Role of Histone Deacetylases in Drug-Resistant Melanoma: Mechanisms and Therapeutic Implications
Abstract
:1. Introduction
2. HDAC Biology and Classification
2.1. Overview of HDAC Biology
2.2. HDAC Classification and Function
- Class I HDACs (HDAC1, 2, 3, 8): Class I HDACs predominantly interact with corepressors such as SMRT (Silencing Mediator for Retinoid and Thyroid receptors) and N-CoR (Nuclear Receptor Corepressor). These corepressors contain LXXLL motifs, which bind to the repression domains of HDACs, forming complexes that facilitate gene silencing. The catalytic domain of HDAC1/2 interacts with these corepressors and with histone tails or non-histone proteins, leading to the deacetylation of lysine residues and chromatin condensation, preventing transcription of critical genes involved in cell cycle regulation, apoptosis, and DNA repair [20]. Predominantly nuclear, it is involved in cell proliferation, survival, and differentiation. These HDACs play a key role in tumorigenesis by repressing tumor suppressor genes and promoting oncogenic pathways [21].
- Class II HDACs (HDAC4, 5, 6, 7, 9, 10): Class II HDACs are involved in regulating cellular processes by interacting with kinase signaling pathways and transcription factors [22]. For instance, HDAC6 interacts with tubulin, a non-histone protein involved in microtubule dynamics. HDAC4 and HDAC5 interact with MEF2 (Myocyte enhancer factor 2), a transcription factor involved in muscle differentiation and apoptosis [23]. HDAC6, in particular, regulates microtubule stability and autophagy, influencing cancer cell survival [24]. The non-histone deacetylase domains Class II HDACs allow them to interact with cytoskeletal proteins and transcription factors, such as BCL6 (involved in B-cell activation), which is important in lymphoid malignancies like lymphoma [25]. Their ability to shuttle between the nucleus and cytoplasm and their regulation of transcriptional complexes make them critical in cancer cell migration, invasion, and metastasis.
- Class III HDACs (Sirtuins): NAD+-dependent catalytic domain of sirtuins regulates the acetylation of both histone and non-histone proteins [26]. They also interact with coactivators such as PGC-1α, a transcriptional coactivator involved in mitochondrial biogenesis and metabolic regulation, and FOXO, a transcription factor linked to stress resistance and longevity [27]. In cancer, the dysregulation of Sirtuins contributes to altered cellular metabolism, resistance to cell death, and tumor progression. SIRT1 and SIRT3 have been implicated in melanoma progression and resistance to targeted therapies. SIRT1 deacetylates p53, a tumor suppressor protein, altering its function in DNA damage response and apoptosis. SIRT1 also interacts with NF-κB, a transcription factor associated with inflammation and cancer progression [28].
- Class IV HDAC (HDAC11): Shares characteristics with both Class I and II HDACs and influence immune cell function, particularly by interacting with immune-specific transcription factors such as NF-κB and STAT proteins [29]. It plays a role in modulating inflammatory responses and cytokine signaling. Additionally, HDAC11’s regulation of T cell differentiation and macrophage polarization can impact cancer progression, as immune cells influence tumor growth and metastasis [30].
3. Mechanistic Involvement of HDACs in Melanoma Drug Resistance
3.1. Epigenetic Regulation of Drug Resistance Genes
3.2. HDACs and Regulation of Drug Efflux Pumps
3.3. HDACs and the Evasion of Apoptosis
3.4. HDACs and DNA Repair Mechanisms
3.5. HDACs and Epithelial–Mesenchymal Transition (EMT)-Mediated Drug Resistance
3.6. Role of HDACs in Tumor Microenvironment and Immune Evasion
3.7. HDAC and Cross-Talk Pathways Leading to Melanoma Drug Resistance
4. Therapeutic Implications of Targeting HDACs
4.1. Targeting HDACs to Overcome Drug Resistance in Melanoma
4.2. Combination Therapies with HDAC Inhibitors
4.2.1. HDAC Inhibitors and Targeted Therapies
4.2.2. HDAC Inhibitors and Immunotherapy
4.2.3. HDAC Inhibitors and Chemotherapy
4.3. Preclinical and Clinical Trial Outcomes of HDAC Inhibitors in Melanoma
4.3.1. HDAC Inhibitors as Potential Adjuncts to Existing Melanoma Therapies
4.3.2. Clinical Trials: Evaluating HDAC Inhibitors in Melanoma Therapy
5. Challenges and Risks
5.1. Pleiotropic Effects and Dose-Limiting Toxicity
5.2. Lack of Isoform Selectivity and Off-Target Effects
5.3. Resistance Mechanisms and Tumor Adaptation
5.4. Immune Modulation: A Double-Edged Sword
6. Future Directions
7. Conclusions
Funding
Conflicts of Interest
References
- Smith, J.; Cust, A.E.; Lo, S.N. Risk factors for subsequent primary melanoma in patients with previous melanoma: A systematic review and meta-analysis. Br. J. Dermatol. 2024, 190, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Castellani, G.; Buccarelli, M.; Arasi, M.B.; Rossi, S.; Pisanu, M.E.; Bellenghi, M.; Lintas, C.; Tabolacci, C. BRAF Mutations in Melanoma: Biological Aspects, Therapeutic Implications, and Circulating Biomarkers. Cancers 2023, 15, 4026. [Google Scholar] [CrossRef] [PubMed]
- Al Hmada, Y.; Brodell, R.T.; Kharouf, N.; Flanagan, T.W.; Alamodi, A.A.; Hassan, S.Y.; Shalaby, H.; Hassan, S.L.; Haikel, Y.; Megahed, M.; et al. Mechanisms of Melanoma Progression and Treatment Resistance: Role of Cancer Stem-like Cells. Cancers 2024, 16, 470. [Google Scholar] [CrossRef] [PubMed]
- Klein-Brill, A.; Amar-Farkash, S.; Rosenberg-Katz, K.; Brenner, R.; Becker, J.C.; Aran, D. Comparative efficacy of combined CTLA-4 and PD-1 blockade vs. PD-1 monotherapy in metastatic melanoma: A real-world study. BJC Rep. 2024, 2, 14. [Google Scholar] [CrossRef]
- Kalal, B.S.; Upadhya, D.; Pai, V.R. Chemotherapy Resistance Mechanisms in Advanced Skin Cancer. Oncol. Rev. 2017, 11, 326. [Google Scholar] [CrossRef]
- Karami Fath, M.; Azargoonjahromi, A.; Soofi, A.; Almasi, F.; Hosseinzadeh, S.; Khalili, S.; Sheikhi, K.; Ferdousmakan, S.; Owrangi, S.; Fahimi, M.; et al. Current understanding of epigenetics role in melanoma treatment and resistance. Cancer Cell Int. 2022, 22, 313. [Google Scholar] [CrossRef]
- Li, G.; Tian, Y.; Zhu, W.G. The Roles of Histone Deacetylases and Their Inhibitors in Cancer Therapy. Front. Cell Dev. Biol. 2020, 8, 576946. [Google Scholar] [CrossRef]
- Florenes, V.A.; Skrede, M.; Jorgensen, K.; Nesland, J.M. Deacetylase inhibition in malignant melanomas: Impact on cell cycle regulation and survival. Melanoma Res. 2004, 14, 173–181. [Google Scholar] [CrossRef]
- Wang, L.; Leite de Oliveira, R.; Huijberts, S.; Bosdriesz, E.; Pencheva, N.; Brunen, D.; Bosma, A.; Song, J.Y.; Zevenhoven, J.; Los-de Vries, G.T.; et al. An Acquired Vulnerability of Drug-Resistant Melanoma with Therapeutic Potential. Cell 2018, 173, 1413–1425.e1414. [Google Scholar] [CrossRef]
- Krumm, A.; Barckhausen, C.; Kucuk, P.; Tomaszowski, K.H.; Loquai, C.; Fahrer, J.; Kramer, O.H.; Kaina, B.; Roos, W.P. Enhanced Histone Deacetylase Activity in Malignant Melanoma Provokes RAD51 and FANCD2-Triggered Drug Resistance. Cancer Res. 2016, 76, 3067–3077. [Google Scholar] [CrossRef]
- Celesia, A.; Franzo, M.; Di Liberto, D.; Lauricella, M.; Carlisi, D.; D’Anneo, A.; Notaro, A.; Allegra, M.; Giuliano, M.; Emanuele, S. Oncogenic BRAF and p53 Interplay in Melanoma Cells and the Effects of the HDAC Inhibitor ITF2357 (Givinostat). Int. J. Mol. Sci. 2023, 24, 9148. [Google Scholar] [CrossRef] [PubMed]
- Drzewiecka, M.; Gajos-Michniewicz, A.; Hoser, G.; Jasniak, D.; Barszczewska-Pietraszek, G.; Sitarek, P.; Czarny, P.; Piekarski, J.; Radek, M.; Czyz, M.; et al. Histone Deacetylases (HDAC) Inhibitor-Valproic Acid Sensitizes Human Melanoma Cells to Dacarbazine and PARP Inhibitor. Genes 2023, 14, 1295. [Google Scholar] [CrossRef] [PubMed]
- Kalal, B.S.; Pai, V.R.; Behera, S.K.; Somashekarappa, H.M. HDAC2 Inhibitor Valproic Acid Increases Radiation Sensitivity of Drug-Resistant Melanoma Cells. Med. Sci. 2019, 7, 51. [Google Scholar] [CrossRef] [PubMed]
- Palamaris, K.; Moutafi, M.; Gakiopoulou, H.; Theocharis, S. Histone Deacetylase (HDAC) Inhibitors: A Promising Weapon to Tackle Therapy Resistance in Melanoma. Int. J. Mol. Sci. 2022, 23, 3660. [Google Scholar] [CrossRef]
- Kalal, B.S.; Pai, V.R.; Upadhya, D. Valproic Acid Reduces Tumor Cell Survival and Proliferation with Inhibitors of Downstream Molecules of Epidermal Growth Factor Receptor Pathway. J. Pharmacol. Pharmacother. 2018, 9, 11–16. [Google Scholar] [CrossRef]
- Strahl, B.D.; Allis, C.D. The language of covalent histone modifications. Nature 2000, 403, 41–45. [Google Scholar] [CrossRef]
- Woodcock, C.L.; Ghosh, R.P. Chromatin higher-order structure and dynamics. Cold Spring Harb. Perspect. Biol. 2010, 2, a000596. [Google Scholar] [CrossRef]
- Yang, J.; Gong, C.; Ke, Q.; Fang, Z.; Chen, X.; Ye, M.; Xu, X. Insights Into the Function and Clinical Application of HDAC5 in Cancer Management. Front. Oncol. 2021, 11, 661620. [Google Scholar] [CrossRef]
- Park, S.Y.; Kim, J.S. A short guide to histone deacetylases including recent progress on class II enzymes. Exp. Mol. Med. 2020, 52, 204–212. [Google Scholar] [CrossRef]
- Luo, Y.; Jian, W.; Stavreva, D.; Fu, X.; Hager, G.; Bungert, J.; Huang, S.; Qiu, Y. Trans-regulation of histone deacetylase activities through acetylation. J. Biol. Chem. 2009, 284, 34901–34910. [Google Scholar] [CrossRef]
- Seto, E.; Yoshida, M. Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 2014, 6, a018713. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.J.; Gregoire, S. Class II histone deacetylases: From sequence to function, regulation, and clinical implication. Mol. Cell Biol. 2005, 25, 2873–2884. [Google Scholar] [CrossRef]
- McKinsey, T.A.; Zhang, C.L.; Olson, E.N. Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc. Natl. Acad. Sci. USA 2000, 97, 14400–14405. [Google Scholar] [CrossRef] [PubMed]
- Passaro, E.; Papulino, C.; Chianese, U.; Toraldo, A.; Congi, R.; Del Gaudio, N.; Nicoletti, M.M.; Benedetti, R.; Altucci, L. HDAC6 Inhibition Extinguishes Autophagy in Cancer: Recent Insights. Cancers 2021, 13, 6280. [Google Scholar] [CrossRef] [PubMed]
- Lemercier, C.; Brocard, M.P.; Puvion-Dutilleul, F.; Kao, H.Y.; Albagli, O.; Khochbin, S. Class II histone deacetylases are directly recruited by BCL6 transcriptional repressor. J. Biol. Chem. 2002, 277, 22045–22052. [Google Scholar] [CrossRef]
- Singh, C.K.; George, J.; Chhabra, G.; Nihal, M.; Chang, H.; Ahmad, N. Genetic Manipulation of Sirtuin 3 Causes Alterations of Key Metabolic Regulators in Melanoma. Front. Oncol. 2021, 11, 676077. [Google Scholar] [CrossRef]
- Shah, S.; Kalal, B.S. Oxidative stress in cervical cancer and its response to chemoradiation. Turk. J. Obstet. Gynecol. 2019, 16, 124–128. [Google Scholar] [CrossRef]
- Chouhan, S.; Kumar, A.; Muhammad, N.; Usmani, D.; Khan, T.H. Sirtuins as Key Regulators in Pancreatic Cancer: Insights into Signaling Mechanisms and Therapeutic Implications. Cancers 2024, 16, 4095. [Google Scholar] [CrossRef]
- Liu, Y.; Tong, X.; Hu, W.; Chen, D. HDAC11: A novel target for improved cancer therapy. Biomed. Pharmacother. 2023, 166, 115418. [Google Scholar] [CrossRef]
- Sriramareddy, S.N.; Faiao-Flores, F.; Emmons, M.F.; Saha, B.; Chellappan, S.; Wyatt, C.; Smalley, I.; Licht, J.D.; Durante, M.A.; Harbour, J.W.; et al. HDAC11 activity contributes to MEK inhibitor escape in uveal melanoma. Cancer Gene Ther. 2022, 29, 1840–1846. [Google Scholar] [CrossRef]
- Arif, K.M.T.; Elliott, E.K.; Haupt, L.M.; Griffiths, L.R. Regulatory Mechanisms of Epigenetic miRNA Relationships in Human Cancer and Potential as Therapeutic Targets. Cancers 2020, 12, 2922. [Google Scholar] [CrossRef] [PubMed]
- Cazzato, G.; Sgarro, N.; Casatta, N.; Lupo, C.; Ingravallo, G.; Ribatti, D. Epigenetics and Control of Tumor Angiogenesis in Melanoma: An Update with Therapeutic Implications. Cancers 2024, 16, 2843. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, A.; Cullinane, C.; De Paoli-Iseppi, R.; Wilmott, J.S.; Gunatilake, D.; Madore, J.; Strbenac, D.; Yang, J.Y.; Gowrishankar, K.; Tiffen, J.C.; et al. Combining BET and HDAC inhibitors synergistically induces apoptosis of melanoma and suppresses AKT and YAP signaling. Oncotarget 2015, 6, 21507–21521. [Google Scholar] [CrossRef] [PubMed]
- Jazirehi, A.R.; Kurdistani, S.K.; Economou, J.S. Histone deacetylase inhibitor sensitizes apoptosis-resistant melanomas to cytotoxic human T lymphocytes through regulation of TRAIL/DR5 pathway. J. Immunol. 2014, 192, 3981–3989. [Google Scholar] [CrossRef]
- Gillespie, S.; Borrow, J.; Zhang, X.D.; Hersey, P. Bim plays a crucial role in synergistic induction of apoptosis by the histone deacetylase inhibitor SBHA and TRAIL in melanoma cells. Apoptosis 2006, 11, 2251–2265. [Google Scholar] [CrossRef]
- Song, L.; McNeil, E.M.; Ritchie, A.M.; Astell, K.R.; Gourley, C.; Melton, D.W. Melanoma cells replicate through chemotherapy by reducing levels of key homologous recombination protein RAD51 and increasing expression of translesion synthesis DNA polymerase zeta. BMC Cancer 2017, 17, 864. [Google Scholar] [CrossRef]
- Lienlaf, M.; Perez-Villarroel, P.; Knox, T.; Pabon, M.; Sahakian, E.; Powers, J.; Woan, K.; Lee, C.; Cheng, F.; Deng, S.; et al. Essential role of HDAC6 in the regulation of PD-L1 in melanoma. Mol. Oncol. 2016, 10, 735–750. [Google Scholar] [CrossRef]
- Mielczarek-Lewandowska, A.; Hartman, M.L.; Czyz, M. Inhibitors of HSP90 in melanoma. Apoptosis 2020, 25, 12–28. [Google Scholar] [CrossRef]
- El-Hage, P.; Petitalot, A.; Monsoro-Burq, A.H.; Maczkowiak, F.; Driouch, K.; Formstecher, E.; Camonis, J.; Sabbah, M.; Bieche, I.; Lidereau, R.; et al. The Tumor-Suppressor WWOX and HDAC3 Inhibit the Transcriptional Activity of the beta-Catenin Coactivator BCL9-2 in Breast Cancer Cells. Mol. Cancer Res. 2015, 13, 902–912. [Google Scholar] [CrossRef]
- Molinari, A.; Toccacieli, L.; Calcabrini, A.; Diociaiuti, M.; Cianfriglia, M.; Arancia, G. Induction of P-glycoprotein expression on the plasma membrane of human melanoma cells. Anticancer Res. 2000, 20, 2691–2696. [Google Scholar]
- Emmons, M.F.; Faiao-Flores, F.; Sharma, R.; Thapa, R.; Messina, J.L.; Becker, J.C.; Schadendorf, D.; Seto, E.; Sondak, V.K.; Koomen, J.M.; et al. HDAC8 Regulates a Stress Response Pathway in Melanoma to Mediate Escape from BRAF Inhibitor Therapy. Cancer Res. 2019, 79, 2947–2961. [Google Scholar] [CrossRef] [PubMed]
- Molinari, A.; Calcabrini, A.; Meschini, S.; Marra, M.; Stringaro, A.; Toccacieli, L.; Cianfriglia, M.; Arancia, G. What is the relationship between P-glycoprotein and adhesion molecule expression in melanoma cells? Melanoma Res. 2002, 12, 109–114. [Google Scholar] [CrossRef]
- Colone, M.; Calcabrini, A.; Toccacieli, L.; Bozzuto, G.; Stringaro, A.; Gentile, M.; Cianfriglia, M.; Ciervo, A.; Caraglia, M.; Budillon, A.; et al. The multidrug transporter P-glycoprotein: A mediator of melanoma invasion? J. Investig. Dermatol. 2008, 128, 957–971. [Google Scholar] [CrossRef] [PubMed]
- Facchetti, F.; Previdi, S.; Ballarini, M.; Minucci, S.; Perego, P.; La Porta, C.A. Modulation of pro- and anti-apoptotic factors in human melanoma cells exposed to histone deacetylase inhibitors. Apoptosis 2004, 9, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, D.; Mishra, A.; Medrano, E.E. Overexpression of histone deacetylase 1 confers resistance to sodium butyrate-mediated apoptosis in melanoma cells through a p53-mediated pathway. Cancer Res. 2004, 64, 7706–7710. [Google Scholar] [CrossRef]
- Bai, Y.; Zhao, H.; Liu, H.; Wang, W.; Dong, H.; Zhao, C. RNA methylation, homologous recombination repair and therapeutic resistance. Biomed. Pharmacother. 2023, 166, 115409. [Google Scholar] [CrossRef]
- Munshi, A.; Kurland, J.F.; Nishikawa, T.; Tanaka, T.; Hobbs, M.L.; Tucker, S.L.; Ismail, S.; Stevens, C.; Meyn, R.E. Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity. Clin. Cancer Res. 2005, 11, 4912–4922. [Google Scholar] [CrossRef]
- Roos, W.P.; Krumm, A. The multifaceted influence of histone deacetylases on DNA damage signalling and DNA repair. Nucleic Acids Res. 2016, 44, 10017–10030. [Google Scholar] [CrossRef]
- Kalal, B.S.; Modi, P.K.; Najar, M.A.; Behera, S.K.; Upadhya, D.; Prasad, T.S.K.; Pai, V.R. Hyperphosphorylation of HDAC2 promotes drug resistance in a novel dual drug resistant mouse melanoma cell line model: An in vitro study. Am. J. Cancer Res. 2021, 11, 5881–5901. [Google Scholar]
- Kalal, B.S.; Modi, P.K.; Upadhya, D.; Saha, P.; Prasad, T.S.K.; Pai, V.R. Inhibition of bone morphogenetic proteins signaling suppresses metastasis melanoma: A proteomics approach. Am. J. Transl. Res. 2021, 13, 11081–11093. [Google Scholar]
- Kusakabe, M.; Kakumu, E.; Kurihara, F.; Tsuchida, K.; Maeda, T.; Tada, H.; Kusao, K.; Kato, A.; Yasuda, T.; Matsuda, T.; et al. Histone deacetylation regulates nucleotide excision repair through an interaction with the XPC protein. iScience 2022, 25, 104040. [Google Scholar] [CrossRef] [PubMed]
- Czyz, M.; Toma, M.; Gajos-Michniewicz, A.; Majchrzak, K.; Hoser, G.; Szemraj, J.; Nieborowska-Skorska, M.; Cheng, P.; Gritsyuk, D.; Levesque, M.; et al. PARP1 inhibitor olaparib (Lynparza) exerts synthetic lethal effect against ligase 4-deficient melanomas. Oncotarget 2016, 7, 75551–75560. [Google Scholar] [CrossRef] [PubMed]
- Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Investig. 2009, 119, 1420–1428. [Google Scholar] [CrossRef] [PubMed]
- Wels, C.; Joshi, S.; Koefinger, P.; Bergler, H.; Schaider, H. Transcriptional activation of ZEB1 by Slug leads to cooperative regulation of the epithelial-mesenchymal transition-like phenotype in melanoma. J. Investig. Dermatol. 2011, 131, 1877–1885. [Google Scholar] [CrossRef]
- Peinado, H.; Ballestar, E.; Esteller, M.; Cano, A. Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol. Cell Biol. 2004, 24, 306–319. [Google Scholar] [CrossRef]
- Diaz-Nunez, M.; Diez-Torre, A.; De Wever, O.; Andrade, R.; Arluzea, J.; Silio, M.; Arechaga, J. Histone deacetylase inhibitors induce invasion of human melanoma cells in vitro via differential regulation of N-cadherin expression and RhoA activity. BMC Cancer 2016, 16, 667. [Google Scholar] [CrossRef]
- Pedri, D.; Karras, P.; Landeloos, E.; Marine, J.C.; Rambow, F. Epithelial-to-mesenchymal-like transition events in melanoma. FEBS J. 2022, 289, 1352–1368. [Google Scholar] [CrossRef]
- Pagliuca, C.; Di Leo, L.; De Zio, D. New Insights into the Phenotype Switching of Melanoma. Cancers 2022, 14, 6118. [Google Scholar] [CrossRef]
- Najem, A.; Soumoy, L.; Sabbah, M.; Krayem, M.; Awada, A.; Journe, F.; Ghanem, G.E. Understanding Molecular Mechanisms of Phenotype Switching and Crosstalk with TME to Reveal New Vulnerabilities of Melanoma. Cells 2022, 11, 1157. [Google Scholar] [CrossRef]
- Richard, G.; Dalle, S.; Monet, M.A.; Ligier, M.; Boespflug, A.; Pommier, R.M.; de la Fouchardiere, A.; Perier-Muzet, M.; Depaepe, L.; Barnault, R.; et al. ZEB1-mediated melanoma cell plasticity enhances resistance to MAPK inhibitors. EMBO Mol. Med. 2016, 8, 1143–1161. [Google Scholar] [CrossRef]
- Otake, S.; Itoh, Y.; Omata, C.; Saitoh, M.; Miyazawa, K. ZEB1 and oncogenic Ras constitute a regulatory switch for stimulus-dependent E-cadherin downregulation. Cancer Sci. 2021, 112, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Pearlman, R.L.; Montes de Oca, M.K.; Pal, H.C.; Afaq, F. Potential therapeutic targets of epithelial-mesenchymal transition in melanoma. Cancer Lett. 2017, 391, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Gatti, L.; Sevko, A.; De Cesare, M.; Arrighetti, N.; Manenti, G.; Ciusani, E.; Verderio, P.; Ciniselli, C.M.; Cominetti, D.; Carenini, N.; et al. Histone deacetylase inhibitor-temozolomide co-treatment inhibits melanoma growth through suppression of Chemokine (C-C motif) ligand 2-driven signals. Oncotarget 2014, 5, 4516–4528. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Luan, W.; Zhang, Y.; Gu, J.; Shi, Y.; Yang, Y.; Feng, Z.; Qi, F. HDAC6 interacts with PTPN1 to enhance melanoma cells progression. Biochem. Biophys. Res. Commun. 2018, 495, 2630–2636. [Google Scholar] [CrossRef]
- Booth, L.; Roberts, J.L.; Poklepovic, A.; Kirkwood, J.; Dent, P. HDAC inhibitors enhance the immunotherapy response of melanoma cells. Oncotarget 2017, 8, 83155–83170. [Google Scholar] [CrossRef]
- McKinsey, T.A.; Kuwahara, K.; Bezprozvannaya, S.; Olson, E.N. Class II histone deacetylases confer signal responsiveness to the ankyrin-repeat proteins ANKRA2 and RFXANK. Mol. Biol. Cell 2006, 17, 438–447. [Google Scholar] [CrossRef]
- Malvi, P.; Chaube, B.; Singh, S.V.; Mohammad, N.; Vijayakumar, M.V.; Singh, S.; Chouhan, S.; Bhat, M.K. Elevated circulatory levels of leptin and resistin impair therapeutic efficacy of dacarbazine in melanoma under obese state. Cancer Metab. 2018, 6, 2. [Google Scholar] [CrossRef]
- Borcoman, E.; Kamal, M.; Marret, G.; Dupain, C.; Castel-Ajgal, Z.; Le Tourneau, C. HDAC Inhibition to Prime Immune Checkpoint Inhibitors. Cancers 2021, 14, 66. [Google Scholar] [CrossRef]
- Woods, D.M.; Sodre, A.L.; Villagra, A.; Sarnaik, A.; Sotomayor, E.M.; Weber, J. HDAC Inhibition Upregulates PD-1 Ligands in Melanoma and Augments Immunotherapy with PD-1 Blockade. Cancer Immunol. Res. 2015, 3, 1375–1385. [Google Scholar] [CrossRef]
- Gatla, H.R.; Muniraj, N.; Thevkar, P.; Yavvari, S.; Sukhavasi, S.; Makena, M.R. Regulation of Chemokines and Cytokines by Histone Deacetylases and an Update on Histone Decetylase Inhibitors in Human Diseases. Int. J. Mol. Sci. 2019, 20, 1110. [Google Scholar] [CrossRef]
- Zheng, D.X.; Bozym, D.J.; Tarantino, G.; Sullivan, R.J.; Liu, D.; Jenkins, R.W. Overcoming Resistance Mechanisms to Melanoma Immunotherapy. Am. J. Clin. Dermatol. 2025, 26, 77–96. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Gu, J.; Fan, H.; Zhang, L.; Guo, J.; Si, L. Evolving cancer resistance to anti-PD-1/PD-L1 antibodies in melanoma: Comprehensive insights with future prospects. Crit. Rev. Oncol. Hematol. 2024, 201, 104426. [Google Scholar] [CrossRef] [PubMed]
- Yeon, M.; Kim, Y.; Jung, H.S.; Jeoung, D. Histone Deacetylase Inhibitors to Overcome Resistance to Targeted and Immuno Therapy in Metastatic Melanoma. Front. Cell Dev. Biol. 2020, 8, 486. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, D.; Migliano, E.; Muscardin, L.; Silipo, V.; Catricala, C.; Picardo, M.; Bellei, B. The role of Wnt/beta-catenin signaling pathway in melanoma epithelial-to-mesenchymal-like switching: Evidences from patients-derived cell lines. Oncotarget 2016, 7, 43295–43314. [Google Scholar] [CrossRef]
- Billin, A.N.; Thirlwell, H.; Ayer, D.E. Beta-catenin-histone deacetylase interactions regulate the transition of LEF1 from a transcriptional repressor to an activator. Mol. Cell Biol. 2000, 20, 6882–6890. [Google Scholar] [CrossRef]
- Shi, Y.; Gilkes, D.M. HIF-1 and HIF-2 in cancer: Structure, regulation, and therapeutic prospects. Cell Mol. Life Sci. 2025, 82, 44. [Google Scholar] [CrossRef]
- Malekan, M.; Ebrahimzadeh, M.A.; Sheida, F. The role of Hypoxia-Inducible Factor-1alpha and its signaling in melanoma. Biomed. Pharmacother. 2021, 141, 111873. [Google Scholar] [CrossRef]
- Kim, J.Y.; Cho, H.; Yoo, J.; Kim, G.W.; Jeon, Y.H.; Lee, S.W.; Kwon, S.H. HDAC8 Deacetylates HIF-1alpha and Enhances Its Protein Stability to Promote Tumor Growth and Migration in Melanoma. Cancers 2023, 15, 1123. [Google Scholar] [CrossRef]
- Zbytek, B.; Peacock, D.L.; Seagroves, T.N.; Slominski, A. Putative role of HIF transcriptional activity in melanocytes and melanoma biology. Dermatoendocrinology 2013, 5, 239–251. [Google Scholar] [CrossRef]
- Ibrahim, A.; Mohamady Farouk Abdalsalam, N.; Liang, Z.; Kashaf Tariq, H.; Li, R.; Afolabi, L.O.; Rabiu, L.; Chen, X.; Xu, S.; Xu, Z.; et al. MDSC checkpoint blockade therapy: A new breakthrough point overcoming immunosuppression in cancer immunotherapy. Cancer Gene Ther. 2025, 32, 371–392. [Google Scholar] [CrossRef]
- O’Connell, M.P.; Marchbank, K.; Webster, M.R.; Valiga, A.A.; Kaur, A.; Vultur, A.; Li, L.; Herlyn, M.; Villanueva, J.; Liu, Q.; et al. Hypoxia induces phenotypic plasticity and therapy resistance in melanoma via the tyrosine kinase receptors ROR1 and ROR2. Cancer Discov. 2013, 3, 1378–1393. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, F.; Tucker, S.L.; Sarr, D.; Rada, B. PI3K/NF-kappaB-dependent TNF-alpha and HDAC activities facilitate LPS-induced RGS10 suppression in pulmonary macrophages. Cell Signal 2021, 86, 110099. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.Q.; Xu, Y.; Fu, X.; Pan, D.S.; Lu, X.P.; Xiao, Y.; Jiang, Y.Z. Advances in targeting histone deacetylase for treatment of solid tumors. J. Hematol. Oncol. 2024, 17, 37. [Google Scholar] [CrossRef] [PubMed]
- Huijberts, S.; Wang, L.; de Oliveira, R.L.; Rosing, H.; Nuijen, B.; Beijnen, J.; Bernards, R.; Schellens, J.; Wilgenhof, S. Vorinostat in patients with resistant BRAF(V600E) mutated advanced melanoma: A proof of concept study. Future Oncol. 2020, 16, 619–629. [Google Scholar] [CrossRef]
- Haas, N.B.; Quirt, I.; Hotte, S.; McWhirter, E.; Polintan, R.; Litwin, S.; Adams, P.D.; McBryan, T.; Wang, L.; Martin, L.P.; et al. Phase II trial of vorinostat in advanced melanoma. Investig. New Drugs 2014, 32, 526–534. [Google Scholar] [CrossRef]
- Ibrahim, N.; Buchbinder, E.I.; Granter, S.R.; Rodig, S.J.; Giobbie-Hurder, A.; Becerra, C.; Tsiaras, A.; Gjini, E.; Fisher, D.E.; Hodi, F.S. A phase I trial of panobinostat (LBH589) in patients with metastatic melanoma. Cancer Med. 2016, 5, 3041–3050. [Google Scholar] [CrossRef]
- El Omari, N.; Bakrim, S.; Khalid, A.; Abdalla, A.N.; Almalki, W.H.; Lee, L.H.; Ardianto, C.; Ming, L.C.; Bouyahya, A. Molecular mechanisms underlying the clinical efficacy of panobinostat involve Stochasticity of epigenetic signaling, sensitization to anticancer drugs, and induction of cellular cell death related to cellular stresses. Biomed. Pharmacother. 2023, 164, 114886. [Google Scholar] [CrossRef]
- Woods, D.M.; Woan, K.; Cheng, F.; Wang, H.; Perez-Villarroel, P.; Lee, C.; Lienlaf, M.; Atadja, P.; Seto, E.; Weber, J.; et al. The antimelanoma activity of the histone deacetylase inhibitor panobinostat (LBH589) is mediated by direct tumor cytotoxicity and increased tumor immunogenicity. Melanoma Res. 2013, 23, 341–348. [Google Scholar] [CrossRef]
- Fragale, A.; Stellacci, E.; Romagnoli, G.; Licursi, V.; Parlato, S.; Canini, I.; Remedi, G.; Buoncervello, M.; Matarrese, P.; Pedace, L.; et al. Reversing vemurafenib-resistance in primary melanoma cells by combined romidepsin and type I IFN treatment through blocking of tumorigenic signals and induction of immunogenic effects. Int. J. Cancer 2023, 153, 1080–1095. [Google Scholar] [CrossRef]
- Patel, R.P.; Thomas, J.R.; Curt, K.M.; Fitzsimmons, C.M.; Batista, P.J.; Bates, S.E.; Gottesman, M.M.; Robey, R.W. Dual Inhibition of Histone Deacetylases and the Mechanistic Target of Rapamycin Promotes Apoptosis in Cell Line Models of Uveal Melanoma. Investig. Ophthalmol. Vis. Sci. 2021, 62, 16. [Google Scholar] [CrossRef]
- El Omari, N.; Bakrim, S.; Khalid, A.; Albratty, M.; Abdalla, A.N.; Lee, L.H.; Goh, K.W.; Ming, L.C.; Bouyahya, A. Anticancer clinical efficiency and stochastic mechanisms of belinostat. Biomed. Pharmacother. 2023, 165, 115212. [Google Scholar] [CrossRef] [PubMed]
- Faiao-Flores, F.; Smalley, K.S. Histone deacetylase inhibitors: A promising partner for MEK inhibitors in uveal melanoma? Melanoma Manag. 2019, 6, MMT29. [Google Scholar] [CrossRef] [PubMed]
- Ny, L.; Jespersen, H.; Karlsson, J.; Alsen, S.; Filges, S.; All-Eriksson, C.; Andersson, B.; Carneiro, A.; Helgadottir, H.; Levin, M.; et al. The PEMDAC phase 2 study of pembrolizumab and entinostat in patients with metastatic uveal melanoma. Nat. Commun. 2021, 12, 5155. [Google Scholar] [CrossRef]
- Lili, M. Tucidinostat plus toripalimab in patients with unresectable or metastatic melanoma: An open-label, single-arm phase II study. J. Clin. Oncol. 2024, 42, e21527. [Google Scholar]
- Mazzio, E.A.; Soliman, K.F.A. Whole-transcriptomic Profile of SK-MEL-3 Melanoma Cells Treated with the Histone Deacetylase Inhibitor: Trichostatin A. Cancer Genom. Proteom. 2018, 15, 349–364. [Google Scholar] [CrossRef]
- Embaby, A.; Huijberts, S.; Wang, L.; Leite de Oliveira, R.; Rosing, H.; Nuijen, B.; Sanders, J.; Hofland, I.; van Steenis, C.; Kluin, R.J.C.; et al. A Proof-of-Concept Study of Sequential Treatment with the HDAC Inhibitor Vorinostat following BRAF and MEK Inhibitors in BRAFV600-Mutated Melanoma. Clin. Cancer Res. 2024, 30, 3157–3166. [Google Scholar] [CrossRef]
- Agarwala, S.S.; Moschos, S.J.; Johnson, M.L.; Opyrchal, M.; Gabrilovich, D.; Danaher, P.; Wang, F.; Brouwer, S.; Ordentlich, P.; Sankoh, S.; et al. Efficacy and safety of entinostat (ENT) and pembrolizumab (PEMBRO) in patients with melanoma progressing on or after a PD-1/L1 blocking antibody. J. Clin. Oncol. 2018, 36, 9530. [Google Scholar] [CrossRef]
- Yenisehirli, G.; Borges, S.; Braun, S.S.; Zuniga, A.N.; Quintana, G.I.; Kutsnetsoff, J.N.; Rodriguez, S.; Adis, E.V.; Lopez, S.; Dollar, J.J.; et al. Identification of targetable epigenetic vulnerabilities in uveal melanoma. bioRxiv 2024. [Google Scholar] [CrossRef]
- Lai, Z.Y.; Li, D.Y.; Huang, C.Y.; Tung, K.C.; Yang, C.C.; Liu, H.M.; Chou, F.I.; Chuang, Y.J. Valproic Acid Enhances Radiosensitization via DNA Double-strand Breaks for Boronophenylalanine-mediated Neutron Capture Therapy in Melanoma Cells. Anticancer Res. 2022, 42, 3413–3426. [Google Scholar] [CrossRef]
- Shyu, Y.M.; Liu, L.Y.; Chuang, Y.J. Synergistic Effect of Simultaneous versus Sequential Combined Treatment of Histone Deacetylase Inhibitor Valproic Acid with Etoposide on Melanoma Cells. Int. J. Mol. Sci. 2021, 22, 10029. [Google Scholar] [CrossRef]
- Majalakere, K.; Kunhana, S.B.; Rao, S.; Kalal, B.S.; Badiadka, N.; Sanjeev, G.; Holla, B.S. Studies on imidazo[2,1-b][1,3]benzothiazole derivatives as new radiosensitizers. SN Appl. Sci. 2020, 2, 1–8. [Google Scholar] [CrossRef]
- Faiao-Flores, F.; Emmons, M.F.; Durante, M.A.; Kinose, F.; Saha, B.; Fang, B.; Koomen, J.M.; Chellappan, S.P.; Maria-Engler, S.S.; Rix, U.; et al. HDAC Inhibition Enhances the In Vivo Efficacy of MEK Inhibitor Therapy in Uveal Melanoma. Clin. Cancer Res. 2019, 25, 5686–5701. [Google Scholar] [CrossRef]
- Gallagher, S.J.; Gunatilake, D.; Beaumont, K.A.; Sharp, D.M.; Tiffen, J.C.; Heinemann, A.; Weninger, W.; Haass, N.K.; Wilmott, J.S.; Madore, J.; et al. HDAC inhibitors restore BRAF-inhibitor sensitivity by altering PI3K and survival signalling in a subset of melanoma. Int. J. Cancer 2018, 142, 1926–1937. [Google Scholar] [CrossRef] [PubMed]
- Ryden, V.; El-Naggar, A.I.; Koliadi, A.; Ladjevardi, C.O.; Digkas, E.; Valachis, A.; Ullenhag, G.J. The role of dacarbazine and temozolomide therapy after treatment with immune checkpoint inhibitors in malignant melanoma patients: A case series and meta-analysis. Pigment. Cell Melanoma Res. 2024, 37, 352–362. [Google Scholar] [CrossRef]
- Kalal, B.S.; Fathima, F.; Pai, V.R.; Sanjeev, G.; Krishna, C.M.; Upadhya, D. Inhibition of ERK1/2 or AKT Activity Equally Enhances Radiation Sensitization in B16F10 Cells. World J. Oncol. 2018, 9, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Ung, J.; Kassai, M.; Tan, S.F.; Loughran, T.P., Jr.; Feith, D.J.; Cabot, M.C. The Drug Transporter P-Glycoprotein and Its Impact on Ceramide Metabolism-An Unconventional Ally in Cancer Treatment. Int. J. Mol. Sci. 2024, 25, 9825. [Google Scholar] [CrossRef]
- Jespersen, H.; Olofsson Bagge, R.; Ullenhag, G.; Carneiro, A.; Helgadottir, H.; Ljuslinder, I.; Levin, M.; All-Eriksson, C.; Andersson, B.; Stierner, U.; et al. Concomitant use of pembrolizumab and entinostat in adult patients with metastatic uveal melanoma (PEMDAC study): Protocol for a multicenter phase II open label study. BMC Cancer 2019, 19, 415. [Google Scholar] [CrossRef]
- Johnson, D.B.; Peng, C.; Sosman, J.A. Nivolumab in melanoma: Latest evidence and clinical potential. Ther. Adv. Med. Oncol. 2015, 7, 97–106. [Google Scholar] [CrossRef]
HDAC Classification | HDAC Isoform(s) | Localization | Role in Melanoma | Key Characteristics |
---|---|---|---|---|
Class I | HDAC1, HDAC2, HDAC3, HDAC8 | Nucleus |
|
|
|
| |||
Class II | HDAC4, HDAC5, HDAC7, HDAC9 | Nucleus, Cytoplasm |
|
|
Class III (Sirtuins) | SIRT1, SIRT2, SIRT3, SIRT5, SIRT6 | Nucleus, Cytoplasm, Mitochondria |
|
|
Class IV | HDAC11 | Nucleus |
|
|
Class I/II Dual | HDAC6 | Nucleus, Cytoplasm |
|
|
Class I/II Dual | HDAC10 | Nucleus, Cytoplasm |
|
|
HDAC Inhibitor | Class Specificity | Mechanism of Action | Combination Therapy | Clinical Outcome |
---|---|---|---|---|
Vorinostat (SAHA) | Pan-HDACi | Inhibits HDACs, leading to the accumulation of acetylated histones and non-histone proteins. Induces cell cycle arrest, apoptosis, and differentiation. | BRAF/MEK inhibitors; Chemotherapy | Variable efficacy; Overcomes resistance in some cases but significant toxicities observed. |
Romidepsin | Class I selective | Potent inhibitor of Class I HDACs. Alters the expression of genes involved in cell survival and apoptosis. | Chemotherapy; Immunotherapy | Modest single-agent activity; Synergistic effects in combination, but toxicity remains a concern. |
Belinostat | Pan-HDACi | Inhibits Class I and II HDACs. Modulates the expression of oncogenes and tumor suppressor genes. | Dacarbazine; PD-1 inhibitors | Limited efficacy as monotherapy; Potential to enhance immunotherapy response. |
Panobinostat | Pan-HDACi | Non-selective inhibitor of Class I, II, and III HDACs. Disrupts multiple signaling pathways. | BRAF inhibitors; Bortezomib | Significant toxicities; Efficacy in overcoming resistance is limited by adverse effects. |
Entinostat | Class I selective | Selective inhibitor of HDAC1 and HDAC3. Restores the expression of tumor suppressor genes. | BRAF/MEK inhibitors; Immunotherapy | Promising preclinical results; Clinical trials show potential to enhance targeted therapy and immunotherapy. |
Givinostat | Class II selective | Inhibits HDAC6 and HDAC8. Affects cell motility, invasion, and immune modulation. | Chemotherapy; Targeted therapy | Preclinical efficacy in reducing metastasis; Clinical trials ongoing. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalal, B.S. Role of Histone Deacetylases in Drug-Resistant Melanoma: Mechanisms and Therapeutic Implications. Kinases Phosphatases 2025, 3, 8. https://doi.org/10.3390/kinasesphosphatases3020008
Kalal BS. Role of Histone Deacetylases in Drug-Resistant Melanoma: Mechanisms and Therapeutic Implications. Kinases and Phosphatases. 2025; 3(2):8. https://doi.org/10.3390/kinasesphosphatases3020008
Chicago/Turabian StyleKalal, Bhuvanesh Sukhlal. 2025. "Role of Histone Deacetylases in Drug-Resistant Melanoma: Mechanisms and Therapeutic Implications" Kinases and Phosphatases 3, no. 2: 8. https://doi.org/10.3390/kinasesphosphatases3020008
APA StyleKalal, B. S. (2025). Role of Histone Deacetylases in Drug-Resistant Melanoma: Mechanisms and Therapeutic Implications. Kinases and Phosphatases, 3(2), 8. https://doi.org/10.3390/kinasesphosphatases3020008