Ecogeography and Climate Change in Forage Grasses from Arid and Semi-Arid Regions of Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database
2.2. Environmental Variables
2.3. Ecological Descriptors and Statistical Analysis
2.4. Potential Distribution under Actual and Future Climatic Conditions
2.5. Diversity and Hotspot Analysis
3. Results
3.1. Ecological Descriptors
3.2. Statistical Analysis (PCA and CA)
3.3. Potential Distribution
3.4. Hotspot Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Comisión Nacional de Áreas Naturales Protegidas. Available online: https://www.gob.mx/conanp/articulos/mexico-megadiverso-173682 (accessed on 10 April 2024).
- Toledo, V.M.; Ordóñez, M. The biodiversity scenario of Mexico: A review of terrestrial habitats. In Ramamoorthy: Biological Diversity of Mexico: Origins and Distribution; Ramamoorthy, T.P., Bye, R., Lot, A., Fa, Y.J., Eds.; Oxford University Press: New York, NY, USA, 1993; pp. 739–755. [Google Scholar]
- Neyra, G.L.; Durand, S.L. Recursos Naturales. In La Diversidad Biológica de México, Estudio de País; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Tlalpan, Mexico, 1998; pp. 62–96. [Google Scholar]
- Montaño, N.M.; Ayala, F.; Bullock, S.H.; Briones, O.; García-Oliva, F.; García-Sánchez, R.; Maya, Y.; Perroni, Y.; Siebe, C.; Tapia-Torres, Y.; et al. Almacenes y flujos de carbono en ecosistemas áridos y semiáridos de México: Síntesis y perspectivas. Terra Latinoam. 2016, 34, 39–59. [Google Scholar]
- Briones, O.; Búrquez, A.; Martínez-Yrízar, A.; Pavón, N.; Perroni, Y. Biomasa y productividad en las zonas áridas mexicanas. Madera Bosques 2018, 24, e2401898. [Google Scholar] [CrossRef]
- White, R.P.; Nackoney, J. Drylands, People, and Ecosystem Goods and Services: A Web-Based Geospatial Analysis; World Resources Institute: Washington, DC, USA, 2003; p. 58. [Google Scholar]
- Flores, O.M.H. Las Zonas Áridas y Semiáridas de MÉXICO, Las Menos Explotadas; Boletín UNAM-DGCS-763; Universidad Autónoma de México: Mexico City, Mexico, 2011; Available online: https://www.dgcs.unam.mx/boletin/bdboletin/2011_763.html (accessed on 15 April 2024).
- Dávila, P.; Mejia-Saulés, M.T.; Soriano-Martínez, A.M.; Herrera-Arrieta, Y. Conocimiento taxonómico de la familia Poaceae en México. Bot. Sci. 2018, 96, 462–514. [Google Scholar] [CrossRef]
- Dávila, A.P.; Mejía-Saulés, M.T.; Gómez-Sánchez, M.; Valdés-Reyna, J.; Ortíz, J.J.; Morín, C.; Castrejón, J.; Ocampo, A. Catálogo de Gramíneas de México; México, D.F., Ed.; Universidad Nacional Autónoma de México: Coyoacán, Mexico; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Tlalpan, Mexico, 2006; 436p. [Google Scholar]
- Soreng, R.J.; Peterson, P.M. Revision of Poa L. (Poaceae, Pooideae, Poeae, Poinae) in Mexico: New recods, re-evaluation of P. ruprechtii, and two new species, P. palmeri and P. wendtii. PhytoKeys 2012, 15, 1–104. [Google Scholar] [CrossRef] [PubMed]
- Soreng, R.J.; Peterson, P.M.; Romaschenko, K.; Davidse, G.; Zuloaga, F.O.; Judziewicz, E.J.; Filgueiras, T.S.; Davis, J.I.; Morrone, O. A worldwide phylogenetic classification of the Poaceae (Gramineae). J. Syst. Evol. 2015, 53, 117–137. [Google Scholar] [CrossRef]
- Secretaría de Medio Ambiente y Recursos Naturales (Semarnat). Informe de la Situación Del Medio Ambiente en México. Compendio de Estadísticas Ambientales. México. 2015. Available online: https://apps1.semarnat.gob.mx:8443/dgeia/informe15/tema/pdf/Informe15_completo.pdf (accessed on 24 February 2024).
- Chaplot, V.; Dlamini, P.; Chivenge, P. Potential of grassland rehabilitation through high density-short duration grazing to sequester atmospheric carbon. Geoderma 2016, 271, 10–17. [Google Scholar] [CrossRef]
- Álvarez-Holguín, A.; Morales-Nieto, C.R.; Corrales-Lerma, R.; Avendaño-Arrazate, C.H.; Rubio-Arias, H.O.; Villarreal-Guerrero, F. Caracterización estomática, concentración de clorofila y su relación con producción de biomasa en Bouteloua curtipendula. Agron. Mesoam. 2018, 29, 251–261. [Google Scholar] [CrossRef]
- Morales, C.R.; Avendaño-Arrazate, C.; Melgoza-Castillo, A.; Martínez-Salvador, M.; Jurado-Guerra, P. Caracterización morfológica y molecular de poblaciones de zacate tempranero (Setraria macrostachya) en Chihuahua, México. Rev. Int. De Botánica Exp. 2015, 84, 190–200. [Google Scholar]
- Morales, C.R.; Avendaño, C.; Melgoza, A.; Gil, K.; Quero, A.; Martínez, M. Caracterización morfológica y molecular de poblaciones de pasto banderita (Bouteloua curtipendula) en Chihuahua, México. Rev. Mex. Cienc. Pecu. 2016, 7, 455–469. [Google Scholar] [CrossRef]
- Morales, C.R.; Madrid, L.; Melgoza, A.; Martínez, M.; Arévalo, S.; Quintín, R.C.; Jurado, P. Análisis morfológico de la diversidad del pasto navajita [Bouteloua gracilis (Willd. Ex Kunth) Lag. Ex Steud], en Chihuahua, México. Técnica Pecu. Mex. 2009, 47, 245–256. [Google Scholar]
- Morales, C.R.; Melgoza, C.A.; Jurado, G.P.; Martínez, S.M.; Avendaño, A.C. Caracterización fenotípica y molecular de poblaciones de zacate punta blanca (Digitaria californica (Benth.) Henr.). Rev. Mex. Cienc. Pecu. 2012, 3, 171–184. [Google Scholar]
- Morales, C.R.; Rivero, O.; Melgoza, A.; Jurado, P.; Martínez, M. Caracterización morfológica y molecular de Leptochloa dubia (Poaceae) en Chihuahua, México. Polibotánica 2013, 36, 79–94. [Google Scholar]
- Quero-Carrillo, A.R.; Miranda-Jiménez, L.; Villanueva-Ávalos, J.F. Recursos genéticos de gramíneas para el pastoreo extensivo. Condición actual y urgencia de su conservación ante el cambio climático. Av. Investig. Agropecu. 2017, 21, 63–85. [Google Scholar]
- Morales-Querol, D.; Rodríguez-Hernández, R.; López-Vigoa, O.; Ojeda-García, F.; Camejo-Rodríguez, D.; García-Sánchez, F.; Fundora-Fernández, L. Evaluación química y organoléptica de ensilajes de Sorghum bicolor (L.) Moench y pulpa de Citrus sp. Pastos Forrajes 2022, 45, e17. [Google Scholar]
- Márquez-Godoy, J.N.; Corrales-Lerma, R.; Álvarez-Holguín, A.; Villarreal-Guerrero, F.; Santellano-Estrada, E.; Pinedo-Álvarez, A.; Morales-Nieto, C.R. Diversidad morfológica y nutricional de poblaciones de pasto lobero (Muhlenbergia phleoides [Kunth] Columbus) en Chihuahua, México. Acta Univ. 2022, 32, e3404. [Google Scholar]
- Jurado-Guerra, P.; Velázquez-Martínez, M.; Sánchez-Gutiérrez, R.A.; Álvarez-Holguín, A.; Domínguez-Martínez, P.A.; Gutiérrez-Luna, R.; Garza-Cedillo, R.D.; Luna-Luna, M.; Chávez-Ruiz, M.G. Los pastizales y matorrales de zonas áridas y semiáridas de México: Estatus actual, retos y perspectivas. Rev. Mex. Cienc. Pecu. 2021, 12 (Suppl. S3), 261–285. [Google Scholar] [CrossRef]
- GBIF.org. Aristida divaricata. Available online: https://www.gbif.org/occurrence/download/0085605-240229165702484 (accessed on 13 March 2024).
- GBIF.org. Bouteloua gracilis. Available online: https://www.gbif.org/occurrence/download/0084790-240229165702484 (accessed on 13 March 2024).
- GBIF.org. Boutelous dactyloides. Available online: https://www.gbif.org/occurrence/download/0084841-240229165702484 (accessed on 13 March 2024).
- GBIF.org. Bouteloua hirsuta. Available online: https://www.gbif.org/occurrence/download/0084882-240229165702484 (accessed on 13 March 2024).
- GBIF.org. Bouteloua curtipendula. Available online: https://www.gbif.org/occurrence/download/0084920-240229165702484 (accessed on 13 March 2024).
- GBIF.org. Bouteloua repens. Available online: https://www.gbif.org/occurrence/download/0085250-240229165702484 (accessed on 13 March 2024).
- GBIF.org. Bouteloua scorpioides. Available online: https://www.gbif.org/occurrence/download/0085274-240229165702484 (accessed on 13 March 2024).
- GBIF.org. Digitaria californica. Available online: https://www.gbif.org/occurrence/download/0085320-240229165702484 (accessed on 13 March 2024).
- GBIF.org. Muhlenbergia phleoides. Available online: https://www.gbif.org/occurrence/download/0085408-240229165702484 (accessed on 13 March 2024).
- GBIF.org. Muhlenbergia rigida. Available online: https://www.gbif.org/occurrence/download/0085427-240229165702484 (accessed on 13 March 2024).
- GBIF.org. Disakisperma dubium. Available online: https://www.gbif.org/occurrence/download/0085459-240229165702484 (accessed on 13 March 2024).
- GBIF.org. Bothriochloa barbinodis. Available online: https://www.gbif.org/occurrence/download/0085504-240229165702484 (accessed on 13 March 2024).
- GBIF.org. Eragrostis Intermedia. Available online: https://www.gbif.org/occurrence/download/0085528-240229165702484 (accessed on 13 March 2024).
- GBIF.org. Setaria macrostachya. Available online: https://www.gbif.org/occurrence/download/0085557-240229165702484 (accessed on 13 March 2024).
- GBIF.org. Muhlenbergia emersleyi. Available online: https://www.gbif.org/occurrence/download/0085583-240229165702484 (accessed on 13 March 2024).
- García, E. ‘Rangos de Humedad’, Extraido de Climas: IV.4.10. Atlas Nacional de México, Vol II. Escala 1: 4000000; Instituto de Geografia UNAM: Mexico City, Mexico, 1990. [Google Scholar]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Trabucco, A.; Zomer, R.J. Global high-resolution soil-water balance. Figshare Fileset 2019, 10, m9. [Google Scholar] [CrossRef]
- Steiner, J.J.; Greene, S.L. Proposed ecological descriptors and their utility for plant germplasm collections. Crop. Sci. 1996, 36, 439–451. [Google Scholar] [CrossRef]
- Sánchez-González, J.; Ruiz-Corral, J.A.; García-Medina, G.; Ramírez-Ojeda, G.; Larios, L.D.L.C.; Holland, J.B. Ecogeography of teosinte. PLoS ONE 2018, 13, e0192676. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Ojeda, G.; Peralta, I.E.; Rodríguez-Guzmán, E.; Chávez-Servia, J.L.; Sahagún-Castellanos, J.; Rodríguez-Pérez, J.E. Climatic diversity and ecological descriptors of wild tomato species (Solanum sect. Lycopersicon) and close related species (Solanum sect. Juglandifolia y sect. Lycopersicoides) in Latin America. Plants 2021, 10, 855. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Ojeda, G.; Peralta, I.E.; Rodríguez-Guzmán, E.; Sahagún-Castellanos, J.; Chávez-Servia, J.L.; Medina-Hinostroza, T.C.; Rijalba-Vela, J.R.; Vásquez-Núñez, L.P.; Rodríguez-Pérez, J.E. Edaphoclimatic descriptors of wild tomato species (Solanum sect. Lycopersicon) and closely related species (Solanum sect. Juglandifolia and Sect. Lycopersicoides) in South America. Front. Genet. 2021, 12, 748979. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Corral, J.A.; Durán-Puga, N.; Sánchez-González, J.J.; Ron-Parra, J.; González-Eguiarte, D.R.; Holland, J.B.; Medina-García, G. Climatic adaptation and ecological descriptors of 42 Mexican Maize (Zea mays L.) races. Crop. Sci. 2008, 48, 1502–1512. [Google Scholar] [CrossRef]
- Cerda-Hurtado, I.M.; Mayek-Pérez, N.; Hernández-Delgado, S.; Muruaga-Martínez, J.S.; Reyes-Lara, M.A.; Reyes-Valdés, M.H.; González-Prieto, J.M. Climatic adaptation and ecological descriptors of wild beans from Mexico. Ecol. Evol. 2018, 8, 6492–6504. [Google Scholar] [CrossRef]
- Ramírez-Ojeda, G.; Rodríguez-Pérez, J.E.; Rodríguez-Guzmán, E.; Sahagún-Castellanos, J.; Chávez-Servia, J.L.; Peralta, I.E.; Barrera-Guzmán, L.Á. Distribution and Climatic Adaptation of Wild Tomato (Solanum lycopersicum L.) Populations in Mexico. Plants 2022, 11, 2007. [Google Scholar] [CrossRef] [PubMed]
- ArcGis, Version 10.3; Environmental Systems Research Institute, Inc.: Redlands, CA, USA, 2010.
- Beck, H.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Lutsko, N.j.; Dufour, A.; Zeng, Z.; Jiang, X.; van Dijk, A.I.J.M.; Miralles, D.G. High-resolution (1 km) Köppen-Geiger maps for 1901–2099 based on constrained CMIP6 projections. Sci. Data 2023, 10, 724. [Google Scholar] [CrossRef] [PubMed]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Kassambara, A. Practical Guide to Principal Component Methods in R, 1st ed.; CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2017; p. 29. Available online: https://payhip.com/b/shrk (accessed on 24 February 2024).
- Yilan, L.; Rutong, Z. Clustertend: Check the Clustering Tendency, R Package Version 1.4. 2015. Available online: https://CRAN.R-project.org/package=clustertend (accessed on 24 February 2024).
- Brock, G.; Pihur, V.; Datta, S.; Datta, S. clValid: An R Package for Cluster Validation. J. Stat. Softw. 2008, 25, 1–22. [Google Scholar] [CrossRef]
- Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. NbClust: An R package for determining the relevant number of clusters in a data set. J. Stat. Softw. 2014, 61, 1–36. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Phillips, S.J.; Dudík, M.; Schapire, R.E. Maxent Software for Modeling Species Niches and Distributions (Version 3.4.1). Available online: http://biodiversityinformatics.amnh.org/open_source/maxent/ (accessed on 24 February 2024).
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Fourcade, Y.; Engler, J.O.; Rödder, D.; Secondi, J. Mapping species distributions with MaxEnt using a geographically biased sample of presence data: A performance assessment of methods for correcting sampling bias. PLoS ONE 2014, 9, e97122. [Google Scholar] [CrossRef] [PubMed]
- Avila, C.A.; Villavicencio, G.R.; Ruiz Corral, J.A. Distribución potencial de Pinus herrerae Martínez en el Occidente del estado de Jalisco. Rev. Mex. Cien. For. 2014, 5, 92–108. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [PubMed]
- Soberón, J.; Peterson, T. Ecological niche shifts and environmental space anisotropy: A cautionary note. Rev. Mex. Biodivers. 2011, 82, 1348–1355. [Google Scholar]
- Hijmans, J.R.; Spooner, D.M. Geographic distribution of wild potato species. Am. J. Bot. 2001, 88, 2101–2112. [Google Scholar] [CrossRef] [PubMed]
- Spooner, D.M.; Gavrilenko, T.; Jansky, S.H.; Ovchinnikova, A.; Krylova, E.; Knapp, S.; Simon, R. Ecogeography of ploidy variation in cultivated potato (Solanum sect. Petota). Am. J. Bot. 2010, 97, 2049–2060. [Google Scholar] [CrossRef] [PubMed]
- Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Morales-Nieto, C.R.; Corrales-Lerma, R.; Álvarez-Holguín, A.; Villarreal-Guerrero, F.; Santellano-Estrada, E. Caracterización de poblaciones de pasto banderita (Bouteloua curtipendula) deméxico para seleccionar genotipos con potencial para producción de semilla. Rev. Fitotec. Mex. 2017, 40, 309–316. [Google Scholar] [CrossRef]
- Liu, M.; Dries, L.; Huang, J.; Min, S.; Tang, J. The impacts of the eco-environmental policy on grassland degradation and livestock production in Inner Mongolia, China: An empirical analysis based on the simultaneous equation model. Land Use Policy 2019, 88, 104167. [Google Scholar] [CrossRef]
- Hu, Y.; Huang, J.; Hou, L. Impacts of the Grassland Ecological Compensation Policy on Household Livestock Production in China: An Empirical Study in Inner Mongolia. Ecol. Econ. 2019, 161, 248–526. [Google Scholar] [CrossRef]
- Arredondo, M.T.; Huber-Sannwald, E.; García, M.E.; García, H.M.; Aguado, S.G.A. Selección de germoplasma de zacate navajita con diferente historial de uso en Jalisco, México. Tec. Pecu Mex. 2005, 43, 371–385. [Google Scholar]
- Morales-Nieto, C.; Quero, A.; Le-Blanc, O.; Hernández, A.; Pérez, J.; González, S. Caracterización de la diversidad del pasto nativo Bouteloua curtipendula Michx. Torr. mediante marcadores de AFLP. Agrociencia 2006, 40, 711–720. [Google Scholar]
- Rzedowski, J. Vegetación de México, 1st ed.; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Tlalpan, Mexico, 2006; 505p. [Google Scholar]
- Morales-Nieto, C.R.; Álvarez-Holguín, A.; Villarreal-Guerrero, F.; Corrales-Lerma, R.; Pinedo-Álvarez, A.; Salvador, M.M. Phenotypic and genetic diversity of blue grama (Bouteloua gracilis) populations from Northern Mexico. Arid Land Res. Manag. 2019, 34, 83–98. [Google Scholar] [CrossRef]
- Avendaño-González, M.; Morales-Domínguez, J.F.; Siqueiros-Delgado, M.E. Genetic structure, phylogeography, and migration routes of Bouteloua gracilis (Kunth) Lag. ex Griffiths (Poaceae: Chloridoideae). Mol. Phylogenetics Evol. 2019, 134, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, M.; Hirota, M.; Holmgren, M.; Van Nes, E.H.; Chapin, F.S., 3rd. Thresholds for boreal biome transitions. Proc. Natl. Acad. Sci. USA 2012, 109, 21384–21389. [Google Scholar] [CrossRef] [PubMed]
- Lawson, T.; Vialet-Chabrand, S. Speedy stomata, photosynthesis and plant water use efficiency. New Phytol. 2019, 221, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Drake, P.L.; de Boer, H.J.; Schymanski, S.J.; Veneklaas, E.J. Two sides to every leaf: Water and CO2 transport in hypostomatous and amphistomatous leaves. New Phytol. 2019, 222, 1179–1187. [Google Scholar] [CrossRef] [PubMed]
- Schubert, M.; Grønvold, L.; Sandve, S.R.; Hvidsten, T.R.; Fjellheim, S. Evolution of cold acclimation and its role in niche transition in the temperate grass subfamily Pooideae. Plant Physiol. 2019, 180, 404–419. [Google Scholar] [CrossRef] [PubMed]
- Pardo, J.; VanBuren, R. Evolutionary innovations driving abiotic stress tolerance in C4 grasses and cereals. Plant Cell 2021, 33, 3391–3401. [Google Scholar] [CrossRef] [PubMed]
- Marks, R.A.; Farrant, J.M.; Nicholas McLetchie, D.; VanBuren, R. Unexplored dimensions of variability in vegetative desiccation tolerance. Am. J. Bot. 2021, 108, 346–358. [Google Scholar] [CrossRef]
- Grossman, J.D.; Rice, K.J. Evolution of root plasticity responses to variation in soil nutrient distribution and concentration. Evol. Appl. 2012, 5, 850–857. [Google Scholar] [CrossRef] [PubMed]
- Bulgarelli, D.; Schlaeppi, K.; Spaepen, S.; Ver Loren van Themaat, E.; Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 2013, 64, 807–838. [Google Scholar] [CrossRef] [PubMed]
- Postma, J.A.; Schurr, U.; Fiorani, F. Dynamic root growth and architecture responses to limiting nutrient availability: Linking physiological models and experimentation. Biotechnol. Adv. 2014, 32, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Morales-Nieto, C.R.; Quero, A.; Pérez, J.; Hernández, A.; Le-Blanc, O. Caracterización morfológica de poblaciones nativas de pasto banderita [Bouteloua curtipendula (Michx.) Torr.] en México. Agrociencia 2008, 42, 767–775. [Google Scholar]
- Beltrán, L.S.; García, D.C.A.; Hernández, J.A.; Loredo, O.C.; Urrutia, M.J.; González, L.A. “ Banderilla Diana” Bouteloua curtipendula (Michx.) Torr., nueva variedad de pasto para zonas áridas y semiáridas. Rev. Mex. Cienc. Pecu. 2013, 4, 217–221. [Google Scholar]
- Servicio Nacional de Inspección y Certificación de Semillas (SNICS). Catálogo Nacional de Variedades Vegetales. Available online: https://datastudio.google.com/u/0/reporting/5b7206ba-e190-48fe-9696-73523bfccf58/page/itBWB (accessed on 7 July 2023).
Scientific Name | Common Name | Special Characteristics or Uses |
---|---|---|
Aristida divaricata Humb. and Bonpl. ex Willd. | Tres barbas abierto, poverty three-awn | Forage value from fair to poor. Soil retention, formation, and fertility. |
Bouteloua gracilis (Willd. ex Kunth) Lag. ex Griffiths | Pasto navajita, navajita azul, blue grama, mosquito grass | Reseeding, fodder of excellent forage value. |
Bouteloua dactyloides (Nutt.) Engelm. | Pasto búfalo, buffalo grass, mesquite grass | Excellent forage value, important in erosion control. |
Bouteloua hirsuta (Kunth) Scribn | Pasto velluda, grama, hairy grama | Moderate forage value, winter fodder. |
Bouteloua curtipendula (Michx.) Torr. | Pasto banderita, side-oats grama | Good forage value. Some commercial varieties show high potential for seed production. |
Bouteloua repens (Kunth) Scribn. and Merr. | Navajita rastrera, slender grama | Good forage value in the growing season, and moderate in senescence. |
Bouteloua scorpioides Lag | Liendrilla roja | Moderate forage value. Helps with soil retention and formation, preventing erosion |
Digitaria californica (Benth.) Henrard. | Punta blanca, Arizona cottontop, California cottontop | Excellent forage value. The inflorescence is used in the ornamental industry. |
Muhlenbergia phleoides (Kunth) Columbus | Zacate lobero | Good forage value. Alternative for extensive livestock production. Retains soil and prevents erosion. |
Muhlenbergia rigida (Kunth) Kunth | Grama, purple muhly | Moderate forage value. The inflorescence is used in the ornamental industry. |
Disakisperma dubium (Kunth) P.M. Peterson and N. Snow | Zacate gigante, green sprangletop | Fair-to-good forage value. |
Bothriochloa barbinodis (Lag.) Herter | Popotillo plateado, cola de caballo, cane bluestem, fuzzy top | Moderate forage value, low acceptability to livestock. |
Eragrostis intermedia Hitchc. | Zacate llanero, pasto amor, plains lovegrass | Forage value fair to good, susceptible to overgrazing. |
Setaria macrostachya Kunth | Tempranero, zacate elefante, large-spike bristlegrass | Good forage value, resistant to drought. |
Muhlenbergia emersleyi Vaseyi | Cola de zorra, bull grass | Low forage value. Ornamental use. |
PARAMETER | Bio1 | Bio2 | Bio3 | Bio6 | Bio8 | Bio10 | Bio11 | Bio12 | Bio14 | Bio17 | Bio18 | Alt | ETP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aristida divaricata | |||||||||||||
MED | 16.5 | 16.9 | 62.9 | 2.6 | 19.2 | 20.2 | 12.3 | 463 | 5 | 23 | 191 | 2080 | 402 |
CV | 5.5 | 5.0 | 3.7 | 30.8 | 6.8 | 7.2 | 7.3 | 10.2 | 40 | 28.3 | 12.2 | 9.4 | 13.8 |
MIN | 12.9 | 13.2 | 49.8 | −4.0 | 7.6 | 14.9 | 5.6 | 289 | 1 | 3 | 29 | 488 | 253 |
MAX | 21.0 | 19.4 | 72.0 | 8.9 | 26.9 | 27.5 | 17.1 | 589 | 14 | 54 | 346 | 2588 | 593 |
Bothriochloa barbinodis | |||||||||||||
MED | 16.9 | 16.6 | 60.7 | 2.8 | 19.9 | 21.3 | 12.5 | 472 | 4 | 21 | 184 | 1855 | 394 |
CV | 6.3 | 7.4 | 7.6 | 54.5 | 12.3 | 10.4 | 9.5 | 14.8 | 62.5 | 35.7 | 17.5 | 20.5 | 18.2 |
MIN | 12.7 | 10.3 | 43.1 | −3.9 | 7.4 | 15.1 | 6.5 | 203 | 0 | 3 | 7 | 40 | 131 |
MAX | 24.5 | 19.3 | 72.3 | 11.2 | 28.5 | 30.5 | 21.3 | 599 | 18 | 64 | 412 | 2722 | 592 |
Bouteloua curtipendula | |||||||||||||
MED | 17.4 | 16.3 | 62.1 | 3.5 | 20.3 | 21.3 | 12.6 | 447 | 6 | 26 | 174 | 1803 | 381 |
CV | 7.2 | 6.8 | 7.9 | 41.4 | 10.0 | 10 | 9.4 | 11.6 | 41.7 | 40.4 | 17.7 | 18.1 | 12.6 |
MIN | 12.6 | 11.7 | 41.3 | −4.7 | 9.3 | 14.2 | 5.3 | 185 | 0 | 2 | 21 | 37 | 163 |
MAX | 25.3 | 20.0 | 74.8 | 13.7 | 29.5 | 30.3 | 22.2 | 600 | 18 | 79 | 332 | 2749 | 666 |
Bouteloua dactyloides | |||||||||||||
MED | 16.5 | 16.4 | 63.5 | 2.9 | 18.9 | 19.8 | 12.5 | 468 | 6 | 28 | 174 | 2057 | 402 |
CV | 5.9 | 6.4 | 3.4 | 37.1 | 7.1 | 6.5 | 5.9 | 9.4 | 41.7 | 32.1 | 11.4 | 10.5 | 15.4 |
MIN | 13.2 | 11.8 | 43.3 | −3.9 | 15.1 | 15.7 | 6.7 | 310 | 1 | 10 | 114 | 49 | 245 |
MAX | 23.7 | 20.5 | 71.4 | 8.6 | 29.3 | 30.5 | 17.7 | 600 | 21 | 81 | 302 | 2794 | 800 |
Bouteloua gracilis | |||||||||||||
MED | 16.7 | 17.1 | 62.7 | 2.5 | 19.5 | 20.5 | 12.3 | 457 | 5 | 22 | 184 | 1980 | 392 |
CV | 4.9 | 5.0 | 3.5 | 38.0 | 5.9 | 6.1 | 7.3 | 10.9 | 40 | 31.8 | 13.9 | 8.3 | 14 |
MIN | 11.7 | 12.3 | 43.1 | −4.9 | 14.5 | 15 | 4.3 | 188 | 1 | 9 | 84 | 233 | 165 |
MAX | 22.4 | 20.1 | 71.6 | 9.1 | 27.4 | 29.4 | 18.4 | 597 | 17 | 60 | 346 | 2651 | 589 |
Bouteloua hirsuta | |||||||||||||
MED | 16.9 | 16.3 | 62.0 | 3.1 | 19.6 | 20.6 | 12.5 | 481 | 5 | 25 | 204 | 1959 | 408 |
CV | 5.2 | 5.3 | 7.9 | 43.5 | 11.2 | 10.6 | 11.3 | 10.1 | 40 | 30 | 18.4 | 16.3 | 15.6 |
MIN | 12.7 | 13.9 | 48.8 | −4.5 | 14.9 | 15.7 | 5.5 | 226 | 0 | 3 | 108 | 105 | 144 |
MAX | 24.2 | 19.9 | 71.4 | 8.9 | 30.1 | 30.8 | 18 | 599 | 19 | 66 | 389 | 2685 | 848 |
Bouteloua repens | |||||||||||||
MED | 18.5 | 16.1 | 60.0 | 4.6 | 22.4 | 23.3 | 13.7 | 484 | 4 | 20 | 209 | 1411 | 406 |
CV | 9.2 | 8.4 | 8.0 | 50.0 | 15.4 | 13.3 | 9.5 | 11.6 | 50 | 42.5 | 19.7 | 44.8 | 13.6 |
MIN | 11.8 | 12.3 | 43.3 | −4.5 | 13.3 | 15.5 | 4.4 | 192 | 0 | 1 | 12 | 7 | 149 |
MAX | 25.1 | 19.8 | 70.6 | 10.1 | 31.2 | 31.9 | 18.6 | 598 | 22 | 81 | 431 | 2430 | 713 |
Bouteloua scorpioides | |||||||||||||
MED | 16.2 | 17.0 | 64.7 | 2.6 | 18.5 | 19.2 | 12.4 | 434 | 7 | 29 | 172 | 2133 | 384 |
CV | 3.4 | 4.9 | 3.5 | 32.7 | 4.0 | 3.6 | 5.1 | 13.6 | 35.7 | 22 | 16.3 | 7.9 | 19 |
MIN | 12.7 | 12.8 | 59.4 | −0.2 | 15.0 | 15.6 | 9 | 304 | 1 | 10 | 105 | 1327 | 260 |
MAX | 20.3 | 20.0 | 71.1 | 8.1 | 22.7 | 23.5 | 16.4 | 587 | 15 | 57 | 257 | 2645 | 597 |
Digitaria californica | |||||||||||||
MED | 18.1 | 16.2 | 53.9 | 3.6 | 23.2 | 24.4 | 12.6 | 396 | 6 | 28.5 | 162 | 1420 | 334 |
CV | 9.3 | 7.3 | 11.6 | 40.6 | 13.0 | 12 | 10.6 | 14.1 | 35.4 | 21.5 | 16 | 36.6 | 17.1 |
MIN | 13.3 | 13.0 | 41.7 | −1.6 | 9.6 | 16.3 | 7.1 | 186 | 0 | 1 | 72 | 170 | 147 |
MAX | 23.8 | 19.8 | 67.1 | 9.8 | 29.6 | 29.9 | 17.2 | 588 | 22 | 72 | 359 | 2484 | 664 |
Disakisperma dubium | |||||||||||||
MED | 17.1 | 16.4 | 62.5 | 2.9 | 19.8 | 20.9 | 12.4 | 438 | 5 | 25 | 180 | 1881 | 369 |
CV | 8.2 | 6.5 | 7.3 | 47.8 | 10.0 | 10 | 9.7 | 14.1 | 40 | 30.5 | 16.4 | 14.6 | 15.9 |
MIN | 12.7 | 12.8 | 44.8 | −4.4 | 15.0 | 15.5 | 5.1 | 236 | 0 | 2 | 98 | 78 | 146 |
MAX | 23.6 | 19.5 | 71.5 | 9.7 | 28.3 | 29.7 | 17.1 | 600 | 20 | 75 | 364 | 2668 | 742 |
Eragrostis intermedia | |||||||||||||
MED | 16.5 | 16.0 | 61.8 | 2.8 | 19.6 | 20.8 | 11.9 | 469 | 5 | 29 | 182 | 1901 | 370 |
CV | 10.6 | 7.7 | 10.1 | 40.2 | 14.2 | 13.1 | 8.7 | 11.8 | 40 | 31 | 17.9 | 22.7 | 12.2 |
MIN | 12.6 | 12.9 | 41.8 | −1.4 | 7.3 | 14.6 | 6.7 | 209 | 0 | 2 | 72 | 224 | 192 |
MAX | 22.7 | 19.5 | 72.7 | 11.9 | 27.9 | 29.5 | 20.6 | 600 | 19 | 66 | 387 | 2910 | 546 |
Muhlenbergia emersleyi | |||||||||||||
MED | 15.9 | 16.4 | 59.4 | 1.9 | 19.5 | 20.6 | 10.8 | 474 | 6 | 23 | 202 | 2002 | 406 |
CV | 8.8 | 7.8 | 9.1 | 102.7 | 6.9 | 6.9 | 19.4 | 11 | 33.3 | 37 | 11.1 | 9.7 | 12.2 |
MIN | 12.0 | 12.0 | 47.5 | −4.4 | 13.9 | 15 | 4.5 | 289 | 1 | 6 | 116 | 152 | 227 |
MAX | 25.4 | 20.4 | 72.1 | 13.7 | 30.5 | 31.2 | 22.2 | 598 | 16 | 59 | 437 | 2826 | 706 |
Muhlenbergia phleoides | |||||||||||||
MED | 16.3 | 16.5 | 62.9 | 2.5 | 19.0 | 20 | 11.9 | 461 | 5 | 24 | 182 | 2030 | 390 |
CV | 6.6 | 6.2 | 5.6 | 40.0 | 7.0 | 7.2 | 9.2 | 11 | 30 | 25.5 | 13.6 | 10.8 | 13.8 |
MIN | 12.4 | 13.4 | 48.9 | −4.7 | 13.6 | 15.5 | 5.3 | 185 | 0 | 4 | 8 | 62 | 169 |
MAX | 21.7 | 19.8 | 71.9 | 8.0 | 27.8 | 27.9 | 16.2 | 590 | 16 | 63 | 329 | 2999 | 611 |
Muhlenbergia rigida | |||||||||||||
MED | 16.4 | 16.6 | 62.9 | 2.7 | 18.9 | 19.8 | 12.2 | 480 | 6 | 24 | 194 | 2106 | 414 |
CV | 6.1 | 5.4 | 3.1 | 46.3 | 5.0 | 4.9 | 9.6 | 10.2 | 41.7 | 31.3 | 14.7 | 7.7 | 12.3 |
MIN | 11.7 | 12.4 | 48.7 | −4.7 | 13.8 | 14.5 | 4.4 | 293 | 1 | 9 | 108 | 452 | 193 |
MAX | 22.9 | 20.6 | 74.3 | 8.0 | 29.8 | 30.6 | 16.2 | 600 | 19 | 68 | 358 | 2649 | 859 |
Setaria macrostachya | |||||||||||||
MED | 18.8 | 17.1 | 61.6 | 4.3 | 22.9 | 24.1 | 13.7 | 419 | 5 | 25 | 176 | 1481 | 351 |
CV | 9.5 | 6.8 | 7.4 | 48.3 | 10.5 | 9.8 | 10.7 | 16.7 | 42.5 | 30.5 | 13.5 | 24.6 | 16.4 |
MIN | 15.2 | 12.0 | 41.9 | −1.3 | 17.3 | 18.5 | 7.1 | 230 | 0 | 2 | 115 | 94 | 191 |
MAX | 25.3 | 19.8 | 70.7 | 13.8 | 28.9 | 29.8 | 22.2 | 590 | 21 | 70 | 341 | 2369 | 755 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Ojeda, G.; Ramírez-Segura, E.; Barrera-Guzmán, L.Á.; Vázquez-González, A. Ecogeography and Climate Change in Forage Grasses from Arid and Semi-Arid Regions of Mexico. Grasses 2024, 3, 110-129. https://doi.org/10.3390/grasses3020008
Ramírez-Ojeda G, Ramírez-Segura E, Barrera-Guzmán LÁ, Vázquez-González A. Ecogeography and Climate Change in Forage Grasses from Arid and Semi-Arid Regions of Mexico. Grasses. 2024; 3(2):110-129. https://doi.org/10.3390/grasses3020008
Chicago/Turabian StyleRamírez-Ojeda, Gabriela, Edith Ramírez-Segura, Luis Ángel Barrera-Guzmán, and Abieser Vázquez-González. 2024. "Ecogeography and Climate Change in Forage Grasses from Arid and Semi-Arid Regions of Mexico" Grasses 3, no. 2: 110-129. https://doi.org/10.3390/grasses3020008
APA StyleRamírez-Ojeda, G., Ramírez-Segura, E., Barrera-Guzmán, L. Á., & Vázquez-González, A. (2024). Ecogeography and Climate Change in Forage Grasses from Arid and Semi-Arid Regions of Mexico. Grasses, 3(2), 110-129. https://doi.org/10.3390/grasses3020008