Isolation of Novel Fungal Endophytes from Wild Relatives of Barley (Hordeum vulgare L.) and In Vitro Screening for Plant Growth Promotion and Antifungal Activity
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Target Plant Species
2.3. Isolation of Endophytic Fungi
2.4. Fungal DNA Extraction
2.5. DNA Barcoding
2.6. Criteria for Selection of Potential Beneficial Fungi
2.7. Screening for Phosphate Solubilization
2.8. Screening for Ammonia Production
2.9. Screening for IAA Synthesis
2.10. Screening for Antifungal Activity
- A1 = represents the area of the pathogen in the control group
- A2 = represents the area of the pathogen in the treatment group
2.11. Statistical Analysis
3. Results
3.1. Identification of Fungal Endophytes
3.2. Antifungal Activity
3.3. Ammonia Production, Phosphorous Solubilization and IAA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Waqar, S.; Bhat, A.A.; Khan, A.A. Endophytic fungi: Unravelling plant-endophyte interaction and the multifaceted role of fungal endophytes in stress amelioration. Plant Physiol. Biochem. 2024, 206, 108174. [Google Scholar] [CrossRef] [PubMed]
- Watts, D.; Palombo, E.A.; Jaimes Castillo, A.; Zaferanloo, B. Endophytes in agriculture: Potential to improve yields and tolerances of agricultural crops. Microorganisms 2023, 11, 1276. [Google Scholar] [CrossRef]
- Gowtham, H.G.; Hema, P.; Murali, M.; Shilpa, N.; Nataraj, K.; Basavaraj, G.L.; Singh, S.B.; Aiyaz, M.; Udayashankar, A.C.; Amruthesh, K.N. Fungal endophytes as mitigators against biotic and abiotic stresses in crop plants. J. Fungi 2024, 10, 116. [Google Scholar] [CrossRef]
- Muthu Narayanan, M.; Ahmad, N.; Shivanand, P.; Metali, F. The role of endophytes in combating fungal- and bacterial-induced stress in plants. Molecules 2022, 27, 6549. [Google Scholar] [CrossRef]
- Elhady, A.; Abbasi, S.; Safaie, N.; Heuer, H. Responsiveness of elite cultivars vs. ancestral genotypes of barley to beneficial rhizosphere microbiome, supporting plant defense against root-lesion nematodes. Front. Plant Sci. 2021, 12, 721016. [Google Scholar] [CrossRef]
- Aleynova, O.A.; Nityagovsky, N.N.; Suprun, A.R.; Ananev, A.A.; Dubrovina, A.S.; Kiselev, K.V. The diversity of fungal endophytes from wild grape Vitis amurensis Rupr. Plants 2022, 11, 2897. [Google Scholar] [CrossRef]
- Gladysh, N.S.; Bogdanova, A.S.; Kovalev, M.A.; Krasnov, G.S.; Volodin, V.V.; Shuvalova, A.I.; Ivanov, N.V.; Popchenko, M.I.; Samoilova, A.D.; Polyakova, A.N.; et al. Culturable bacterial endophytes of wild white poplar (Populus alba L.) roots: A first insight into their plant growth-stimulating and bioaugmentation potential. Biology 2023, 12, 1519. [Google Scholar] [CrossRef]
- Høyer, A.K.; Jørgensen, H.J.L.; Hodkinson, T.R.; Jensen, B. Fungal endophytes isolated from Elymus repens, a wild relative of barley, have potential for biological control of Fusarium culmorum and Pyrenophora teres in barley. Pathogens 2022, 11, 1097. [Google Scholar] [CrossRef]
- Mantzoukas, S.; Papantzikos, V.; Katsogiannou, S.; Papanikou, A.; Koukidis, C.; Servis, D.; Eliopoulos, P.; Patakioutas, G. Biostimulant and bioinsecticidal effect of coating cotton seeds with endophytic Beauveria bassiana in semi-field conditions. Microorganisms 2023, 11, 2050. [Google Scholar] [CrossRef] [PubMed]
- Csótó, A.; Tóth, G.; Riczu, P.; Zabiák, A.; Tarjányi, V.; Fekete, E.; Karaffa, L.; Sándor, E. Foliar spraying with endophytic Trichoderma biostimulant increases drought resilience of maize and sunflower. Agriculture 2024, 14, 2360. [Google Scholar] [CrossRef]
- Soytong, K.; Kahonokmedhakul, S.; Song, J.; Tongon, R. Chaetomium application in agriculture. In Technology in Agriculture; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Liu-Xu, L.; Vicedo, B.; García-Agustín, P.; Llorens, E. Advances in endophytic fungi research: A data analysis of 25 years of achievements and challenges. J. Plant Interact. 2022, 17, 244–266. [Google Scholar] [CrossRef]
- Høyer, A.K.; Jørgensen, H.J.L.; Jensen, B.; Murphy, B.R.; Hodkinson, T.R. Emerging methods for biological control of barley dis- eases including the role of endophytes. In Endophytes for a Growing World; Springer: Cambridge, UK, 2019; pp. 93–119. [Google Scholar] [CrossRef][Green Version]
- Liu, J.; Wang, Z.; Chen, Z.; White, J.F.; Malik, K.; Chen, T.; Li, C. Inoculation of Barley (Hordeum vulgare) with the endophyte Epichloë bromicola affects plant growth, and the microbial community in roots and rhizosphere soil. J. Fungi 2022, 8, 172. [Google Scholar] [CrossRef] [PubMed]
- Achatz, B.; von Rüden, S.; Andrade, D.; Neumann, E.; Pons-Kühnemann, J.; Kogel, K.-H.; Franken, P.; Waller, F. Root colonization by Piriformospora indica enhances grain yield in barley under diverse nutrient regimes by accelerating plant development. Plant Soil 2010, 333, 59–70. [Google Scholar] [CrossRef]
- Murphy, B.; Hodkinson, T.; Doohan, F. Method for Improving the Mean Dry Shoot Weight, Mean Dry Grain Weight, and Suppressing Seed-Borne Infection in a Cereal Crop. U.S. Patent US10765084B2, 8 September 2020. Available online: https://patents.google.com/patent/US10765084B2/en (accessed on 18 November 2025).
- Murphy, B.; Doohan, F.; Hodkinson, T. Endophytes from Wild Populations of Barley Increase Crop Yield. EP3723474A1, 20 June 2019. Available online: https://patents.google.com/patent/EP3723474A1/en (accessed on 18 November 2025).
- Kouadria, R.; Bouzouina, M.; Lotmani, B.; Soualem, S. Unraveling the role of endophytic fungi in barley salt-stress tolerance. Hell. Plant Prot. J. 2023, 16, 12–22. [Google Scholar] [CrossRef]
- Moya, P.; Pedemonte, D.; Amengual, S.; Franco, M.E.E.; Sisterna, M.N. Antagonism and modes of action of Chaetomium globosum species group, potential biocontrol agent of barley foliar diseases. Boletin Soc. Argent. Bot. 2016, 51, 569–578. [Google Scholar] [CrossRef]
- Pašakinskienė, I.; Stakelienė, V.; Matijošiūtė, S.; Martūnas, J.; Rimkevičius, M.; Būdienė, J.; Aučina, A.; Skridaila, A. Growth-promoting effects of grass root-derived fungi Cadophora fastigiata, Paraphoma fimeti and Plectosphaerella cucumerina on spring barley (Hordeum vulgare) and Italian ryegrass (Lolium multiflorum). Microorganisms 2025, 13, 25. [Google Scholar] [CrossRef]
- Tiwari, M.; Devi, B.; Sinha, S.; Yadav, N.; Singh, P. Intergenerational priming by Trichoderma alleviates drought stress in barley. Environ. Exp. Bot. 2024, 223, 105772. [Google Scholar] [CrossRef]
- Murphy, B.R.; Doohan, F.M.; Hodkinson, T.R. Fungal root endophytes of a wild barley species increase yield in a nutrient-stressed barley cultivar. Symbiosis 2015, 65, 1–7. [Google Scholar] [CrossRef]
- Hosseyni Moghaddam, M.S.; Hagh-Doust, N.; Safaie, N.; Rahimlou, S. Inducing tolerance to abiotic stress in Hordeum vulgare L. by halotolerant endophytic fungi associated with salt lake plants. Front. Microbiol. 2022, 13, 906365. [Google Scholar] [CrossRef]
- Ghabooli, M.; Khatabi, B.; Shahriary Ahmadi, F.; Sepehri, M.; Mirzaei, M.; Amirkhani, A.; Jorrín-Novo, J.V.; Hosseini Salekdeh, G. Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley. J. Proteom. 2013, 94, 289–301. [Google Scholar] [CrossRef]
- Ghaffari, M.R.; Mirzaei, M.; Ghabooli, M.; Khatabi, B.; Wu, Y.; Zabet-Moghaddam, M.; Mohammadi-Nejad, G.; Haynes, P.A.; Hajirezaei, M.R.; Sepehri, M.; et al. Root endophytic fungus Piriformospora indica improves drought stress adaptation in barley by metabolic and proteomic reprogramming. Environ. Exp. Bot. 2019, 157, 197–210. [Google Scholar] [CrossRef]
- Lang, M.; Zhou, J.; Chen, T.; Chen, Z.; Malik, K.; Li, C. Influence of interactions between nitrogen, phosphorus supply and Epichloё bromicola on growth of wild barley (Hordeum brevisubulatum). J. Fungi 2021, 7, 615. [Google Scholar] [CrossRef]
- Maxted, N.; Ford-Lloyd, B.V.; Jury, S.; Kell, S.; Scholten, M. Towards a definition of a crop wild relative. Biodivers. Conserv. 2006, 15, 2673–2685. [Google Scholar] [CrossRef]
- Soldi, E.; Casey, C.; Murphy, B.R.; Hodkinson, T.R. Fungal endophytes for grass-based bioremediation: An endophytic consor- tium isolated from Agrostis stolonifera stimulates the growth of Festuca arundinacea in lead contaminated soil. J. Fungi 2020, 6, 254. [Google Scholar] [CrossRef]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.D.; Lee, S.B.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar] [CrossRef]
- Murphy, B.R.; Martin Nieto, L.; Doohan, F.M.; Hodkinson, T.R. Profundae diversitas: The uncharted genetic diversity in a newly studied group of fungal root endophytes. Mycology 2015, 6, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Doilom, M.; Guo, J.-W.; Phookamsak, R.; Mortimer, P.E.; Karunarathna, S.C.; Dong, W.; Liao, C.-F.; Yan, K.; Pem, D.; Suwannarach, N.; et al. Screening of phosphate-solubilizing fungi from air and soil in Yunnan, China: Four novel species in Aspergillus, Gongronella, Penicillium, and Talaromyces. Front. Microbiol. 2020, 11, 585215. [Google Scholar] [CrossRef]
- Utomo, W.P.; Wu, H.; Ng, Y.H. Quantification methodology of ammonia produced from electrocatalytic and photocatalytic nitrogen/nitrate reduction. Energies 2023, 16, 27. [Google Scholar] [CrossRef]
- Mehmood, A.; Hussain, A.; Irshad, M.; Hamayun, M.; Iqbal, A.; Khan, N. In vitro production of IAA by endophytic fungus Aspergillus awamori and its growth promoting activities in Zea mays. Symbiosis 2019, 77, 225–235. [Google Scholar] [CrossRef]
- Khalil, A.M.A.; Hassan, S.E.-D.; Alsharif, S.M.; Eid, A.M.; Ewais, E.E.-D.; Azab, E.; Gobouri, A.A.; Elkelish, A.; Fouda, A. Isolation and characterization of fungal endophytes isolated from medicinal plant Ephedra pachyclada as plant growth-promoting. Biomolecules 2021, 11, 140. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- Usuki, H.; Toyo-oka, M.; Kanzaki, H.; Okuda, T.; Nitoda, T. Pochonicine, a polyhydroxylated pyrrolizidine alkaloid from fungus Pochonia suchlasporia var. suchlasporia TAMA 87 as a potent β-N-acetylglucosaminidase inhibitor. Bioorganic Med. Chem. 2009, 17, 7248–7253. [Google Scholar] [CrossRef] [PubMed]
- Suminto, S.; Takatsuji, E.; Iguchi, A.; Kanzaki, H.; Okuda, T.; Nitoda, T. A new asteltoxin analog with insecticidal activity from Pochonia suchlasporia TAMA 87. J. Pestic. Sci. 2020, 45, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Wakelin, S.A.; Anstis, S.T.; Warren, R.A.; Ryder, M.H. The role of pathogen suppression on the growth promotion of wheat by Penicillium radicum. Australas. Plant Pathol. 2006, 35, 253–258. [Google Scholar] [CrossRef]
- Nath, R.; Sharma, G.D.; Barooah, M. Efficiency of tricalcium phosphate solubilization by two different endophytic Penicillium sp. isolated from tea (Camellia sinensis L.). Eur. J. Exp. Biol. 2012, 2, 1354–1358. [Google Scholar]
- Radhakrishnan, R. IAA-producing Penicillium sp. NICS01 triggers plant growth and suppresses Fusarium sp.-induced oxidative stress in sesame (Sesamum indicum L.). J. Microbiol. Biotechnol. 2013, 23, 856–863. [Google Scholar] [CrossRef]
- Babu, A.G.; Kim, S.W.; Yadav, D.R.; Hyum, U.; Adhikari, M.; Lee, Y.S. Penicillium menonorum: A novel fungus to promote growth and nutrient management in cucumber plants. Mycobiology 2015, 43, 49–56. [Google Scholar] [CrossRef]
- Moghaddam, M.S.; Safaie, N.; Soltani, J.; Hagh-Doust, N. Desert-adapted fungal endophytes induce salinity and drought stress resistance in model crops. Plant Physiol. Biochem. 2021, 160, 225–238. [Google Scholar] [CrossRef]
- Høyer, A.K.; Hodkinson, T.R. Hidden fungi: Combining culture-dependent and -independent DNA barcoding reveals inter-plant variation in species richness of endophytic root fungi in Elymus repens. J. Fungi 2021, 7, 466. [Google Scholar] [CrossRef]
- Rojas, E.C.; Jensen, B.; Jørgensen, H.J.L.; Latz, M.A.C.; Esteban, P.; Ding, Y.; Collinge, D.B. Selection of fungal endophytes with biocontrol potential against Fusarium head blight in wheat. Biol. Control 2020, 144, 104222. [Google Scholar] [CrossRef]
- El-Sayed, A.S.A.; Moustafa, A.H.; Hussein, H.A.; El-Sheikh, A.A.; El-Shafey, S.N.; Fathy, N.A.M.; Enan, G.A. Potential insecticidal activity of Sarocladium strictum, an endophyte of Cynancum acutum, against Spodoptera littoralis, a polyphagous insect pest. Biocatal. Agric. Biotechnol. 2020, 24, 101524. [Google Scholar] [CrossRef]
- Błaszczyk, L.; Waśkiewicz, A.; Gromadzka, K.; Mikołajczak, K.; Chełkowski, J. Sarocladium and Lecanicillium associated with maize seeds and their potential to form selected secondary metabolites. Biomolecules 2021, 11, 98. [Google Scholar] [CrossRef]
- Sangeetha, C.; Krishnamoorthy, A.S.; Nakkeeran, S.; Ramakrishnan, S.; Amirtham, D. Evaluation of bioactive compounds of Ophiocordyceps sinensis [Berk.] Sacc. against Fusarium spp. Biochem. Cell. Arch. 2015, 15, 431–435. [Google Scholar]
- Jaihan, P.; Sangdee, K.; Sangdee, A. Selection of entomopathogenic fungus for biological control of chili anthracnose disease caused by Colletotrichum spp. Eur. J. Plant Pathol. 2016, 146, 551–564. [Google Scholar] [CrossRef]
- Pravin, A.; Durgadevi, D.; Srivignesh, S.; Subramanian, K.S.; Nakkeeran, S.; Amirtham, D.; Krishnamoorthy, A.S. Antifungal activity of Chinese caterpillar fungus (Ophiocordyceps sinensis Berk.) against anthracnose disease on banana. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 848–859. [Google Scholar] [CrossRef]
- Akshaya, S.B.; Krishnamoorthy, A.S.; Sangeetha, C.; Nakkeeran, S.; Thiribhuvanamala, G. Investigation on antifungal metabolites of Chinese caterpillar fungus Ophiocordyceps sinensis (Berk.) against wilt causing pathogen, Fusarium spp. Ann. Phytomed. 2021, 10, 195–201. [Google Scholar] [CrossRef]
- Ownley, B.H.; Pereira, R.M.; Klingeman, W.E.; Quigley, N.B.; Leckie, B.M. Beauveria bassiana, a dual-purpose biocontrol organism, with activity against insect pests and plant pathogens. In Emerging Concepts in Plant Health Management; Lartey, R.T., Caesar, A.J., Eds.; The University of Tennessee: Knoxville, TN, USA, 2004; pp. 255–269. [Google Scholar]
- Griffin, M.R. Beauveria bassiana, a Cotton Endophyte with Biocontrol Activity Against Seedling Disease. Ph.D. Thesis, University of Tennessee, Knoxville, TN, USA, 2007. Available online: https://trace.tennessee.edu/utk_graddiss (accessed on 5 August 2024).
- Ownley, B.H.; Gwinn, K.D.; Vega, F.E. Endophytic fungal entomopathogens with activity against plant pathogens: Ecology and evolution. BioControl 2010, 55, 113–128. [Google Scholar] [CrossRef]
- Abdel-Baky, N.F. Cladosporium spp. An entomopathogenic fungus for controlling whiteflies and aphids in Egypt. Pak. J. Biol. Sci. 2000, 3, 1662–1667. [Google Scholar] [CrossRef]
- Wang, X.; Radwan, M.M.; Taráwneh, A.H.; Gao, J.; Wedge, D.E.; Rosa, L.H.; Cutler, H.G.; Cutler, S.J. Antifungal activity against plant pathogens of metabolites from the endophytic fungus Cladosporium cladosporioides. J. Agric. Food Chem. 2013, 61, 4551–4555. [Google Scholar] [CrossRef]
- Abdelaziz, O.; Senoussi, M.M.; Oufroukh, A.; Birgücü, A.K.; Karaca, İ.; Kouadri, F.; Bensegueni, A. Pathogenicity of three entomopathogenic fungi to the aphid species, Metopolophium dirhodum (Walker) (Hemiptera: Aphididae), and their alkaline protease activities. Egypt. J. Biol. Pest Control 2018, 28, 30. [Google Scholar] [CrossRef]
- Islam, T.; Gupta, D.R.; Surovy, M.Z.; Mahmud, N.U.; Mazlan, N.; Islam, T. Identification and application of a fungal biocontrol agent Cladosporium cladosporioides against Bemisia tabaci. Biotechnol. Biotechnol. Equip. 2019, 33, 1698–1705. [Google Scholar] [CrossRef]
- Seethapathy, P.; Sankarasubramanian, H.; Lingan, R.; Thiruvengadam, R. Chaetomium sp.: An insight into its antagonistic mechanisms, mass multiplication, and production cost analysis. In Agricultural Microbiology Based Entrepreneurship; Amaresan, N., Dharumadurai, D., Babalola, O.O., Eds.; Springer: Singapore, 2023; pp. 269–292. [Google Scholar] [CrossRef]
- Luo, D.; Tang, H.; Yang, X.; Wang, F.; Liu, J. Fungicidal activity of L-696,474 and cytochalasin D from the ascomycete Daldinia concentrica against plant pathogenic fungi. Eur. PMC 2010, 113–122. Available online: https://europepmc.org/article/CBA/636850 (accessed on 5 August 2024).
- Liarzi, O.; Bar, E.; Lewinsohn, E.; Ezra, D. Use of the endophytic fungus Daldinia cf. concentrica and its volatiles as bio-control agents. PLoS ONE 2016, 11, e0168242. [Google Scholar] [CrossRef]
- Liarzi, O.; Bucki, P.; Miyara, S.B.; Ezra, D. Bioactive volatiles from an endophytic Daldinia cf. concentrica isolate affect the viability of the plant parasitic nematode Meloidogyne javanica. PLoS ONE 2016, 11, e0168437. [Google Scholar] [CrossRef]
- Hashem, M.; Ali, E. Epicoccum nigrum as biocontrol agent of Pythium damping-off and root-rot of cotton seedlings. Arch. Phytopathol. Plant Protect. 2004, 37, 283–297. [Google Scholar] [CrossRef]
- Larena, I.; Melgarejo, P. Development of a new strategy for monitoring Epicoccum nigrum 282, a biological control agent used against brown rot caused by Monilinia spp. in peaches. Postharvest Biol. Technol. 2009, 54, 63–71. [Google Scholar] [CrossRef]
- Ogórek, R.; Pląskowska, E. Epicoccum nigrum for biocontrol agents in vitro of plant fungal pathogens. Commun. Agric. Appl. Biol. Sci. 2011, 76, 691–697. [Google Scholar]
- Fávaro, L.C.L.d.; Sebastianes, F.L.S.d.; Araújo, W.L. Epicoccum nigrum P16, a sugarcane endophyte, produces antifungal compounds and induces root growth. PLoS ONE 2012, 7, e36826. [Google Scholar] [CrossRef]
- Li, T.; Liu, M.J.; Zhang, X.T.; Zhang, H.B.; Sha, T.; Zhao, Z.W. Improved tolerance of maize (Zea mays L.) to heavy metals by colonization of a dark septate endophyte (DSE) Exophiala pisciphila. Sci. Total Environ. 2011, 409, 1069–1074. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.L.; Hamayun, M.; Ahmad, N.; Waqas, M.; Kang, S.M.; Kim, Y.H.; Lee, I.J. Exophiala sp. LHL08 reprograms Cucumis sativus to higher growth under abiotic stresses. Physiol. Plant. 2011, 143, 329–343. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.L.; Hamayun, M.; Waqas, M.; Kang, S.M.; Kim, Y.H.; Kim, D.H.; Lee, I.J. Exophiala sp. LHL08 association gives heat stress tolerance by avoiding oxidative damage to cucumber plants. Biol. Fertil. Soils 2012, 48, 519–529. [Google Scholar] [CrossRef]
- Xu, R.; Li, T.; Shen, M.; Yang, Z.L.; Zhao, Z.W. Evidence for a dark septate endophyte (Exophiala pisciphila, H93) enhancing phosphorus absorption by maize seedlings. Plant Soil 2020, 452, 249–266. [Google Scholar] [CrossRef]
- Rungjindamai, N.; Jones, E.B.G. Why are there so few basidiomycota and basal fungi as endophytes? A review. J. Fungi 2024, 10, 67. [Google Scholar] [CrossRef]
- Molina, L.; Rajchenberg, M.; de Errasti, A.; Aime, M.C.; Pildain, M.B. Sapwood-inhabiting mycobiota and Nothofagus tree mortality in Patagonia: Diversity patterns according to tree species, plant compartment and health condition. For. Ecol. Manag. 2020, 462, 117997. [Google Scholar] [CrossRef]
- Srinivasan, R.; Prabhu, G.; Prasad, M.; Mishra, M.; Chaudhary, M.; Srivastava, R. Role of beneficial microbes in agro-ecology. In Beneficial Microbes in Agro-Ecology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 651–667. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, W.; Wang, D.; Cao, D.; Cao, Y.; He, W.; Lin, Z.; Chen, X.; Ye, G.; Chen, Z.; et al. A novel endophytic fungus strain of Cladosporium: Its identification, genomic analysis, and effects on plant growth. Front. Microbiol. 2023, 14, 1287582. [Google Scholar] [CrossRef]
- Patriarca, A.; Fernández Pinto, V. Alternaria. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Ekwomadu, T.I.; Mwanza, M. Fusarium fungi pathogens, identification, adverse effects, disease management, and global food security: A review of the latest research. Agriculture 2023, 13, 1810. [Google Scholar] [CrossRef]
- Swathy, K.; Parmar, M.K.; Vivekanandhan, P. Biocontrol efficacy of entomopathogenic fungi Beauveria bassiana conidia against agricultural insect pests. Environ. Qual. Manag. 2024, 34, e22174. [Google Scholar] [CrossRef]
- Chellapandi, P.; Saranya, S. Ophiocordyceps sinensis: A potential caterpillar fungus for the production of bioactive compounds. Explor. Res. Hypothesis Med. 2024, 9, 236–249. [Google Scholar] [CrossRef]
- Wesseler, J. The EU’s Farm-to-Fork Strategy: An Assessment from the Perspective of Agricultural Economics. Appl. Econ. Perspect. Policy 2022, 44, 1826–1843. [Google Scholar] [CrossRef]
- Krouk, G.; Kiba, T. Nitrogen and Phosphorus interactions in plants: From agronomic to physiological and molecular insights. Curr. Opin. Plant Biol. 2020, 57, 104–109. [Google Scholar] [CrossRef]
- Teagasc. Controlling Disease in Winter Barley. Available online: https://teagasc.ie/news--events/daily/controlling-disease-in-winter-barley/ (accessed on 1 September 2025).
- Teagasc. Diseases. Available online: https://teagasc.ie/crops/crops/cereal-crops/winter-cereals/diseases/ (accessed on 1 September 2025).
- Vassileva, M.; de Oliveira Mendes, G.; Deriu, M.A.; di Benedetto, G.; Flor-Peregrin, E.; Mocali, S.; Martos, V.; Vassilev, N. Fungi, P-solubilization, and plant nutrition. Microorganisms 2022, 10, 1716. [Google Scholar] [CrossRef]
- Vera-Morales, M.; López Medina, S.E.; Naranjo-Morán, J.; Quevedo, A.; Ratti, M.F. Nematophagous Fungi: A review of their phosphorus solubilization potential. Microorganisms 2023, 11, 137. [Google Scholar] [CrossRef] [PubMed]
- Moonjely, S.; Zhang, X.; Fang, W.; Bidochka, M.J. Metarhizium robertsii ammonium permeases (MepC and Mep2) contribute to rhizoplane colonization and modulates the transfer of insect derived nitrogen to plants. PLoS ONE 2019, 14, e0223718. [Google Scholar] [CrossRef]
- Luo, X.; Liu, Y.; Li, S.; He, X. Interplant carbon and nitrogen transfers mediated by common arbuscular mycorrhizal networks: Beneficial pathways for system functionality. Front. Plant Sci. 2023, 14, 1169310. [Google Scholar] [CrossRef]
- Wang, X.; Wang, C.; Sui, J.; Liu, Z.; Li, Q.; Ji, C.; Song, X.; Hu, Y.; Wang, C.; Sa, R.; et al. Isolation and characterization of phosphofungi, and screening of their plant growth-promoting activities. AMB Express 2018, 8, 63. [Google Scholar] [CrossRef]
- Mehta, P.; Sharma, R.; Putatunda, C.; Walia, A. Endophytic fungi: Role in phosphate solubilization. In Advances in Endophytic Fungal Research; Singh, B., Ed.; Springer: Cham, Switzerland, 2019; pp. 149–171. [Google Scholar] [CrossRef]
- Yakti, W.; Kovács, G.M.; Vági, P.; Franken, P. Impact of dark septate endophytes on tomato growth and nutrient uptake. Plant Ecol. Divers. 2018, 11, 637–648. [Google Scholar] [CrossRef]
- Rajini, S.B.; Nandhini, M.; Udayashankar, A.C.; Niranjana, S.R.; Lund, O.S.; Prakash, H.S. Diversity, plant growth promoting traits and biocontrol potential of fungal endophytes of Sorghum bicolor. Plant Pathol. 2020, 69, 131–142. [Google Scholar] [CrossRef]
- Barra-Bucarei, L.; González, M.G.; Iglesias, A.F.; Aguayo, G.S.; Peñalosa, M.G.; Vera, P.V. Beauveria bassiana multifunction as an endophyte: Growth promotion and biologic control of Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) in tomato. Insects 2020, 11, 591. [Google Scholar] [CrossRef]
- Surendirakumar, K.; Pandey, R.R.; Muthukumar, T. Distribution, molecular characterization and phosphate solubilization activity of culturable endophytic fungi from crop plant roots in North East (NE) India. Vegetos 2023, 37, 2400–2412. [Google Scholar] [CrossRef]
- Echeverria, M.; Izzi, Y.S.; Criado, M.V.; Caputo, C. Isolation and characterization of dematiaceous endophytic fungi isolated from barley (Hordeum vulgare L.) roots and their potential use as phosphate solubilizers. Microbe 2024, 3, 100058. [Google Scholar] [CrossRef]
- Suebrasri, T.; Harada, H.; Jogloy, S.; Ekprasert, J.; Boonlue, S. Auxin-producing fungal endophytes promote growth of sunchoke. Rhizosphere 2020, 16, 100271. [Google Scholar] [CrossRef]
- Gateta, T.; Nacoon, S.; Seemakram, W.; Ekprasert, J.; Theerakulpisut, P.; Sanitchon, J.; Suwannarach, N.; Boonlue, S. The potential of endophytic fungi for enhancing the growth and accumulation of phenolic compounds and anthocyanin in Maled Phai Rice (Oryza sativa L.). J. Fungi 2023, 9, 937. [Google Scholar] [CrossRef]
- Ait Bessai, S.; Bensidhoum, L.; Nabti, E. Optimization of IAA production by telluric bacteria isolated from northern Algeria. Biocatal. Agric. Biotechnol. 2022, 41, 102319. [Google Scholar] [CrossRef]
- Basile, B.; Brown, N.; Valdes, J.M.; Cardarelli, M.; Scognamiglio, P.; Mataffo, A.; Rouphael, Y.; Bonini, P.; Colla, G. Plant-Based Biostimulant as Sustainable Alternative to Synthetic Growth Regulators in Two Sweet Cherry Cultivars. Plants 2021, 10, 619. [Google Scholar] [CrossRef]
- Martins, N.F.; Viana, M.J.A.; Maigret, B. Fungi tryptophan synthases: What is the role of the linker connecting the α and β structural domains in Hemileia vastatrix TRPS? A molecular dynamics investigation. Molecules 2024, 29, 756. [Google Scholar] [CrossRef]
- Seibold, P.S.; Dörner, S.; Fricke, J.; Schäfer, T.; Beemelmanns, C.; Hoffmeister, D. Genetic Regulation of L-Tryptophan metabolism in Psilocybe mexicana supports psilocybin biosynthesis. Fungal Biol. Biotechnol. 2024, 11, 4. [Google Scholar] [CrossRef] [PubMed]
- Turbat, A.; Rakk, D.; Vigneshwari, A.; Kocsubé, S.; Thu, H.; Szepesi, Á.; Bakacsy, L.; Škrbić, D.; Jigjiddorj, E.-A.; Vágvölgyi, C.; et al. Characterization of the plant growth-promoting activities of endophytic fungi isolated from Sophora flavescens. Microorganisms 2020, 8, 683. [Google Scholar] [CrossRef]
- Ikram, M.; Ali, N.; Jan, G.; Jan, F.G.; Pervez, R.; Romman, M.; Zainab, R.; Yasmin, H.; Khan, N. Isolation of endophytic fungi from halophytic plants and their identification and screening for auxin production and other plant growth promoting traits. J. Plant Growth Regul. 2023, 42, 4707–4723. [Google Scholar] [CrossRef]
- Khan, M.R.; Brien, E.O.; Carney, B.F.; Doohan, F.M. A fluorescent Pseudomonas shows potential for the control of net-blotch disease of barley. Biol. Control 2010, 54, 41–45. [Google Scholar] [CrossRef]
- Backes, A.; Vaillant-Gaveau, N.; Esmaeel, Q.; Ait Barka, E.; Jacquard, C. A biological agent modulates the physiology of barley infected with Drechslera teres. Sci. Rep. 2021, 11, 8330. [Google Scholar] [CrossRef]
- Dutilloy, E.; Arguëlles Arias, A.; Richet, N.; Guise, J.-F.; Duban, M.; Leclère, V.; Selim, S.; Jacques, P.; Jacquard, C.; Clément, C.; et al. Bacillus velezensis BE2 controls wheat and barley diseases by direct antagonism and induced systemic resistance. Appl. Microbiol. Biotechnol. 2024, 108, 64. [Google Scholar] [CrossRef]
- Moya, P.; Barrera, V.; Cipollone, J.; Bedoya, C.; Kohan, L.; Toledo, A.; Sisterna, M. New isolates of Trichoderma spp. as biocontrol and plant growth–promoting agents in the pathosystem Pyrenophora teres-barley in Argentina. Biol. Control 2020, 143, 104152. [Google Scholar] [CrossRef]
- Moya, P.; Girotti, J.R.; Toledo, A.V.; Sisterna, M.N. Antifungal activity of Trichoderma VOCs against Pyrenophora teres, the causal agent of barley net blotch. J. Plant Prot. Res. 2018, 58, 45–53. [Google Scholar] [CrossRef]
- Méndez, I.; Fallard, A.; Soto, I.; Tortella, G.; de la Luz Mora, M.; Valentine, A.J.; Barra, P.J.; Durán, P. Efficient biocontrol of Gaeumannomyces graminis var. tritici in wheat: Using bacteria isolated from suppressive soils. Agronomy 2021, 11, 2008. [Google Scholar] [CrossRef]
- Zhao, G.; Sun, T.; Zhang, Z.; Zhang, J.; Bian, Y.; Hou, C.; Zhang, D.; Han, S.; Wang, D. Management of take-all disease caused by Gaeumannomyces graminis var. tritici in wheat through Bacillus subtilis strains. Front. Microbiol. 2023, 14, 1118176. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Xu, L.; Deng, X.; Goodwin, P.H.; Xia, M.; Zhang, J.; Wang, Q.; Sun, R.; Pan, Y.; Wu, C.; et al. Biological control of take-all and growth promotion in wheat by Pseudomonas chlororaphis YB-10. Pathogens 2021, 10, 903. [Google Scholar] [CrossRef] [PubMed]
- Gholami, M.; Amini, J.; Abdollahzadeh, J.; Ashengroph, M. Basidiomycetes fungi as biocontrol agents against take-all disease of wheat. Biol. Control 2019, 130, 34–43. [Google Scholar] [CrossRef]
- Saberi-Riseh, R.; Moradi-Pour, M. A novel encapsulation of Streptomyces fulvissimus Uts22 by spray drying and its biocontrol efficiency against Gaeumannomyces graminis, the causal agent of take-all disease in wheat. Pest Manag. Sci. 2021, 77, 4357–4364. [Google Scholar] [CrossRef]
- Moradi Pour, M.; Hassanisaadi, M.; Kennedy, J.F.; Saberi Riseh, R. A novel biopolymer technique for encapsulation of Bacillus velezensis BV9 into double-coating biopolymer made by in alginate and natural gums to biocontrol of wheat take-all disease. Int. J. Biol. Macromol. 2024, 257, 128526. [Google Scholar] [CrossRef]
- Vera Palma, C.A.; Madariaga Burrows, R.P.; Gerding González, M.; Ruiz Sepúlveda, B.; Moya-Elizondo, E.A. Integration between Pseudomonas protegens strains and fluquinconazole for the control of take-all in wheat. Crop Prot. 2019, 121, 163–172. [Google Scholar] [CrossRef]
- Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying Down Rules on the Making Available on the Market of EU Fertilising Products. Off. J. Eur. Union 2019, L 170/1, 1–114. Available online: http://data.europa.eu/eli/reg/2019/1009/oj (accessed on 10 September 2025).
- European Biostimulants Industry Council (EBIC). Faster, Safer Access to Microbial Plant Biostimulants: A Criteria-Based Simplification of CMC 7 (EBIC Position Paper). 6 June 2025. Available online: https://biostimulants.eu/wp-content/uploads/2025/06/20250606-EBIC-MO-PositionPaper-v7-final.pdf (accessed on 5 September 2025).
- European Commission. EU Pesticides Database: Active Substances. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/active-substances (accessed on 16 September 2025).
- Bejarano, A.; Puopolo, G. Bioformulation of microbial biocontrol agents for a sustainable agriculture. In How Research Can Stimulate the Development of Commercial Biological Control Against Plant Diseases; De Cal, A., Melgarejo, P., Magan, N., Eds.; Progress in Biological Control; Springer: Cham, Switzerland, 2020; Volume 21. [Google Scholar] [CrossRef]
- Köhl, J. Use of beneficial microorganisms in crop production: Do current regulatory frameworks in the EU fit for purpose? BioControl 2025, 70, 433–450. [Google Scholar] [CrossRef]


| Locations | LA | EF | ER | BH | BS | BK | LP | Samples Collected |
|---|---|---|---|---|---|---|---|---|
| Phoenix Park | X | X | 50 BK; 15 BS | |||||
| Sandymount Strand | X | X | 25 LA; 25 EF | |||||
| Tymon Park | X | X | X | 15 BH; 20 BS; 10 LP | ||||
| Corkagh Park | X | X | X | 25 ER; 10 BS; 10 LP | ||||
| Malahide Beach | X | X | 25 LA; 25 EF | |||||
| Saint Ann’s Park | X | X | X | 10 BH; 10 BS; 10 LP | ||||
| St. Catherine’s Park | X | 10 BS | ||||||
| Killiney Beach | X | X | 25 LA; 25 EF | |||||
| Clontarf Walk | X | X | 10 BS; 10 BH | |||||
| Fairview Park | X | X | 10 BS; 10 LP | |||||
| Portrane Beach | X | X | 25 LA; 25 EF | |||||
| North Bull’s Island | X | X | 25 LA; 25 EF | |||||
| Tolka Valley Park | X | X | X | X | 20 ER; 15 BH; 10 BS; 15 BK | |||
| Marlay Park | X | X | X | 25 ER; 5 BS; 20 BK | ||||
| Portmarnock | X | X | X | X | X | 25 LA: 25 EF; 10 ER; 10 BH; 10 BS | ||
| Donabate Beach | X | X | 25 LA; 25 EF | |||||
| Rush North Beach | X | X | 25 LA; 25 EF | |||||
| Seagrange Park | X | 10 BS | ||||||
| Balbriggan Beach | X | X | 25 LA; 25 EF | |||||
| Griffeen Valley Park | X | X | 15 ER; 15 BS | |||||
| Merrion Strand | X | X | 25 LA; 25 EF | |||||
| Baldoyle to Portmarnock Promenade | X | X | X | 10 LP; 10 BH; 10 BS |
| Isolate Code | Isolate Species | Selected Functions According to Literature | References |
|---|---|---|---|
| LP21-2; EF21-33 | Metapochonia suchlasporia | Nematode egg-parasite | [37,38] |
| EF21-34; LA21-18 LA21-15; LA21-26 LA21-17; LA21-39 LA21-43; BK21-15 | Penicillium sp. | Phytohormone production Abiotic stress amelioration Solubilization of nutrients Antifungal activity | [39,40,41,42] |
| SB21-1 | Periconia macrospinosa | Abiotic stress amelioration Solubilization of nutrients | [43,44,45] |
| LA21-22 | Sarocladium strictum | Insecticidal activity Antifungal activity | [46,47] |
| BK21-31 | Ophiocordyceps sinensis | Entomopathogen | [48,49,50,51] |
| LA21-12 | Beauveria bassiana | Entomopathogen Antifungal activity | [52,53,54] |
| LA21-27; ER21-10 | Cladosporium sp. | Entomopathogen Antifungal activity | [55,56,57,58] |
| EF21-36; LA21-11; EF21-16 | Chaetomium sp. Chaetomium subglobosum | Antifungal activity | [11,59] |
| BK21-13; ER21-3; ER21-7 | Daldinia concentrica | Antifungal activity | [60,61,62] |
| BS21-8 | Epicoccum nigrum | Antifungal activity | [63,64,65,66] |
| BS21-9; EF21-23 | Exophiala sp. Exophiala aquamarina | Abiotic stress amelioration Solubilization of nutrients | [67,68,69,70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Bianchi, D.D.; Hodkinson, T.R. Isolation of Novel Fungal Endophytes from Wild Relatives of Barley (Hordeum vulgare L.) and In Vitro Screening for Plant Growth Promotion and Antifungal Activity. Grasses 2026, 5, 7. https://doi.org/10.3390/grasses5010007
Bianchi DD, Hodkinson TR. Isolation of Novel Fungal Endophytes from Wild Relatives of Barley (Hordeum vulgare L.) and In Vitro Screening for Plant Growth Promotion and Antifungal Activity. Grasses. 2026; 5(1):7. https://doi.org/10.3390/grasses5010007
Chicago/Turabian StyleBianchi, Diego D., and Trevor R. Hodkinson. 2026. "Isolation of Novel Fungal Endophytes from Wild Relatives of Barley (Hordeum vulgare L.) and In Vitro Screening for Plant Growth Promotion and Antifungal Activity" Grasses 5, no. 1: 7. https://doi.org/10.3390/grasses5010007
APA StyleBianchi, D. D., & Hodkinson, T. R. (2026). Isolation of Novel Fungal Endophytes from Wild Relatives of Barley (Hordeum vulgare L.) and In Vitro Screening for Plant Growth Promotion and Antifungal Activity. Grasses, 5(1), 7. https://doi.org/10.3390/grasses5010007

