Scholar]
- Wang, J.; Zhang, M.; Bai, X.; Tan, H.; Li, S.; Liu, J.; Zhang, R.; Wolters, M.A.; Qin, X.; Zhang, M.; et al. Large-scale transport of PM2.5 in the lower troposphere during winter cold surges in China. Sci. Rep. 2017, 7, 13238. [Google Scholar] [CrossRef] [PubMed]
- Allen, D.T.; Turner, J.R. Transport of Atmospheric Fine Particulate Matter: Part 1—Findings from Recent Field Programs on the Extent of Regional Transport within North America. J. Air Waste Manag. Assoc. 2008, 58, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Thunis, P.; Degraeuwe, B.; Pisoni, E.; Trombetti, M.; Peduzzi, E.; Belis, C.A.; Wilson, J.; Clappier, A.; Vignati, E. PM2.5 source allocation in European cities: A SHERPA modelling study. Atmos. Environ. 2018, 187, 93–106. [Google Scholar] [CrossRef]
- Martinez, J.A. New Report: DFW’s Air Quality Gets Worse Residents Exposed to More Unhealthy Air Pollution. American Lung Association. 2022. Available online: https://www.lung.org/media/press-releases/sota-dallas-fy22 (accessed on 1 July 2023).
- Reddy, S. Dallas Tackles Environmental Concerns: 40 Air Monitors by End of 2023. The Dallas Morning News. 2023. Available online: https://www.dallasnews.com/news/2023/03/08/dallas-tackles-environmental-concerns-40-air-monitors-by-end-of-2023/ (accessed on 1 July 2023).
- Khreis, H.; Jack, K.; Johnson, J.; Vallamsundar, S.; Dadashova, B.; Nieuwenhuijsen, M. Breathe Easy Dallas: Measuring the Impact of School-Based Interventions on Air Quality and Daily Asthma Exacerbations at High Risk Schools. Abstract. Environ. Epidemiol. 2019, 3, 197. [Google Scholar] [CrossRef]
- Syed, Z. New Tool Says Dallas-Fort Worth Ranks Third in the World for Transportation-Related Greenhouse-Gas Emissions. KERA News. 2023. Available online: https://www.keranews.org/energy-environment/2023-09-22/new-tool-says-dallas-fort-worth-ranks-third-in-the-world-for-transportation-related-greenhouse-gas-emissions (accessed on 1 July 2023).
- Faheid, D. Air Pollution in Dallas-Fort Worth May Be a Problem. But Is It Unhealthy to Breathe? Fort Worth Star-Telegram. 2023. Available online: https://www.star-telegram.com/news/local/article276122676.html (accessed on 1 July 2023).
- Ground-Level Ozone Basics. EPA. 2023. Available online: https://www.epa.gov/ground-level-ozone-pollution/ground-level-ozone-basics (accessed on 1 July 2023).
- Austin, S. Decades after Closure of Lead Smelter, Voices Rise against Other West Dallas Polluters. The Dallas Morning News. 2021. Available online: https://www.dallasnews.com/news/2021/08/22/decades-after-closure-of-lead-smelter-voices-rise-against-other-west-dallas-polluters/ (accessed on 1 July 2023).
- Askariyeh, M.H.; Venugopal, M.; Khreis, H.; Birt, A.; Zietsman, J. Near-Road Traffic-Related Air Pollution: Resuspended PM2.5 from Highways and Arterials. Int. J. Environ. Res. Public Health 2020, 17, 2851. [Google Scholar] [CrossRef] [PubMed]
- Pinto, J.P.; Lefohn, A.S.; Shadwick, D.S. Spatial Variability of PM2.5 in Urban Areas in the United States. J. Air Waste Manag. Assoc. 2004, 54, 440–449. [Google Scholar] [CrossRef]
- Ghahremanloo, M.; Lops, Y.; Choi, Y.; Jung, J.; Mousavinezhad, S.; Hammond, D. A comprehensive study of the COVID-19 impact on PM2.5 levels over the contiguous United States: A deep learning approach. Atmos. Environ. 2022, 272, 118944. [Google Scholar] [CrossRef]
- Karale, Y.Y. Site-Specific PM2.5 Estimation at Three Urban Scales. Dissertation, University of Texas at Dallas. Available online: https://utd-ir.tdl.org/handle/10735.1/9381 (accessed on 1 July 2023).
- Karale, Y.; Yuan, M. Spatially lagged predictors from a wider area improve PM2.5 estimation at a finer temporal interval—A case study of Dallas-Fort Worth, United States. Front. Remote Sens. 2023, 4, 1041466. [Google Scholar] [CrossRef]
- Jia, Y.; Bhat, S.; Fraser, M.P. Characterization of saccharides and other organic compounds in fine particles and the use of saccharides to track primary biologically derived carbon sources. Atmos. Environ. 2010, 44, 724–732. [Google Scholar] [CrossRef]
- Karnae, S.; John, K. Source apportionment of fine particulate matter measured in an industrialized coastal urban area of South Texas. Atmos. Environ. 2011, 45, 3769–3776. [Google Scholar] [CrossRef]
- Hubbell, B.J.; Phillips, S.B.; Jang, C.; Fox, T.J.; U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards; Research Triangle Park NC, USA. Unpublished work. Relative Contribution of Local vs. Regional Emissions to PM2.5 Concentrations in 9 Urban Areas of the U.S. 2008. [Google Scholar]
- Thunis, P.; Clappier, A.; Tarrason, L.; Cuvelier, C.; Monteiro, A.; Pisoni, E.; Wesseling, J.; Belis, C.A.; Pirovano, G.; Janssen, S.; et al. Source apportionment to support air quality planning: Strengths and weaknesses of existing approaches. Environ. Int. 2019, 130, 104825. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Deng, T.; Zhenning, L.; Wang, N.; Yin, C.; Wang, S.; Fan, S. Numerical simulations for the sources apportionment and control strategies of PM2.5 over Pearl River Delta, China, part I: Inventory and PM2.5 sources apportionment. Sci. Total Environ. 2018, 634, 1631–1644. [Google Scholar] [CrossRef]
- Kiesewetter, G.; Borken-Kleefeld, J.; Schopp, W.; Heyes, C.; Thunis, P.; Bessagnet, B.; Terrenoire, E.; Fagerli, H.; Nyiri, A.; Amann, M. Modelling street level PM10 concentrations across Europe: Source apportionment and possible futures. Atmos. Chem. Phys. 2015, 15, 1539–1553. [Google Scholar] [CrossRef]
- Kranenburg, R.; Segers, A.J.; Hendriks, C.; Schaap, M. Source apportionment using LOTOS-EUROS: Module description and evaluation. Geosci. Model Dev. 2013, 6, 721–733. [Google Scholar] [CrossRef]
- Thunis, P.; Clappier, A.; de Meij, A.; Pisoni, E.; Bessagnet, B.; Tarrason, L. Why is the city’s responsibility for its air pollution often underestimated? A focus on PM2.5. Atmos. Chem. Phys. 2021, 21, 18195–18212. [Google Scholar] [CrossRef]
- Pitiranggon, M.; Johnson, S.; Haney, J.; Eisl, H.; Ito, K. Long-term trends in local and transported PM2.5 pollution in New York City. Atmos. Environ. 2021, 248, 118238. [Google Scholar] [CrossRef]
- Lall, R.; Thurston, G.D. Identifying and quantifying transported vs. Local sources of New York City PM2.5 fine particulate matter air pollution. Atmos. Environ. 2006, 40, S333–S346. [Google Scholar] [CrossRef]
- Qin, Y.; Kim, E.; Hopke, P.K. The concentrations and sources of PM2.5 in metropolitan New York City. Atmos. Environ. 2006, 40, S312–S332. [Google Scholar] [CrossRef]
- Thurston, G.D.; Kazuhiko, I.; Lall, R. A source apportionment of U.S. fine particulate matter air pollution. Atmos. Environ. 2011, 45, 3924–3936. [Google Scholar] [CrossRef]
- Karppinen, A.; Harkonen, J.; Kukkonen, J.; Aarnio, P.; Koskentalo, T. Statistical model for assessing the portion of fine particulate matter transported regionally and long range to urban air. Scand J. Work Environ. Health 2004, 30, 47–53. [Google Scholar] [PubMed]
- Timonen, H.; Wigder, N.; Jaffe, D. Influence of background particulate matter (PM) on urban air quality in the Pacific Northwest. J. Environ. Manag. 2013, 129, 333–340. [Google Scholar] [CrossRef]
- Ahmed, E.; Kim, K.H.; Shon, Z.H.; Song, S.K. Long-term trend of airborne particulate matter in Seoul, Korea from 2004 to 2013. Atmos. Environ. 2015, 101, 125–133. [Google Scholar] [CrossRef]
- EPA. Chapter 16—Activity Factors. In Exposure Factors Handbook; EPA: Washington, DC, USA, 2011. Available online: https://www.epa.gov/sites/default/files/2015-09/documents/efh-chapter16.pdf (accessed on 1 July 2023).
- Bi, J.; Wallace, L.A.; Sarnat, J.A.; Liu, Y. Characterizing outdoor infiltration and indoor contribution of PM2.5 with citizen-based low-cost monitoring data. Environ. Pollut. 2021, 276, 116763. [Google Scholar] [CrossRef] [PubMed]
- EPA. Fact Sheet. Proposed Rule to Implement the Fine Particle National Ambient Air Quality Standards. Available online: https://www3.epa.gov/pmdesignations/1997standards/documents/Sep05/factsheet.htm#:~:text=In%20July%201997%2C%20EPA%20promulgated,5%20concentrations (accessed on 27 December 2022).
- EPA. Federal Register. 40 CFR part 50 [EPA-HQ-OAR-2015-0072; FRL-10018-11-OAR]. In Review of the National Ambient Air Quality Standards for Particulate Matter; EPA: Washington, DC, USA, 2020. [Google Scholar]
- EPA. Particulate Matter (PM2.5) Trends. Available online: https://www.epa.gov/air-trends/particulate-matter-pm25-trends (accessed on 5 July 2023).
- EPA. EPA Proposes to Strengthen Air Quality Standards to Protect the Public from Harmful Effects of Soot. 2023. Available online: https://www.epa.gov/newsreleases/epa-proposes-strengthen-air-quality-standards-protect-public-harmful-effects-soot (accessed on 1 July 2023).
- United States Census Bureau, Population Division. “Annual Estimates of the Resident Population for Counties and County-Equivalents: April 1, 2010 to July 1, 2020” (XLS); 2020 Population Estimates: Washington, DC, USA, 2021.
- Zhao, N.; Liu, Y.; Vanos, J.K.; Cao, G. Day-of-week and seasonal patterns of PM2.5 concentrations over the United States: Time-series analyses using the Prophet procedure. Atmos. Environ. 2018, 192, 116–127. [Google Scholar] [CrossRef]
- EPA. Outdoor Air Quality Data: Download Daily Data. 2022. Available online: https://www.epa.gov/outdoor-air-quality-data/download-daily-data (accessed on 1 July 2023).
- EPA. Outdoor Air Quality Data: What Does the POC Number Refer to? 2022. Available online: https://www.epa.gov/outdoor-air-quality-data/what-does-poc-number-refer#:~:text=POC%20is%20the%20Parameter%20Occurrence%20Code%20and%20is,and%20monitor%20type%20are%20independent%20of%20each%20other (accessed on 1 July 2023).
- EPA. AQS Memos—Technical Note on Reporting PM2.5 Continuous Monitoring and Speciation Data to the Air Quality System (AQS). 2006. Available online: https://www.epa.gov/aqs/aqs-memos-technical-note-reporting-pm25-continuous-monitoring-and-speciation-data-air-quality (accessed on 1 July 2023).
- 40 CFR 50 Appendix N. Available online: https://www.ecfr.gov/current/title-40/chapter-I/subchapter-C/part-50/appendix-Appendix%20N%20to%20Part%2050 (accessed on 1 July 2023).
- Iowa State University. Iowa Environmental Mesonet: Texas ASOS. 2022. Available online: https://mesonet.agron.iastate.edu/request/download.phtml?network=TX_ASOS (accessed on 1 July 2023).
- EPA. Outdoor Air Quality Data, Who Decides Where Monitors Get Placed? 2022. Available online: https://www.epa.gov/outdoor-air-quality-data/who-decides-where-monitors-get-placed (accessed on 1 July 2023).
- Buzcu, B.; Yue, W.; Fraser, M.P.; Nopmongcol, U.; Allen, D.T. Secondary particle formation and evidence of heterogeneous chemistry during a wood smoke episode in Texas. J. Geophys. Res. 2006, 111, D10. [Google Scholar] [CrossRef]
- Karnae, S.; John, K. Source apportionment of PM2.5 measured in South Texas near U.S.A.—Mexico border. Atmos. Pollut. Res. 2019, 10, 1663–1676. [Google Scholar] [CrossRef]
- Ivey, C.E.; Holmes, H.A.; Hu, Y.; Mulholland, J.A.; Russell, A.G. A method for quantifying bias in modeled concentrations and source impacts for secondary particulate matter. Front. Environ. Sci. Eng. 2016, 10, 14. [Google Scholar] [CrossRef]
- Huang, M.; Ivey, C.; Hu, Y.; Holmes, H.A.; Strickland, M.J. Source apportionment of primary and secondary PM2.5: Associations with pediatric respiratory disease emergency department visits in the U.S. State of Georgia. Environ. Int. 2019, 133 Pt A, 105167. [Google Scholar] [CrossRef]
- Mukherjee, A.; McCarthy, M.C.; Brown, S.G.; Huang, S.; Landsberg, K.; Eisinger, D.S. Influence of roadway emissions on near-road PM2.5: Monitoring data analysis and implications. Transp. Res. D Transp. Environ. 2020, 86, 102442. [Google Scholar] [CrossRef]
- North Texas Commission. Demographic Trends in Texas and the DFW Area, Presentation. Texas Demographic Center. 28 July 2022. Available online: https://demographics.texas.gov/Resources/Presentations/OSD/2022/2022_07_28_NorthTexasCommission.pdf (accessed on 1 July 2023).
- EPA. 40 CFR 58 Appendix D. In Network Design Criteria for Ambient Air Quality Monitoring, 1st ed.; EPA: Washington, DC, USA, 2021. [Google Scholar]
Monitoring Location | Distance to Nearest Major Road (m) | Nearest Road | Distance to Nearest Rail Line (m) | Nearest Rail Line Type |
---|---|---|---|---|
Arlington Municipal Airport | 2346 | I-20 | 7134 | Business Lead |
Convention Center | 132 | I-30 | 290 | Main Line |
Dallas Bexar Street | 222 | US Hwy 175 | 73 | Main Line |
Dallas Hinton | 824 | US Hwy 77 | 74 | Spur Line |
Denton Airport South | 1293 | US Hwy 380 | 1314 | Spur Line |
Fort Worth California Parkway North | 50 | I-20 | 1032 | Main Line |
Fort Worth Northwest | 472 | US Hwy 287 Bus | 789 | Main Line |
Haws Athletic Center | 78 | State Hwy 199 | 514 | Side Track |
Italy | 763 | State Hwy 34 | 16,675 | Main Line |
Kaufman | 265 | S State Hwy 34 | 17,714 | Spur Line |
Midlothian OFW | 500 | US Hwy 287 | 1526 | Main Line |
Monitoring Location | 25th Percentile | Median | Mean | 75th Percentile | Maximum | IQR | Date Range |
---|---|---|---|---|---|---|---|
Arlington Municipal Airport | 5.6 | 7.5 | 8.4 | 10.2 | 33.3 | 4.6 | 1/1/2013–12/3/2018 |
Convention Center | 6.5 | 8.7 | 9.6 | 11.7 | 39.4 | 5.2 | 1/1/2013–9/30/2022 |
Dallas Bexar Street | 5.9 | 8.3 | 9.6 | 10.3 | 54.6 | 4.4 | 2/1/2022–12/4/2022 |
Dallas Hinton | 5.8 | 8.2 | 9.0 | 11.2 | 49.2 | 5.4 | 1/1/2013–12/31/2022 |
Denton Airport South | 5.1 | 7 | 7.8 | 9.5 | 52 | 4.4 | 1/1/2013–12/31/2022 |
Fort Worth California Parkway North | 5.9 | 7.9 | 8.6 | 10.5 | 49.3 | 4.6 | 3/22/2015–12/31/2022 |
Fort Worth Northwest | 6.2 | 8.2 | 9.1 | 11.1 | 50 | 4.9 | 1/1/2013–12/31/2022 |
Haws Athletic Center | 6.1 | 8 | 8.9 | 10.8 | 53.2 | 4.7 | 1/1/2013–12/28/2022 |
Italy | 5.4 | 7.4 | 8.3 | 10.3 | 31.7 | 4.9 | 1/1/2013–12/5/2016 |
Kaufman | 4.9 | 6.8 | 7.5 | 9.3 | 48.7 | 4.4 | 1/1/2013–12/31/2022 |
Midlothian OFW | 5.7 | 7.6 | 8.4 | 10 | 45.3 | 4.3 | 1/1/2013–4/23/2022 |
Monitoring Location | Spearman Correlation |
---|---|
Arlington Municipal Airport | 0.92 |
Convention Center | 0.93 |
Dallas Bexar Street | 0.87 |
Dallas Hinton | 0.88 |
Denton Airport South | 0.91 |
Fort Worth California Parkway North | 0.90 |
Fort Worth Northwest | 0.92 |
Haws Athletic Center | 0.86 |
Italy | 0.86 |
Kaufman | 0.94 |
Midlothian OFW | 0.89 |
Background Effect (% Increase per 1 µg/m3 Background PM2.5 Increase) | |||
---|---|---|---|
Monitoring Location | Mean | 95% LCL | 95% UCL |
Arlington Municipal Airport | 10% | 9% | 11% |
Convention Center | 9% | 7% | 10% |
Dallas Bexar Street | 9% | 8% | 11% |
Dallas Hinton | 10% | 9% | 11% |
Denton Airport South | 10% | 10% | 11% |
Fort Worth California Parkway North | 10% | 9% | 11% |
Fort Worth Northwest | 9% | 8% | 10% |
Haws Athletic Center | 9% | 9% | 10% |
Italy | 10% | 9% | 11% |
Kaufman | 10% | 9% | 11% |
Midlothian OFW | 9% | 8% | 9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shapero, A.; Keck, S.; Love, A.H. Background Influence of PM2.5 in Dallas–Fort Worth Area and Recommendations for Source Apportionment. Air 2023, 1, 258-278. https://doi.org/10.3390/air1040019
Shapero A, Keck S, Love AH. Background Influence of PM2.5 in Dallas–Fort Worth Area and Recommendations for Source Apportionment. Air. 2023; 1(4):258-278. https://doi.org/10.3390/air1040019
Chicago/Turabian StyleShapero, Andrew, Stella Keck, and Adam H. Love. 2023. "Background Influence of PM2.5 in Dallas–Fort Worth Area and Recommendations for Source Apportionment" Air 1, no. 4: 258-278. https://doi.org/10.3390/air1040019
APA StyleShapero, A., Keck, S., & Love, A. H. (2023). Background Influence of PM2.5 in Dallas–Fort Worth Area and Recommendations for Source Apportionment. Air, 1(4), 258-278. https://doi.org/10.3390/air1040019