Changes in Species Composition, Diversity, and Biomass of Secondary Dry Grasslands Following Long-Term Mowing: A Case Study in Hungary
Abstract
:1. Introduction
- How can the spread of dominant grass be controlled? Can mowing reduce C. epigejos coverage, and if so, how long does it take?
- How does the number of species and the Shannon diversity of the grassland change during the experiment?
- Does the grassland productivity value change during the treatment? How is the distribution of the main grassland utilization groups changing?
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Data Collecting
- Dominant grass species i.e.: C. epigejos;
- Subordinate grass species important for grassland management;
- Fabaceae species important for grassland management;
- Other Dicotyledonous species neutral for grassland management;
- Thorny, prickly plants;
- Litter, (standing dead biomass, and lying dead biomass).
2.3. Statistical Analyses
3. Results
3.1. Effects of Mowing on the Cover of C. epigejos
3.2. Effects of Mowing on the Number of Species and Diversity
3.3. Effects of Mowing on Biomass Composition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
References
- Wallis De Vries, M.F.; Poschlod, P.; Willes, J.H. Challenges for the conservation of calcareous grasslands in Northwestern Europe: Integrating the requirements of flora and fauna. Biol. Conserv. 2002, 104, 265–273. [Google Scholar] [CrossRef]
- Dengler, J.; Janišová, M.; Török, P.; Wellstein, C. Biodiversity of Palaearctic grasslands: A synthesis. Agric. Ecosyst. Environ. 2014, 182, 1–14. [Google Scholar] [CrossRef]
- Willner, W.; Kuzemko, A.; Dengler, J.; Chytrý, M.; Bauer, N.; Becker, T.; Biţă-Nicolae, C.; Botta-Dukát, Z.; Čarni, A.; Csiky, J.; et al. A higher-level classification of the Pannonian and western Pontic steppe grasslands (Central and Eastern Europe). Appl. Veg. Sci. 2017, 20, 143–158. [Google Scholar] [CrossRef] [PubMed]
- Morabito, A.; Musarella, C.M.; Spampinato, G. Diversity and Ecological Assessment of Grasslands Habitat Types: A Case Study in the Calabria Region (Southern Italy). Land 2024, 13, 719. [Google Scholar] [CrossRef]
- Poschlod, P.; Wallis de Vries, M.F. The historical and socioeconomic perspective of calcareous grasslands–lessons from the distant and recent past. Biol. Conserv. 2002, 104, 361–376. [Google Scholar] [CrossRef]
- Ruprecht, E.; Szabó, A.; Enyedi, M.Z.; Dengler, J. Steppe-like grasslands in Transylvania (Romania): Characterisation and influence of management on species diversity and composition. Tuexenia 2009, 29, 353–368. [Google Scholar]
- Pärtel, M.; Bruun, H.H.; Sammul, M. Biodiversity in temperate European grasslands: Origin and conservation. Grassl. Sci. Eur. 2005, 10, 14. [Google Scholar]
- Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’Connor, T.; O’Farrell, P.J.; Smith, H.G.; Lindborg, R. Grasslands—More important for ecosystem services than you might think. Ecosphere 2019, 10, e02582. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef]
- Fiala, K.; Holub, P.; Sedláková, I.; Tůma, I.; Záhora, J.; Tesařová, M. Reasons and consequences of expansion of Calamagrostis epigejos in alluvial meadows of landscape affected by water control measures. Ekologia 2003, 22 (Suppl. S2), 242–252. [Google Scholar]
- Nadal-Romero, E.; Khorchani, M.; Gaspar, L.; Arnáez, J.; Cammeraat, E.; Navas, A.; Lasanta, T. How do land use and land cover changes after farmland abandonment affect soil properties and soil nutrients in Mediterranean mountain agroecosystems? CATENA 2023, 226, 107062. [Google Scholar] [CrossRef]
- Kozak, J.; Ostapowicz, K.; Szablowska-Midor, A.; Widacki, W. Land abandonment in the western Beskidy Mts and its environmental background. Ekologia 2004, 23, 116. [Google Scholar]
- Díaz, S.; Settele, J.; Brondízio, E.S.; Ngo, H.T.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.A.; Butchart, S.H.M.; Chan, K.M.A.; et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 2019, 366, 1327. [Google Scholar] [CrossRef] [PubMed]
- Lindborg, R. Recreating grasslands in Swedish rural landscapes—Effects of seed sowing and management history. Biodivers. Conserv. 2006, 15, 957–969. [Google Scholar] [CrossRef]
- Mendenhall, C.D.; Karp, D.S.; Meyer CF, J.; Hadly, E.A.; Daily, G.C. Predicting biodiversity change and averting collapse in agricultural landscapes. Nature 2014, 509, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Semenchuk, P.; Essl, F.; Lenzner, B.; Moser, D.; Blackburn, T.M.; Cassey, P.; Biancolini, D.; Capinha, C.; Dawson, W.; et al. The impact of land use on non-native species incidence and number in local assemblages worldwide. Nat. Commun. 2023, 14, 2090. [Google Scholar] [CrossRef] [PubMed]
- Jendrišáková, S.; Kováčiková, Z.; Vargová, V.; Michalec, M. The impact of cattle and sheep grazing on grassland in Veľká Fatra National Park. J. Water Land. Dev. 2011, 15, 83–90. [Google Scholar] [CrossRef]
- Kuzmanović, N.; Šinžar-Sekulić, J.; Lakušić, D. Leaf anatomy of the Sesleria rigida Heuffel ex Reichenb. (Poaceae) in Serbia. Bot. Serbica 2009, 33, 51–67. [Google Scholar]
- Bonanomi, G.; Incerti, G.; Allegrezza, M. Assessing the impact of land abandonment, nitrogen enrichment and fairy-ring fungi on plant diversity of Mediterranean grasslands. Biodiv. Conserv. 2013, 22, 2285–2304. [Google Scholar] [CrossRef]
- Tardella, F.M.; Malatesta, L.; Goia, I.G.; Catorci, A. Effects of long-term mowing on coenological composition and recovery routes of a Brachypodium rupestre-invaded community: Insight into the restoration of sub-Mediterranean productive grasslands. Rend. Fis. Acc. Lincei 2018, 29, 329–341. [Google Scholar] [CrossRef]
- Hejcman, M.; Češková, M.; Schellberg, J.; Pätzold, S. The Rengen grassland experiment: Effect of soil chemical properties on biomass production, plant species composition and species richness. Folia Geobot. 2010, 45, 125–142. [Google Scholar] [CrossRef]
- Catorci, A.; Ottaviani, G.; Ballelli, S.; Cesaretti, S. Functional differentiation of Central Apennine grasslands under mowing and grazing disturbance regimes. Pol. J. Ecol. 2011, 59, 115–128. [Google Scholar]
- Sammon, J.G.; Wilkins, K.T. Effects of an invasive grass (Bothriochloa ischaemum) on a grassland rodent community. Tex. J. Sci. 2005, 57, 371–383. [Google Scholar]
- Rebele, F. Calamagrostis epigejos (L.) Roth auf anthropogenen Standorten–ein Überblick. Verh. Ges. Okol. 1996, 26, 753–763. [Google Scholar]
- Rebele, F.; Lehmann, C. Biological Flora of Central Europe: Calamagrostis epigejos (L.). Roth. Flora 2001, 196, 325–344. [Google Scholar] [CrossRef]
- Gloser, V.; Košvancová, M.; Gloser, J. Changes in growth parameters and content of N-storage compounds in roots and rhizomes of Calamagrostis epigejos after repeated defoliation. Biol. Bratisl. 2004, 59, 179–184. [Google Scholar]
- Prach, K.; Pyšek, P. Using spontaneous succession for restoration of human-disturbed habitats: Experience from Central Europe. Ecol. Eng. 2001, 17, 55–62. [Google Scholar] [CrossRef]
- Huhta, A.; Pasi, R.; Tuomi, J.; Laine, K. Restorative mowing on an abandoned semi-natural meadow: Short-term and predicted long-term effects. J. Veg. Sci. 2001, 12, 677–686. [Google Scholar] [CrossRef]
- Sedláková, I.; Fiala, K. Ecological degradation of alluvial meadows due to expanding Calamagrostis epigejos. Ekologia 2001, 20 (Suppl. S3), 226–333. [Google Scholar]
- Kompała-Bąba, A.; Sierka, E.; Dyderski, M.K.; Bierza, W.; Magurno, F.; Besenyei, L.; Błońska, A.; Ryś, K.; Jagodziński, A.M.; Woźniak, G. Do the dominant plant species impact the substrate and vegetation composition of post-coal mining spoil heaps? Ecol. Eng. 2020, 143, 105685. [Google Scholar] [CrossRef]
- Zhukovskaya, O.; Ulanova, N.G. Influence of brushing frequency on birch population structure after felling. Ecoscience 2006, 13, 219–225. [Google Scholar] [CrossRef]
- Csontos, P. Light ecology and regeneration on clearings of sessile oak-turkey oak forests in the Visegrád mountains, Hungary. Acta Bot. Hung. 2010, 52, 265–286. [Google Scholar] [CrossRef]
- Fiala, K.; Tůma, I.; Holub, P. Effect of nitrogen addition and drought on aboveground biomass of expanding tall grasses Calamagrostis epigejos and Arrhenatherum elatius. Biologia 2011, 66, 275–281. [Google Scholar] [CrossRef]
- Błońska, E.; Kempf, M.; Lasota, J. Woody debris as a substrate for the growth of a new generation of forest trees. For. Ecol. Manag. 2022, 525, 120566. [Google Scholar] [CrossRef]
- Prach, K. Succession of vegetation on dumps from strip coal mining, N.W. Bohemia, Czechoslovakia. Folia Geobot. Phytotax 1987, 22, 339–354. [Google Scholar] [CrossRef]
- Bartha, S. Preliminary scaling for multi-species coalitions in primary succession. Abstr. Bot. 1992, 16, 31–41. [Google Scholar]
- Baasch, A.; Tischew, S.; Bruelheide, H. Twelve years of succession on sandy substrates in a post-mining landscape: A Markov chain analysis. Ecol. Appl. 2010, 20, 136–1147. [Google Scholar] [CrossRef]
- Hultén, E.; Fries, M. Atlas of North European Vascular Plants: North of the Tropic of Cancer I–III; Koeltz Scientific Books: Königstein, Germany, 1986. [Google Scholar]
- Csecserits, A.; Rédei, T. Secondary Succession on Sandy Old-Fields in Hungary. Appl. Veg. Sci. 2001, 4, 63–74. [Google Scholar] [CrossRef]
- Bartha, S.; Szentes, S.; Horváth, A.; Házi, J.; Zimmermann, Z.; Molnár, C.; Dancza, I.; Margóczi, K.; Pál, R.W.; Purger, D.; et al. Impact of midsuccessional dominant species on the diversity and progress of succession in regenerating temperate grasslands. Appl. Veg. Sci. 2014, 17, 201–213. [Google Scholar] [CrossRef]
- Rothmaler, W. Exkursionsflora von Deutschland; Aufl. n Volk und Wissen Verlag: Berlin, Germany, 1988; Bd. 3. n 7. [Google Scholar]
- Hajnáczki, S.; Pajor, F.; Péter, N.; Bodnár, A.; Penksza, K.; Póti, P. Solidago gigantea Ait. and Calamagrostis epigejos (L) Roth invasive plants as potential forage for goats. Not. Bot. Horti Agrobot. 2021, 49, 12197. [Google Scholar] [CrossRef]
- Marosi, S.; Somogyi, S. (Eds.) Magyarország Kistájainak Katasztere (Cadastral of Microregions of Hungary); MTA Földrajztudományi Kutatóintézet: Budapest, Hungary, 1991; pp. 379–388. [Google Scholar]
- Borhidi, A.; Kevey, B.; Lendvai, G. Plant Communities of Hungary; Akadémiai Kiadó: Budapest, Hungary, 2012; 544p. [Google Scholar]
- European Environment Agency. 6250 Pannonic Loess Steppic Grasslands. Report under the Article 17 of the Habitats Directive Period 2007–2012. Available online: https://eunis.eea.europa.eu/habitats/10124#sites (accessed on 20 December 2022).
- Házi, J.; Bartha, S.; Szentes, S.; Wichmann, B.; Penksza, K. Seminatural grassland management by mowing of Calamagrostis epigejos in Hungary. Plant Biosyst. 2011, 145, 699–707. [Google Scholar] [CrossRef]
- Házi, J.; Purger, D.; Penksza, K.; Bartha, S. Interaction of Management and Spontaneous Succession Suppresses the Impact of Harmful Native Dominant Species in a 20-Year-Long Experiment. Land 2023, 12, 149. [Google Scholar] [CrossRef]
- Klapp, E.; Boeker, P.; König, F.; Stählin, A. Wertzahlen der Grünlandpflanzen. Grünland 1953, 2, 38–40. [Google Scholar]
- Spellerberg, I.F.; Fedor, P.J. A Tribute to Claude Shannon (1916–2001) and a Plea for More Rigorous Use of Species Richness, Species Diversity and the ‘Shannon–Wiener’ Index. Glob. Ecol. Biogeogr. 2003, 12, 177–179. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; ISBN 3-900051-07-0. Available online: http://www.R-project.org (accessed on 20 February 2018).
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 1. Available online: http://palaeo-electronica.org/2001_1/past/issue1_01.htm (accessed on 20 February 2023).
- Klimeš, L.; Klimešova, J. The effects of mowing and fertilisation on carbohydrate reserves and regrowth of grasses: Do they promote plant coexistence in species-rich meadows? Evol. Ecol. 2002, 15, 363–382. [Google Scholar] [CrossRef]
- Kavanová, M.; Gloser, V. The use of internal nitrogen stores in the rhizomatous grass Calamagrostis epigejos during regrowth after defoliation. Ann. Bot. 2005, 85, 457–463. [Google Scholar] [CrossRef]
- Mudrák, O.; Doležal, J.; Frouz, J. Initial species composition predicts the progress in the spontaneous succession on post-mining sites. Ecol. Eng. 2016, 95, 665–670. [Google Scholar] [CrossRef]
- Wozniak, G.; Chmura, D.; Małkowski, E.; Zieleznik-Rusinowska, P.; Sitko, K.; Ziemer, B.; Błonska, A. Is the Age of Novel Ecosystem the Factor Driving Arbuscular Mycorrhizal Colonization in Poa compressa and Calamagrostis epigejos? Plants 2021, 10, 949. [Google Scholar] [CrossRef]
- Gerwin, W.; Raab, T.; Birkhofer, K.; Hinz, C.; Letmathe, P.; Leuchner, M.; Roß-Nickoll, M.; Rüde, T.; Trachte, K.; Wätzold, F.; et al. Perspectives of lignite post-mining landscapes under changing environmental conditions: What can we learn from a comparison between the Rhenish and Lusatian region in Germany? Environ. Sci. Eur. 2023, 35, 36. [Google Scholar] [CrossRef]
- Díaz, S.; Lavorel, S.; McIntyre, S.; Falczuk, V.; Casanoves, F.; Milchunas, D.G.; Skarpe, C.; Rusch, G.; Sternberg, M.; Noy-Meir, I.; et al. Plant Trait Responses to Grazing—A Global Synthesis. Glob. Chang. Biol. 2007, 13, 313–341. [Google Scholar] [CrossRef]
- Grime, J.P. Benefits of Plant Diversity to Ecosystems: Immediate, Filter and Founder Effects. J. Ecol. 1998, 86, 902–910. [Google Scholar] [CrossRef]
- Zhang, J.; Zuo, X.; Zhou, X.; Lv, P.; Lian, J.; Yue, X. Long-Term Grazing Effects on Vegetation Characteristics and Soil Properties in a Semiarid Grassland, Northern China. Environ. Monit. Assess. 2017, 189, 216. [Google Scholar] [CrossRef] [PubMed]
- Bobbink, R.; Durink, H.; Schreurs, J.; Willems, J.; Zielman, R. Effects of selective clipping and mowing time on species diversity in chalk grassland. Folia Geobot. Phytotaxon. 1987, 22, 363–376. [Google Scholar] [CrossRef]
- Bobbink, R.; Willems, J.H. Impact of different cutting regimes on the performance of Brachypodium pinnatum in Dutch Chalk Grassland. Biol. Conserv. 1991, 56, 1–21. [Google Scholar] [CrossRef]
- Fenner, M.; Palmer, L. Grassland management to promote diversity: Creation of patchy sward by mowing and fertiliser regimes. Field Stud. 1998, 9, 313–324. [Google Scholar]
- Valkó, O.; Zmihorski, M.; Biurrun, I.; Loos, J.; Labadessa, R.; Venn, S. Ecology and conservation of steppes and semi-natural grasslands. Hacquetia 2016, 15, 5–14. [Google Scholar] [CrossRef]
- Sierka, E.; Kopczynska, S. Participation of Calamagrostis epigejos (L.) Roth in plant communities of the River Bytomka valley in terms of its biomass use in power industry. Environ. Socio-Econ. Stud. 2014, 2, 38–44. [Google Scholar] [CrossRef]
- Neuhaus, R.A. A Comparison of the Effects of Burning, Haying and Mowing on Plants and Small Mammals in a Tallgrass Prairie Reconstruction. Master’s Thesis, University of Northern Iowa, Cedar Falls, IA, USA, 2015. Available online: https://scholarworks.uni.edu/etd/216 (accessed on 20 March 2024).
- Tardella, F.M.; Bricca, A.; Piermarteri, K.; Postiglione, N.; Catorci, A. Context-dependent variation of SLA and plant height of a dominant, invasive tall grass (Brachypodium genuense) in subMediterranean grasslands. Flora 2017, 229, 116–123. [Google Scholar] [CrossRef]
- Oelmann, Y.; Broll, G.; Hölzel, N.; Kleinebecker, T.; Vogel, A.; Schwartze, P. Nutrient impoverishment and limitation of productivity after 20 years of conservation management in wet grasslands of north-western Germany. Biol. Conserv. 2009, 142, 2941–2948. [Google Scholar] [CrossRef]
- Szépligeti, M.; Kőrösi, Á.; Szentirmai, I.; Házi, J.; Bartha, D.; Bartha, S. Evaluating alternative mowing regimes for conservation management of Central European mesic hay meadows: A field experiment. Plant Biosyst. 2018, 152, 90–97. [Google Scholar] [CrossRef]
- Tälle, M.; Deák, B.; Poschlod, P.; Valkó, O.; Westerberg, L.; Milberg, P. Grazing vs. mowing: A meta-analysis of biodiversity benefits for grassland management. Agric. Ecosyst. Environ. 2016, 222, 200–212. [Google Scholar] [CrossRef]
- Piseddu, F.; Bellocchi, G.; Picon-Cochard, C. Mowing and warming effects on grassland species richness and harvested biomass: Meta-analyses. Agron. Sustain. Dev. 2021, 41, 74. [Google Scholar] [CrossRef]
- Sheil, D.; Burslem, D.F.R.P. Defining and defending Connell’s intermediate disturbance hypothesis: A response to Fox. Trends Ecol. Evol. 2013, 28, 571–572. [Google Scholar] [CrossRef]
- Peltzer, D.A. Plant responses to competition and soil origin across a prairie–forest boundary. J. Ecol. 2001, 89, 176–185. [Google Scholar] [CrossRef]
- Kachler, J.; Benra, F.; Bolliger, R.; Isaac, R.; Bonn, A.; Felipe-Lucia, M.R. Felipe: Can we have it all? The role of grassland conservation in supporting forage production and plant diversity. Landsc. Ecol. 2023, 38, 4451–4465. [Google Scholar] [CrossRef]
- Simon, T. Magyarország Edényes Flóra Határozója; Harasztok-Virágos Növények. (Vascular Plants of Hungary: Ferns-Flowering Plants); Tankönyvkiadó: Budapest, Hungary, 1992; 976p. [Google Scholar]
MOWN | CONTROL | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2001 | 2006 | 2011 | 2001 | 2006 | 2011 | ||||||
Mean | Mean | Mean | Mean | Mean | Mean | ||||||
Total cover absolute | 95.54 | a | 102.18 | a | 111.91 | b | 108.09 | a | 108.03 | a | 111.71 |
Cover of C. epigejos absolute | 62.38 | a | 20.00 | b | 07.50 | c | 69.38 | a | 62.50 | a | 56.88 |
Cover of C. epigejos relative | 00.65 | a | 00.19 | a | 00.06 | b | 00.64 | a | 00.58 | a | 00.51 |
Cover of subordinated species absolute | 33.16 | a | 82.18 | b | 104.41 | c | 38.71 | a | 45.53 | b | 54.84 |
Cover of subordinated species relative | 00.35 | a | 00.81 | b | 0.94 | a | 00.36 | a | 00.42 | a | 00.49 |
Number of species | 16.50 | a | 25.00 | b | 34.63 | c | 15.25 | a | 17.75 | b | 25.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Házi, J.; Purger, D.; Penksza, K.; Bartha, S. Changes in Species Composition, Diversity, and Biomass of Secondary Dry Grasslands Following Long-Term Mowing: A Case Study in Hungary. Grasses 2024, 3, 130-142. https://doi.org/10.3390/grasses3030009
Házi J, Purger D, Penksza K, Bartha S. Changes in Species Composition, Diversity, and Biomass of Secondary Dry Grasslands Following Long-Term Mowing: A Case Study in Hungary. Grasses. 2024; 3(3):130-142. https://doi.org/10.3390/grasses3030009
Chicago/Turabian StyleHázi, Judit, Dragica Purger, Károly Penksza, and Sándor Bartha. 2024. "Changes in Species Composition, Diversity, and Biomass of Secondary Dry Grasslands Following Long-Term Mowing: A Case Study in Hungary" Grasses 3, no. 3: 130-142. https://doi.org/10.3390/grasses3030009
APA StyleHázi, J., Purger, D., Penksza, K., & Bartha, S. (2024). Changes in Species Composition, Diversity, and Biomass of Secondary Dry Grasslands Following Long-Term Mowing: A Case Study in Hungary. Grasses, 3(3), 130-142. https://doi.org/10.3390/grasses3030009