Endophytic Fungal Infection of Meadow Fescue in the Driftless Area of the Upper Mississippi River Valley: Impacts on Agronomic Fitness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Endophyte Frequency and Germplasm Development
2.2. Morphological and Seed-Production Evaluation
2.3. Drought-Tolerance Evaluation
2.3.1. Drought in the Greenhouse
2.3.2. Deficit-Irrigation Evaluation
2.4. Forage-Mass and Persistence Evaluation
2.4.1. Field Evaluation: Wisconsin
2.4.2. Field Evaluation: Utah
2.5. Statistical Data Analysis
3. Results
3.1. Endophyte Frequency, and Morphological and Seed Production Evaluation
3.2. Drought-Tolerance Evaluation
3.3. Field Forage Mass and Persistence
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brink, G.E.; Casler, M.D.; Hall, M.B. Canopy structure and neutral detergent fiber differences among temperate perennial grasses. Crop Sci. 2007, 47, 2182–2189. [Google Scholar] [CrossRef]
- Brink, G.E.; Casler, M.D.; Martin, N.P. Meadow fescue, tall fescue, and orchardgrass response to defoliation management. Agron. J. 2010, 102, 667–674. [Google Scholar] [CrossRef]
- Carlen, C.; Kölliker, R.; Nösberger, J. Dry matter allocation and nitrogen productivity explain growth responses to photoperiod and temperature in forage grasses. Oecologia 1999, 121, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Casler, M.; Undersander, D.; Fredericks, C.; Combs, D.; Reed, J. An on-farm test of perennial forage grass varieties under management intensive grazing. J. Prod. Agric. 1998, 11, 92–99. [Google Scholar] [CrossRef]
- Fjellheim, S.; Blomlie, Å.; Marum, P.; Rognli, O. Phenotypic variation in local populations and cultivars of meadow fescue–potential for improving cultivars by utilizing wild germplasm. Plant Breed. 2007, 126, 279–286. [Google Scholar] [CrossRef]
- Fjellheim, S.; Rognli, O. Molecular diversity of local Norwegian meadow fescue (Festuca pratensis Huds.) populations and Nordic cultivars—Consequences for management and utilisation. Theor. Appl. Genet. 2005, 111, 640–650. [Google Scholar] [CrossRef]
- Kölliker, R.; Stadelmann, F.; Reidy, B.; Nösberger, J. Fertilization and defoliation frequency affect genetic diversity of Festuca pratensis Huds. in permanent grasslands. Mol. Ecol. 1998, 7, 1557–1567. [Google Scholar] [CrossRef]
- Studer, B.; Widmer, F.; Enkerli, J.; Koelliker, R. Development of novel microsatellite markers for the grassland species Lolium multiflorum, Lolium perenne and Festuca pratensis. Mol. Ecol. Notes 2006, 6, 1108–1110. [Google Scholar] [CrossRef]
- Peter-Schmid, M.K.; Kölliker, R.; Boller, B. Value of permanent grassland habitats as reservoirs of Festuca pratensis Huds. and Lolium multiflorum Lam. populations for breeding and conservation. Euphytica 2008, 164, 239–253. [Google Scholar] [CrossRef]
- Melchior, M. Geology and Geomorphology of the Driftless Area. In Proceedings of the Special Publication of the 11th Annual Driftless Symposium: Driftless Science Review, La Crosse, WI, USA, 5–6 February 2019; Trout Unlimited: Arlington, VA, USA, 2019; pp. 20–28. [Google Scholar]
- Potter, K. Hydrology of the Driftless Area. In Proceedings of the Special Publication of the 11th Annual Driftless Symposium: Driftless Science Review, La Crosse, WI, USA, 5–6 February 2019; Trout Unlimited: Arlington, VA, USA, 2019; pp. 15–19. [Google Scholar]
- Braun, L.E. The phytogeography of unglaciated eastern United States and its interpretation. Bot. Rev. 1955, 21, 297. [Google Scholar] [CrossRef]
- Grimm, E.C.; Jacobson Jr, G.L. Late-Quaternary vegetation history of the eastern United States. Dev. Quat. Sci. 2003, 1, 381–402. [Google Scholar] [CrossRef]
- Just, T. Postglacial vegetation of the north-central United States: A review. J. Geol. 1959, 67, 228–238. [Google Scholar] [CrossRef]
- Leach, M.K.; Givnish, T.J. Gradients in the composition, structure, and diversity of remnant oak savannas in southern Wisconsin. Ecol. Monogr. 1999, 69, 353–374. [Google Scholar] [CrossRef]
- Panno, S.; Millhouse, P.G.; Nyboer, R.W.; Watson, D.; Kelly, W.R.; Anderson, L.M.; Abert, C.C.; Luman, D.E. Guide to the Geology, Hydrogeology, History, Archaeology, and Biotic Ecology of the Driftless Area of Northwestern Illinois, Jo Daviess County; Department of Natural Resources, Illinois State Geological Survey: Champaign, IL, USA, 2016. [Google Scholar]
- Meine, C.; Keeley, K. The Driftless Reader; University of Wisconsin Press: Madison, WI, USA, 2017. [Google Scholar]
- Trewartha, G.T. Population and Settlements in the Upper Mississippi Hill Land During the Period of Destructive Exploitation (1670–1832). In Proceedings of the Eighth American Scientific Congress, Washington, DC, USA, 10–18 May 1940; U.S. Department of State: Washington, DC, USA, 1943; pp. 183–196. [Google Scholar]
- Dimitri, C.; Effland, A.; Conklin, N.C. The 20th Century Transformation of US Agriculture and Farm Policy; USDA Economic Research Service: Washington, DC, USA, 2005. [Google Scholar]
- Trimble, S.W. Historical Agriculture and Soil Erosion in the Upper Mississippi Valley Hill Country, 1st ed.; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Duncan, D.S.; Krohn, A.L.; Jackson, R.D.; Casler, M.D. Conservation implications of the introduction history of meadow fescue (Festuca pratensis Huds.) to the Driftless Area of the Upper Mississippi Valley, USA. Plant Ecol. Divers. 2015, 8, 91–99. [Google Scholar] [CrossRef]
- Yamada, T.; Spangenberg, G.; Casler, M.; van Santen, E.; Humphreys, M.; Yamada, T.; Tamura, K.; Ellison, N.; Jackson, R.; Undersander, D. Remnant Oak Savanna Acts as Refugium for Meadow Fescue Introduced During Nineteenth Century Human Migrations in the USA. In Molecular Breeding of Forage and Turf; Springer: Berlin/Heidelberg, Germany, 2009; pp. 91–102. [Google Scholar]
- Malinowski, D.P.; Belesky, D.P. Adaptations of endophyte-infected cool-season grasses to environmental stresses: Mechanisms of drought and mineral stress tolerance. Crop Sci. 2000, 40, 923–940. [Google Scholar] [CrossRef]
- Latch, G.C. Physiological interactions of endophytic fungi and their hosts. Biotic stress tolerance imparted to grasses by endophytes. Agric. Ecosyst. Environ. 1993, 44, 143–156. [Google Scholar] [CrossRef]
- Bacon, C.W. Abiotic stress tolerances (moisture, nutrients) and photosynthesis in endophyte-infected tall fescue. Agric. Ecosyst. Environ. 1993, 44, 123–141. [Google Scholar] [CrossRef]
- West, C.P. Physiology and drought tolerance of endophyte-lnfected grasses. In Biotechnology of Endophytic Fungi of Grasses; Bacon, C.W., White, J.F., Eds.; CRC Press: Baco Raton, FL, USA, 2018; pp. 87–99. [Google Scholar]
- Belesky, D.P.; Bacon, C.W. Tall fescue and associated mutualistic toxic fungal endophytes in agroecosystems. Toxin Rev. 2009, 28, 102–117. [Google Scholar] [CrossRef]
- Hill, N.S.; Stringer, W.C.; Rottinghaus, G.E.; Belesky, D.P.; Parrott, W.A.; Pope, D.D. Growth, morphological, and chemical component responses of tall fescue to Acremonium coenophialum. Crop Sci. 1990, 30, 156–161. [Google Scholar] [CrossRef]
- Latch, G.C.M.; Hunt, W.F.; Musgrave, D.R. Endophytic fungi affect growth of perennial ryegrass. N. Z. J. Agric. Res. 1985, 28, 165–168. [Google Scholar] [CrossRef]
- Rice, J.; Pinkerton, B.; Stringer, W.; Undersander, D. Seed production in tall fescue as affected by fungal endophyte. Crop Sci. 1990, 30, 1303–1305. [Google Scholar] [CrossRef]
- Hiatt, E.E., III; Hill, N.S.; Bouton, J.H.; Stuedemann, J.A. Tall fescue endophyte detection: Commercial immunoblot test kit compared with microscopic analysis. Crop Sci. 1999, 39, 796–799. [Google Scholar] [CrossRef]
- Hahn, H.; Huth, W.; Schöberlein, W.; Diepenbrock, W.; Weber, W. Detection of endophytic fungi in Festuca spp. by means of tissue print immunoassay. Plant Breed. 2003, 122, 217–222. [Google Scholar] [CrossRef]
- Koh, S.; Vicari, M.; Ball, J.; Rakocevic, T.; Zaheer, S.; Hik, D.; Bazely, D. Rapid detection of fungal endophytes in grasses for large-scale studies. Funct. Ecol. 2006, 20, 736–742. [Google Scholar] [CrossRef]
- Hanks, R.J.; Keller, J.; Rasmussen, V.P.; Wilson, G.D. Line source sprinkler for continuous variable irrigation-crop production studies. Soil Sci. Soc. Am. J. 1976, 40, 426–429. [Google Scholar] [CrossRef]
- Waldron, B.L.; Jensen, K.B.; Peel, M.D.; Picasso, V.D. Breeding for resilience to water deficit and its predicted effect on forage mass in tall fescue. Agronomy 2021, 11, 2094. [Google Scholar] [CrossRef]
- Utah Climate Center. Available online: https://climate.usu.edu/index.php (accessed on 7 July 2020).
- Vogel, K.P.; Masters, R.A. Frequency grid—A simple tool for measuring grassland establishment. J. Range Manag. 2001, 54, 653–655. [Google Scholar] [CrossRef]
- Littell, R.C.; Milliken, G.A.; Stroup, W.W.; Wolfinger, R.D.; Schabenberger, O. SAS for Mixed Models, 2nd ed.; SAS Institute Inc.: Cary, NC, USA, 2006. [Google Scholar]
- Cagnano, G.; Roulund, N.; Jensen, C.S.; Forte, F.P.; Asp, T.; Leuchtmann, A. Large scale screening of Epichloë endophytes infecting Schedonorus pratensis and other forage grasses reveals a relation between microsatellite-based haplotypes and loline alkaloid levels. Front. Plant. Sci. 2019, 10, 765. [Google Scholar] [CrossRef]
- Vikuk, V.; Young, C.A.; Lee, S.T.; Nagabhyru, P.; Krischke, M.; Mueller, M.J.; Krauss, J. Infection rates and alkaloid patterns of different grass species with systemic Epichloë endophytes. Appl. Env. Microbiol. 2019, 85, e00419–e00465. [Google Scholar] [CrossRef]
- Saari, S.; Lehtonen, P.; Helander, M.; Saikkonen, K. High variation in frequency of infection by endophytes in cultivars of meadow fescue in Finland. Grass Forage Sci. 2009, 64, 169–176. [Google Scholar] [CrossRef]
- Wäli, P.; Helander, M.; Nissinen, O.; Lehtonen, P.; Saikkonen, K. Endophyte infection, nutrient status of the soil and duration of snow cover influence the performance of meadow fescue in sub-artic conditions. Grass Forage Sci. 2008, 63, 324–330. [Google Scholar] [CrossRef]
- Schmidt, D.; Guy, R. Effect of the presence of the endophyte Acremonium uncinatum and an insecticide treatment on seed production of meadow fescue. Rev. Suisse D’agric. 1997, 29, 97–98. [Google Scholar]
- Hesse, U.; Hahn, H.; Andreeva, K.; Förster, K.; Warnstorff, K.; Schöberlein, W.; Diepenbrock, W. Investigations on the influence of Neotyphodium endophytes on plant growth and seed yield of Lolium perenne genotypes. Crop Sci. 2004, 44, 1689–1695. [Google Scholar] [CrossRef]
- Rolston, M.; Rowarth, J.; DeFilippi, J.; Archie, W. Effects of water and nitrogen on lodging, head numbers and seed yield of high and nil endophyte perennial ryegrass. Proc. Agron. Soc. N. Z. 1994, 24, 91–94. [Google Scholar]
- Malinowski, D.; Leuchtmann, A.; Schmidt, D.; Nösberger, J. Symbiosis with Neotyphodium uncinatum endophyte may increase the competitive ability of meadow fescue. Agron. J. 1997, 89, 833–839. [Google Scholar] [CrossRef]
- Decunta, F.A.; Pérez, L.I.; Malinowski, D.P.; Molina-Montenegro, M.A.; Gundel, P.E. A Systematic Review on the Effects of Epichloë Fungal Endophytes on Drought Tolerance in Cool-Season Grasses. Front. Plant. Sci. 2021, 12, 644731. [Google Scholar] [CrossRef]
- Lee, K.; Missaoui, A.; Mahmud, K.; Presley, H.; Lonnee, M. Interaction between grasses and Epichloë endophytes and its significance to biotic and abiotic stress tolerance and the rhizosphere. Microorganisms 2021, 9, 2186. [Google Scholar] [CrossRef]
- Wang, J.; Hou, W.; Christensen, M.J.; Li, X.; Xia, C.; Li, C.; Nan, Z. Role of Epichloë endophytes in improving host grass resistance ability and soil properties. J. Agric. Food Chem. 2020, 68, 6944–6955. [Google Scholar] [CrossRef]
- Bouton, J.H.; Gates, R.N.; Belesky, D.P.; Owsley, M. Yield and persistence of tall fescue in the southeastern Coastal Plain after removal of its endophyte. Agron. J. 1993, 85, 52–55. [Google Scholar] [CrossRef]
- De Battista, J.; Bouton, J.; Bacon, C.; Siegel, M. Rhizome and herbage production of endophyte-removed tall fescue clones and populations. Agron. J. 1990, 82, 651–654. [Google Scholar] [CrossRef]
- Marks, S.; Clay, K.; Cheplick, G.P. Effects of fungal endophytes on interspecific and intraspecific competition in the grasses Festuca arundinacea and Lolium perenne. J. Appl. Ecol. 1991, 28, 194–204. [Google Scholar] [CrossRef]
- Hill, N.S.; Belesky, D.P.; Stringer, W.C. Competitiveness of tall fescue as influenced by Acremonium coenophialum. Crop Sci. 1991, 31, 185–190. [Google Scholar] [CrossRef]
- Backman, P.A.; Sikora, R.A. Endophytes: An emerging tool for biological control. Biol. Control. 2008, 46, 1–3. [Google Scholar] [CrossRef]
- Wäli, P.R.; Helander, M.; Nissinen, O.; Saikkonen, K. Susceptibility of endophyte-infected grasses to winter pathogens (snow molds). Botany 2006, 84, 1043–1051. [Google Scholar] [CrossRef]
- Ball, O.J.-P.; Coudron, T.A.; Tapper, B.A.; Davies, E.; Trently, D.; Bush, L.P.; Gwinn, K.D.; Popay, A.J. Importance of host plant species, Neotyphodium endophyte isolate, and alkaloids on feeding by Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae. J. Econ. Entomol. 2006, 99, 1462–1473. [Google Scholar] [CrossRef]
- Sabzalian, M.R.; Hatami, B.; Mirlohi, A. Mealybug, Phenococcus solani, and barley aphid, Sipha maydis, response to endophyte-infected tall and meadow fescues. Entomol. Exp. Appl. 2004, 113, 205–209. [Google Scholar] [CrossRef]
Site/ Farm | Location | Latitude | Longitude | Habitat | Number of Plants | Endophyte Infection Rate |
---|---|---|---|---|---|---|
% | ||||||
1 | Coon Valley | 43°41.60′ N | 91°0.25′ W | Full sun, north facing slope | 257 | 89.6 |
2 | Cassville | 42°45.47′ N | 91°1.40′ W | Deep shade, steep hillside | 243 | 85.2 |
3 | Hidden Valley | 42°47.65′ N | 90°15.65′ W | Full sun, south facing slope | 205 | 94.8 |
4 | Fennimore | 42°57.33′ N | 90°37.56′ W | Full sun, rolling hills | 231 | 90.4 |
5 | Platte River | 42°44.17′ N | 90°38.62′ W | Full sun, riverine | 248 | 84.0 |
6 | Linden | 42°53.05′ N | 90°14.77′ W | Deep shade, oak savanna, hilltop | 263 | 91.9 |
7 | Bear Creek | 43°34.25′ N | 90°36.53′ W | Full sun, riverine | 211 | 87.9 |
8 | Little Grant River | 42°53.32′ N | 90°49.54′ W | Full sun, riverine | 217 | 82.0 |
Heading Date | Plant Height | Plant Circumference | Seed Yield | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Site/Farm | E− | E+ | E− | E+ | E− | E+ | E− | E+ | ||||
Day of Year | ------ cm ------ | ------ cm ----- | ----- g plant−1 ---- | |||||||||
1 | 144 | 145 | ** | 80 | 71 | ** | 59 | 60 | 68 | 78 | * | |
2 | 143 | 144 | ** | 78 | 88 | ** | 61 | 61 | 89 | 155 | ** | |
3 | 143 | 144 | ** | 86 | 83 | 55 | 60 | ** | 55 | 83 | ** | |
4 | 143 | 144 | ** | 78 | 79 | 65 | 70 | ** | 57 | 65 | † | |
5 | 145 | 145 | 84 | 79 | ** | 64 | 66 | 55 | 82 | ** | ||
6 | 146 | 147 | ** | 89 | 84 | ** | 61 | 67 | ** | 58 | 67 | † |
7 | 145 | 146 | ** | 85 | 84 | 61 | 68 | ** | 76 | 87 | * | |
8 | 146 | 147 | ** | 84 | 83 | 65 | 69 | ** | 69 | 42 | ** |
Greenhouse Drought Treatment | Plant Survival | Total Dry Biomass | Dry Biomass per Plant | Utah LS Deficit Irrigation | Forage Mass |
---|---|---|---|---|---|
% | g | g | % of ET 1 | Mg ha−1 | |
None (control) | 99.0 ± 0.20 | 3.03 ± 0.05 | 0.51 ± 0.01 | 98 | 10.99 |
7 days without water | 89.4 ± 1.09 | 1.62 ± 0.03 | 0.31 ± 0.01 | 71 | 14.89 |
14 days without water | 28.9 ± 1.44 | 0.24 ± 0.01 | 0.11 ± 0.01 | 51 | 6.16 |
21 days without water | 0.4 ± 0.01 | 0.00 ± 0.00 | 0.00 ± 0.00 | 36 | 4.18 |
13 | 2.43 |
Forage Yield: Wisconsin 1 | Forage Yield: Utah 2 | Ground Cover: Wisconsin 3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Site/Farm | E− | E+ | Diff. | E− | E+ | Diff. | E− | E+ | Diff. | |||
Mg ha−1 | % | --- g plant−1 --- | % | --- % --- | % | |||||||
1 | 7.64 | 7.95 | 4.1 | 204 | 270 | 32 | 73.5 | 81.0 | 10 | ** | ||
2 | 7.09 | 9.06 | 27.8 | ** | 224 | 484 | 116 | ** | 87.2 | 94.5 | 8 | ** |
3 | 7.06 | 7.24 | 2.5 | 180 | 190 | 6 | 74.8 | 81.5 | 9 | ** | ||
4 | 7.17 | 7.19 | 0.3 | 214 | 196 | −8 | 89.2 | 94.8 | 6 | ** | ||
5 | 6.75 | 6.83 | 1.2 | 184 | 192 | 4 | 83.5 | 92.0 | 10 | ** | ||
6 | 7.44 | 7.55 | 1.5 | 156 | 178 | 14 | 77.2 | 88.0 | 14 | ** | ||
7 | 6.89 | 6.80 | −1.3 | 220 | 196 | −11 | 75.5 | 81.5 | 8 | ** | ||
8 | 7.48 | 7.19 | −3.9 | 270 | 224 | −17 | 59.8 | 65.8 | 10 | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casler, M.D.; Waldron, B.L. Endophytic Fungal Infection of Meadow Fescue in the Driftless Area of the Upper Mississippi River Valley: Impacts on Agronomic Fitness. Grasses 2023, 2, 263-275. https://doi.org/10.3390/grasses2040019
Casler MD, Waldron BL. Endophytic Fungal Infection of Meadow Fescue in the Driftless Area of the Upper Mississippi River Valley: Impacts on Agronomic Fitness. Grasses. 2023; 2(4):263-275. https://doi.org/10.3390/grasses2040019
Chicago/Turabian StyleCasler, Michael D., and Blair L. Waldron. 2023. "Endophytic Fungal Infection of Meadow Fescue in the Driftless Area of the Upper Mississippi River Valley: Impacts on Agronomic Fitness" Grasses 2, no. 4: 263-275. https://doi.org/10.3390/grasses2040019
APA StyleCasler, M. D., & Waldron, B. L. (2023). Endophytic Fungal Infection of Meadow Fescue in the Driftless Area of the Upper Mississippi River Valley: Impacts on Agronomic Fitness. Grasses, 2(4), 263-275. https://doi.org/10.3390/grasses2040019