Biological Age, Aging Clocks, and the Interplay with Lymphoid Neoplasms: Mechanisms and Clinical Frontiers
Abstract
1. Introduction
1.1. Lymphoid Neoplasms and the Impact of Chronological Aging
1.2. Immunosenescence: A Key Mechanistic Link
2. Quantifying Aging: Biological Age and Aging Clocks
2.1. Measures of Biological Age
2.2. Aging Clocks: Robust Tools for Biological Age Estimation
2.3. Epigenetic Age Acceleration and LN Risk
2.4. Clinical Implications and Therapeutic Opportunities
3. Future Directions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vovelle, J.; Row, C.; Larosa, F.; Guy, J.; Mihai, A.-M.; Maynadié, M.; Barben, J.; Manckoundia, P. Prescription of blood lymphocyte immunophenotyping in the diagnosis of lymphoid neoplasms in older adults. J. Clin. Med. 2022, 11, 1748. [Google Scholar] [CrossRef] [PubMed]
- Catovsky, D. Proceedings: Methods for the study and cell differentiation in acute leukaemia. Br. J. Cancer 1975, 32, 282–283. [Google Scholar] [CrossRef]
- Swerdlow, S.H.; Campo, E.; Pileri, S.A.; Harris, N.L.; Stein, H.; Siebert, R.; Advani, R.; Ghielmini, M.; Salles, G.A.; Zelenetz, A.D.; et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016, 127, 2375–2390. [Google Scholar] [CrossRef] [PubMed]
- Vadakara, J.; Andrick, B. Current advances in Hodgkin’s lymphoma. Chronic Dis. Transl. Med. 2019, 5, 15–24. [Google Scholar] [CrossRef]
- Drechsel, K.C.E.; Pilon, M.C.F.; Stoutjesdijk, F.; Meivis, S.; Schoonmade, L.J.; Wallace, W.H.B.; van Dulmen-den Broeder, E.; Beishuizen, A.; Kaspers, G.J.L.; Broer, S.L.; et al. Reproductive ability in survivors of childhood, adolescent, and young adult Hodgkin lymphoma: A review. Hum. Reprod. Update 2023, 29, 486–517. [Google Scholar] [CrossRef]
- Sant, M.; Allemani, C.; Tereanu, C.; De Angelis, R.; Capocaccia, R.; Visser, O.; Marcos-Gragera, R.; Maynadié, M.; Simonetti, A.; Lutz, J.-M.; et al. Incidence of hematologic malignancies in Europe by morphologic subtype: Results of the HAEMACARE project. Blood 2010, 116, 3724–3734. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Shao, W.; Huang, Z.; Tang, H.; Zhang, J.; Ding, Z.; Huang, K. MOGONET Integrates Multi-Omics Data Using Graph Convolutional Networks Allowing Patient Classification and Biomarker Identification. Nat. Commun. 2021, 12, 3445. [Google Scholar] [CrossRef]
- Moqri, M.; Herzog, C.; Poganik, J.R.; Ying, K.; Justice, J.N.; Belsky, D.W.; Higgins-Chen, A.T.; Chen, B.H.; Cohen, A.A.; Fuellen, G.; et al. Validation of biomarkers of aging. Nat. Med. 2024, 30, 360–372. [Google Scholar] [CrossRef]
- Ying, K.; Liu, H.; Tarkhov, A.E.; Sadler, M.C.; Lu, A.T.; Moqri, M.; Horvath, S.; Kutalik, Z.; Shen, X.; Gladyshev, V.N. Causality-enriched epigenetic age uncouples damage and adaptation. Nat. Aging 2024, 4, 231–246. [Google Scholar] [CrossRef]
- Ying, K.; Tyshkovskiy, A.; Trapp, A.; Liu, H.; Moqri, M.; Kerepesi, C.; Gladyshev, V.N. ClockBase: A comprehensive platform for biological age profiling in human and mouse. bioRxiv 2023. [Google Scholar] [CrossRef]
- Ying, K.; Paulson, S.; Eames, A.; Tyshkovskiy, A.; Li, S.; Perez-Guevara, M.; Emamifar, M.; Martínez, M.C.; Kwon, D.; Kosheleva, A.; et al. A Unified Framework for Systematic Curation and Evaluation of Aging Biomarkers. bioRxiv 2024. [Google Scholar] [CrossRef]
- Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 2013, 14, 3156, Erratum in Genome Biol. 2015, 16, 96. [Google Scholar] [CrossRef] [PubMed]
- Ying, K. Causal inference for epigenetic ageing. Nat. Rev. Genet. 2024, 26, 3. [Google Scholar] [CrossRef] [PubMed]
- Hannum, G.; Guinney, J.; Zhao, L.; Zhang, L.; Hughes, G.; Sadda, S.; Klotzle, B.; Bibikova, M.; Fan, J.-B.; Gao, Y.; et al. Genome-wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates. Mol. Cell 2013, 49, 359–367. [Google Scholar]
- Levine, M.E. An epigenetic biomarker of aging for lifespan and healthspan. Aging 2018, 10, 573–591. [Google Scholar] [CrossRef]
- Lu, A.T.; Seeboth, A.; Tsai, P.-C.; Sun, D.; Quach, A.; Reiner, A.P.; Kooperberg, C.; Ferrucci, L.; Hou, L.; Baccarelli, A.A.; et al. DNA methylation-based estimator of telomere length. Aging 2019, 11, 5895–5923. [Google Scholar] [CrossRef]
- Dugué, P.; Bassett, J.K.; Wong, E.M.; Joo, J.E.; Li, S.; Yu, C.; Schmidt, D.F.; Makalic, E.; Doo, N.W.; Buchanan, D.D.; et al. Biological aging measures based on blood DNA methylation and risk of cancer: A prospective study. JNCI Cancer Spectr. 2020, 5, pkaa109. [Google Scholar] [CrossRef]
- Strickland, M.; Yacoubi-Loueslati, B.; Bouhaouala-Zahar, B.; Pender, S.L.F.; Larbi, A. Relationships Between Ion Channels, Mitochondrial Functions and Inflammation in Human Aging. Front. Physiol. 2019, 10, 158. [Google Scholar] [CrossRef]
- Deng, Y.; Tsai, C.-W.; Chang, W.-S.; Xu, Y.; Huang, M.; Bau, D.-T.; Gu, J. The significant associations between epigenetic clocks and bladder cancer risks. Cancers 2024, 16, 2357. [Google Scholar] [CrossRef]
- Dugué, P.; Bassett, J.K.; Joo, J.E.; Jung, C.; Ming Wong, E.; Moreno-Betancur, M.; Schmidt, D.; Makalic, E.; Li, S.; Severi, G.; et al. DNA methylation-based biological aging and cancer risk and survival: Pooled analysis of seven prospective studies. Int. J. Cancer 2018, 142, 1611–1619. [Google Scholar] [CrossRef]
- Bartholdy, B.A.; Wang, X.; Yan, X.-J.; Pascual, M.; Fan, M.; Barrientos, J.; Allen, S.L.; Martinez-Climent, J.A.; Rai, K.R.; Chiorazzi, N.; et al. CLL intraclonal fractions exhibit established and recently acquired patterns of DNA methylation. Blood Adv. 2020, 4, 893–905. [Google Scholar] [CrossRef] [PubMed]
- Castro, J.P.; Shindyapina, A.V.; Barbieri, A.; Ying, K.; Strelkova, O.S.; Paulo, J.A.; Tyshkovskiy, A.; Meinl, R.; Kerepesi, C.; Petrashen, A.P.; et al. Age-associated clonal B cells drive B cell lymphoma in mice. Nat. Aging 2024, 4, 1403–1417. [Google Scholar] [CrossRef]
- Shoutko, A.N. Overview of hematopoietic stem cells in systemic cancer treatment, aging, pregnancy, and radiation hormesis. Adv. Mol. Imaging 2019, 09, 19–42. [Google Scholar] [CrossRef]
- Rivard, A.; Fabre, J.-E.; Silver, M.; Chen, D.; Murohara, T.; Kearney, M.; Magner, M.; Asahara, T.; Isner, J.M. Age-dependent impairment of angiogenesis. Circulation 1999, 99, 111–120. [Google Scholar] [CrossRef]
- Alves, A.S.B.; Bataglia, F.B.; Conterno, L.; Segato, R.; Payão, S. Epidemiological and cytogenetic profiles of patients with hematological malignancies and their relationship with aging. Hematol. Transfus. Cell Ther. 2018, 40, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, S.; Carlisi, M.; Santoro, M.; Napolitano, M.; Raso, S.; Siragusa, S. Immunosenescence and lymphomagenesis. Immun. Ageing 2018, 15, 22. [Google Scholar] [CrossRef] [PubMed]
- Lutshumba, J.; Nikolajczyk, B.; Bachstetter, A. Dysregulation of systemic immunity in aging and dementia. Front. Cell. Neurosci. 2021, 15, 652111. [Google Scholar] [CrossRef]
- Bosco, N.; Noti, M. The aging gut microbiome and its impact on host immunity. Genes Immun. 2021, 22, 289–303. [Google Scholar] [CrossRef]
- Zilioli, V.; Muzi, C.; Pagani, C.; Ravano, E.; Meli, E.; Daffini, R.; Ravelli, E.; Cairoli, R.; Re, A. Current treatment options and the role of functional status assessment in classical hodgkin lymphoma in older adults: A review. Cancers 2023, 15, 1515. [Google Scholar] [CrossRef]
- Tchkonia, T.; Zhu, Y.; van Deursen, J.V.; Campisi, J.; Kirkland, J. Cellular senescence and the senescent secretory phenotype: Therapeutic opportunities. J. Clin. Investig. 2013, 123, 966–972. [Google Scholar] [CrossRef]
- Li, X.; Li, C.; Zhang, W.; Wang, Y.; Qian, P.; Huang, H. Inflammation and aging: Signaling pathways and intervention therapies. Signal Transduct. Target. Ther. 2023, 8, 239. [Google Scholar] [CrossRef]
- Lian, J.; Yue, Y.; Yu, W.; Zhang, Y. Immunosenescence: A key player in cancer development. J. Hematol. Oncol. 2020, 13, 151, Erratum in J. Hematol. Oncol. 2025, 18, 25. [Google Scholar] [CrossRef]
- Shannon-Lowe, C.; Rickinson, A.B.; Bell, A.I. Epstein–Barr virus-associated lymphomas. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160271. [Google Scholar] [CrossRef] [PubMed]
- Jarrett, R.F. Viruses and Hodgkin’s lymphoma. Ann. Oncol. 2002, 13, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Inoue, S.; Saito, M.; Kotani, J. Immunosenescence in neurocritical care. J. Intensive Care 2018, 6, 65. [Google Scholar] [CrossRef]
- Knight, A.K.; Craig, J.M.; Theda, C.; Bækvad-Hansen, M.; Bybjerg-Grauholm, J.; Hansen, C.S.; Hollegaard, M.V.; Hougaard, D.M.; Mortensen, P.B.; Weinsheimer, S.M.; et al. An epigenetic clock for gestational age at birth based on blood methylation data. Genome Biol. 2016, 17, 206. [Google Scholar] [CrossRef] [PubMed]
- Signer, R.; Montecino-Rodriguez, E.; Witte, O.; McLaughlin, J.; Dorshkind, K. Age-related defects in B lymphopoiesis underlie the myeloid dominance of adult leukemia. Blood 2007, 110, 1831–1839. [Google Scholar] [CrossRef]
- Passtoors, W.; van den Akker, E.B.; Deelen, J.; Maier, A.B.; van der Breggen, R.; Jansen, R.; Trompet, S.; van Heemst, D.; Derhovanessian, E.; Pawelec, G.; et al. IL7R gene expression network associates with human healthy ageing. Immun. Ageing 2015, 12, 21. [Google Scholar] [CrossRef]
- Zahid, H.J.; Taniguchi, R.; Noceda, M.G.; Robins, H.S.; Greissl, J. T cell receptor diversity, cancer and sex: Insights from 30,000 tcrβ repertoires. bioRxiv 2025. [Google Scholar] [CrossRef]
- Chen, Q.; Jain, N.; Ayer, T.; Wierda, W.G.; Flowers, C.R.; O’Brien, S.M.; Keating, M.J.; Kantarjian, H.M. Economic burden of chronic lymphocytic leukemia in the era of oral targeted therapies in the united states. J. Clin. Oncol. 2017, 35, 166–174. [Google Scholar] [CrossRef]
- Kulesh, V.; Peskov, K.; Helmlinger, G.; Bocharov, G. Systematic review and quantitative meta-analysis of age-dependent human T-lymphocyte homeostasis. Front. Immunol. 2025, 16, 1475871. [Google Scholar] [CrossRef]
- Morel, D.; Robert, C.; Paragios, N.; Grégoire, V.; Deutsch, E. Translational frontiers and clinical opportunities of immunologically fitted radiotherapy. Clin. Cancer Res. 2024, 30, 2317–2332. [Google Scholar] [CrossRef] [PubMed]
- Colonna-Romano, G.; Buffa, S.; Bulati, M.; Candore, G.; Lio, D.; Pellicano, M.; Vasto, S. B cells compartment in centenarian offspring and old people. Curr. Pharm. Des. 2010, 16, 604–608. [Google Scholar] [CrossRef] [PubMed]
- Vicente, R.; Mausset-Bonnefont, A.; Jorgensen, C.; Louis-Plence, P.; Brondello, J. Cellular senescence impact on immune cell fate and function. Aging Cell 2016, 15, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Frasca, D.; Landin, A.M.; Lechner, S.C.; Ryan, J.G.; Schwartz, R.; Riley, R.L.; Blomberg, B.B. Aging Down-Regulates the Transcription Factor E2A, Activation-Induced Cytidine Deaminase, and Ig Class Switch in Human B Cells. J. Immunol. 2008, 180, 5283–5290. [Google Scholar] [CrossRef]
- Ayroldi, E.; Cannarile, L.; Adorisio, S.; Delfino, D.; Riccardi, C. Role of endogenous glucocorticoids in cancer in the elderly. Int. J. Mol. Sci. 2018, 19, 3774. [Google Scholar] [CrossRef]
- Shen, X.; Wu, B.; Jiang, W.; Li, Y.; Zhang, Y.; Zhao, K.; Nie, N.; Gong, L.; Liu, Y.; Zou, X.; et al. Scale Bar of Aging Trajectories for Screening Personal Rejuvenation Treatments. bioRxiv 2022. [Google Scholar] [CrossRef] [PubMed]
- Sousa-Pimenta, M.; Estevinho, M.; Dias, M.S.; Martins, Â.; Estevinho, L. Oxidative stress and inflammation in b-cell lymphomas. Antioxidants 2023, 12, 936. [Google Scholar] [CrossRef]
- Prattichizzo, F.; De Nigris, V.; La Sala, L.; Procopio, A.D.; Olivieri, F.; Ceriello, A. ‘Inflammaging’ as a druggable target: A senescence-associated secretory phenotype—Centered view of type 2 diabetes. Oxidative Med. Cell. Longev. 2016, 2016, 1810327. [Google Scholar] [CrossRef]
- Ukraintseva, S.; Yashin, A. Individual aging and cancer risk: How are they related? Demogr. Res. 2003, 9, 163–196. [Google Scholar] [CrossRef]
- Oyama, T.; Ichimura, K.; Suzuki, R.; Suzumiya, J.; Ohshima, K.; Yatabe, Y.; Yokoi, T.; Kojima, M.; Kamiya, Y.; Taji, H.; et al. Senile EBV+ b-cell lymphoproliferative disorders: A clinicopathologic study of 22 patients. Am. J. Surg. Pathol. 2003, 27, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Oyama, T.; Yamamoto, K.; Asano, N.; Oshiro, A.; Suzuki, R.; Kagami, Y.; Morishima, Y.; Takeuchi, K.; Izumo, T.; Mori, S.; et al. Age-related EBV-associated b-cell lymphoproliferative disorders constitute a distinct clinicopathologic group: A study of 96 patients. Clin. Cancer Res. 2007, 13, 5124–5132. [Google Scholar] [CrossRef]
- Nicolae, A.; Pittaluga, S.; Abdullah, S.; Steinberg, S.M.; Pham, T.A.; Davies-Hill, T.; Xi, L.; Raffeld, M.; Jaffe, E.S. EBV-positive large B-cell lymphomas in young patients: A nodal lymphoma with evidence for a tolerogenic immune environment. Blood 2015, 126, 863–872. [Google Scholar] [CrossRef]
- Tyshkovskiy, A.; Kholdina, D.; Ying, K.; Davitadze, M.; Molière, A.; Tongu, Y.; Kasahara, T.; Kats, L.M.; Vladimirova, A.; Moldakozhayev, A.; et al. Transcriptomic Hallmarks of Mortality Reveal Universal and Specific Mechanisms of Aging, Chronic Disease, and Rejuvenation. bioRxiv 2024. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef] [PubMed]
- Bian, L.; Ma, Z.; Fu, X.; Ji, C.; Wang, T.; Yan, C.; Dai, J.; Ma, H.; Hu, Z.; Shen, H.; et al. Associations of combined phenotypic aging and genetic risk with incident cancer: A prospective cohort study. medRxiv 2023. [Google Scholar] [CrossRef]
- Goeminne, L.J.E.; Vladimirova, A.; Eames, A.; Tyshkovskiy, A.; Argentieri, M.A.; Ying, K.; Moqri, M.; Gladyshev, V. N Plasma protein-based organ-specific aging and mortality models unveil diseases as accelerated aging of organismal systems. Cell Metab. 2025, 37, 205–222.e6. [Google Scholar] [CrossRef]
- Ying, K.; Tyshkovskiy, A.; Chen, Q.; Latorre-Crespo, E.; Zhang, B.; Liu, H.; Matei-Dedu, B.; Poganik, J.R.; Moqri, M.; Kirschner, K.; et al. High-dimensional Ageome Representations of Biological Aging across Functional Modules. bioRxiv 2024. [Google Scholar] [CrossRef]
- Ying, K.; Song, J.; Cui, H.; Zhang, Y.; Li, S.; Chen, X.; Liu, H.; Eames, A.; McCartney, D.L.; Marioni, R.E.; et al. MethylGPT: A foundation model for the DNA methylome. bioRxiv 2024. [Google Scholar] [CrossRef]
- Martínez de Toda, I.; Ceprián, N.; Díaz-Del Cerro, E.; De la Fuente, M. The Role of Immune Cells in Oxi-Inflamm-Aging. Cells 2021, 10, 2974. [Google Scholar] [CrossRef]
- Singh, S.; Giron, L.B.; Shaikh, M.W.; Shankaran, S.; Engen, P.A.; Bogin, Z.R.; Bambi, S.A.; Goldman, A.R.; Azevedo, J.L.L.C.; Orgaz, L.; et al. Distinct intestinal microbial signatures linked to accelerated systemic and intestinal biological aging. Microbiome 2024, 12, 31. [Google Scholar] [CrossRef]
- Mijakovac, A.; Frkatović, A.; Hanić, M.; Ivok, J.; Martinić Kavur, M.; Pučić-Baković, M.; Spector, T.; Zoldoš, V.; Mangino, M.; Lauc, G. Heritability of the glycan clock of biological age. Front. Cell Dev. Biol. 2022, 10, 982609. [Google Scholar] [CrossRef] [PubMed]
- Kállai, A.; Ungvari, Z.; Fekete, M.; Maier, A.B.; Mikala, G.; Andrikovics, H.; Lehoczki, A. Genomic instability and genetic heterogeneity in aging: Insights from clonal hematopoiesis (CHIP), monoclonal gammopathy (MGUS), and monoclonal B-cell lymphocytosis (MBL). GeroScience 2024, 47, 703–720. [Google Scholar] [CrossRef] [PubMed]
- Parker, D.; Bartlett, B.N.; Cohen, H.J.; Fillenbaum, G.; Huebner, J.L.; Kraus, V.B.; Pieper, C.; Belsky, D.W. Association of blood chemistry quantifications of biological aging with disability and mortality in older adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2019, 75, 1671–1679. [Google Scholar] [CrossRef] [PubMed]
- Castro, J.P.; Shindyapina, A.V.; Barbieri, A.; Ying, K.; Strelkova, O.S.; Paulo, J.A.; Tyshkovskiy, A.; Meinl, R.; Kerepesi, C.; Petrashen, A.P.; et al. Integrative analyses uncover mechanisms by which aging drives B cell lymphoma. bioRxiv 2021. [Google Scholar] [CrossRef]
- Tarkhov, A.E.; Lindstrom-Vautrin, T.; Zhang, S.; Ying, K.; Moqri, M.; Zhang, B.; Tyshkovskiy, A.; Levy, O.; Gladyshev, V.N. Nature of epigenetic aging from a single-cell perspective. Nat. Aging 2024, 4, 854–870. [Google Scholar] [CrossRef]
- Nannini, D.R.; Cortese, R.; Egwom, P.; Palaniyandi, S.; Hildebrandt, G.C. Time to relapse in chronic lymphocytic leukemia and DNA-methylation-based biological age. Clin. Epigenetics 2023, 15, 81. [Google Scholar] [CrossRef]
- Grimm, C.; Herling, C.D.; Komnidi, A.; Hussong, M.; Kreuzer, K.-A.; Hallek, M.; Schweiger, M.R. Evaluation of a Prognostic Epigenetic Classification System in Chronic Lymphocytic Leukemia Patients. Biomark. Insights 2022, 17, 11772719211067972. [Google Scholar] [CrossRef]
- Torka, P.; Grover, N.S.; Voorhees, T.J.; Karmali, R.; Annunzio, K.; Watkins, M.P.; Anampa-Guzmán, A.; Reves, H.; Tavakkoli, M.; Christian, B.; et al. Impact of Age on Biology, Presentation and Outcomes in Marginal Zone Lymphoma: Results from a Multicenter Cohort Study. Hematol. Oncol. 2025, 43, e70087. [Google Scholar] [CrossRef]
- Segura, A.; Prohens, L.; Mezquida, G.; Amoretti, S.; Bioque, M.; Ribeiro, M.; Gurriarán-Bas, X.; Rementería, L.; Berge, D.; Rodriguez-Jimenez, R.; et al. Epigenetic clocks in relapse after a first episode of schizophrenia. Schizophrenia 2022, 8, 61. [Google Scholar] [CrossRef]
- Schneider, C.V.; Schneider, K.M.; Teumer, A.; Rudolph, K.L.; Hartmann, D.; Rader, D.J.; Strnad, P. Association of Telomere Length with Risk of Disease and Mortality. JAMA Intern. Med. 2022, 182, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Stuckey, R.; Bilbao-Sieyro, C.; Segura-Díaz, A.; Gómez-Casares, M. Molecular studies for the early detection of philadelphia-negative myeloproliferative neoplasms. Int. J. Mol. Sci. 2023, 24, 12700. [Google Scholar] [CrossRef]
- Tucci, A.; Ferrari, S.; Bottelli, C.; Borlenghi, E.; Drera, M.; Rossi, G. A comprehensive geriatric assessment is more effective than clinical judgment to identify elderly diffuse large cell lymphoma patients who benefit from aggressive therapy. Cancer 2009, 115, 4547–4553. [Google Scholar] [CrossRef]
- Lanic, H.; Kraut-Tauzia, J.; Modzelewski, R.; Clatot, F.; Mareschal, S.; Picquenot, J.M.; Stamatoullas, A.; Leprêtre, S.; Tilly, H.; Jardin, F. Sarcopenia is an independent prognostic factor in elderly patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Leuk. Lymphoma 2014, 55, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.Y.; Luo, S.; O’Brian, K.; Ganti, A.; Riedell, P.; Sanfilippo, K.M.; Lynch, R.C.; Liu, W.; Carson, K.R. Impact of sarcopenia on treatment tolerance in United States veterans with diffuse large B-cell lymphoma treated with CHOP-based chemotherapy. Am. J. Hematol./Oncol. 2016, 91, 1002–1007. [Google Scholar] [CrossRef] [PubMed]
- Chu, M.; Lieffers, J.; Ghosh, S.; Belch, A.; Chua, N.S.; Fontaine, A.; Sangha, R.; Turner, R.A.; Baracos, V.E.; Sawyer, M. B Skeletal muscle density is an independent predictor of diffuse large B-cell lymphoma outcomes treated with rituximab-based chemoimmunotherapy. J. Cachexia Sarcopenia Muscle 2016, 8, 298–304. [Google Scholar] [CrossRef]
- Jäger, J.; Callensee, L.; Albayrak-Rena, S.; Esser, S.; Witzke, O.; Schönfeld, A. Prevalence of sarcopenia among people living with HIV defined by the revised European working group on sarcopenia in older people. Int. J. STD AIDS 2024, 35, 902–909. [Google Scholar] [CrossRef]
- Bitto, A.; Tung, H.; Ying, K.; Smith, D.L.; Kayser, E.-B.; Morgan, P.G.; Sedensky, M.M.; Kaeberlein, M. Aging and Mitochondrial Disease: Shared Mechanisms and Therapies? Innov. Aging 2019, 3, S395. [Google Scholar] [CrossRef]
- Bitto, A.; Grillo, A.S.; Ito, T.K.; Stanaway, I.B.; Nguyen, B.M.G.; Ying, K.; Tung, H.; Smith, K.; Tran, N.; Velikanje, G.; et al. Acarbose suppresses symptoms of mitochondrial disease in a mouse model of Leigh syndrome. Nat. Metab. 2023, 5, 955–967. [Google Scholar] [CrossRef]
- Griffin, P.T.; Kane, A.E.; Trapp, A.; Li, J.; Arnold, M.; Poganik, J.R.; Conway, R.J.; McNamara, M.S.; Meer, M.V.; Hoffman, N.; et al. TIME-seq reduces time and cost of DNA methylation measurement for epigenetic clock construction. Nat. Aging 2024, 4, 261–274. [Google Scholar] [CrossRef]
- Shanafelt, T.D.; Borah, B.J.; Finnes, H.D.; Chaffee, K.G.; Ding, W.; Leis, J.F.; Chanan-Khan, A.A.; Parikh, S.A.; Slager, S.L.; Kay, N.E.; et al. Impact of Ibrutinib and Idelalisib on the Pharmaceutical Cost of Treating Chronic Lymphocytic Leukemia at the Individual and Societal Levels. J. Oncol. Pract. 2015, 11, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chu, J.; Hou, Q.; Qian, S.; Wang, Z.; Yang, Q.; Song, W.; Dong, L.; Shi, Z.; Gao, Y.; et al. Ageing microenvironment mediates lymphocyte carcinogenesis and lymphoma drug resistance: From mechanisms to clinical therapy (Review). Int. J. Oncol. 2024, 64, 65. [Google Scholar] [CrossRef]
- Desdín-Micó, G.; Soto-Heredero, G.; Aranda, J.F.; Oller, J.; Carrasco, E.; Gabandé-Rodríguez, E.; Blanco, E.M.; Alfranca, A.; Cussó, L.; Desco, M.; et al. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science 2020, 368, 1371–1376. [Google Scholar] [CrossRef]
- Abukanna, A.; AlAnazi, F.M.; AlAnazi, Z.M.; AlAnazi, F.A.L.; AlAnaz, A.H.O.; AlAnazi, R.M.L. Aging and changes in white blood cells count and immunity: A systematic review. Clin. Cancer Investig. J. 2022, 11, 25–30. [Google Scholar] [CrossRef]
- Ying, K.; Castro, J.P.; Shindyapina, A.V.; Tyshkovskiy, A.; Moqri, M.; Goeminne, L.J.E.; Milman, S.; Zhang, Z.D.; Barzilai, N.; Gladyshev, V.N. Depletion of loss-of-function germline mutations in centenarians reveals longevity genes. Nat. Commun. 2024, 15, 9030. [Google Scholar] [CrossRef] [PubMed]
- Moqri, M.; Poganik, J.; Herzog, C.; Ying, K.; Chen, Q.; Emamifar, M.; Tyshkovskiy, A.; Eames, A.; Mur, J.; Matei-Dediu, B.; et al. Integrative epigenetics and transcriptomics identify aging genes in human blood. bioRxiv 2024. [Google Scholar] [CrossRef]
- Sun, D.-P.; Wang, L.; Ding, C.-Y.; Liang, J.-H.; Zhu, H.-Y.; Wu, Y.-J.; Fan, L.; Li, J.-Y.; Xu, W. Investigating Factors Associated with Thymic Regeneration after Chemotherapy in Patients with Lymphoma. Front. Immunol. 2016, 7, 654. [Google Scholar] [CrossRef]
- Henry, C.J.; Marusyk, A.; DeGregori, J. Aging-associated changes in hematopoiesis and leukemogenesis: What’s the connection? Stress Aging Brain 2011, 1, 35. [Google Scholar] [CrossRef]
- Ying, K.; Zhai, R.; Pyrkov, T.V.; Shindyapina, A.V.; Mariotti, M.; Fedichev, P.O.; Shen, X.; Gladyshev, V.N. Genetic and phenotypic analysis of the causal relationship between aging and COVID-19. Commun. Med. 2021, 1, 35. [Google Scholar] [CrossRef]
- Ying, K.; Paulson, S.; Reinhard, J.; de Lima Camillo, L.P.; Träuble, J.; Jokiel, S.; Biomarkers of Aging Consortium; Gobel, D.; Herzog, C.; Poganik, J.R.; et al. An Open Competition for Biomarkers of Aging. bioRxiv 2024. [Google Scholar] [CrossRef]
Clock Type | Biological Basis | Examples/Key Features | References | |
---|---|---|---|---|
Epigenetic Clocks | Age-related changes in DNA methylation (DNAm) at specific CpG sites | 1st Gen: HorvathAge (pan-tissue), HannumAge (blood). Predict chronological age. 2nd Gen: PhenoAge (phenotypic aging, mortality), GrimAge (mortality, incorporates biomarkers like smoking). Stronger healthspan association. | High—risk stratification; prognosis in CLL and DLBCL. Requires specialized equipment. | [12,14,15,16] |
Immunity Clock | Functional immune parameters | Neutrophil/lymphocyte chemotaxis, phagocytosis, NK cell activity. Measures immunological aging rate. | Moderate—potential for assessing immunotherapy response. Research stage. | [60] |
Inflammatory Clock (iAge) | Levels of circulating inflammatory proteins | Based on markers like CXCL9, eotaxin. Reflects chronic inflammation/inflammaging. | Moderate—may predict therapy-related toxicity. Accessible via blood tests. | [61] |
Glycan Clock | Changes in immunoglobulin G (IgG) glycosylation patterns | Reflects alterations in protein glycosylation with age; potentially reversible. | Low—limited LN-specific data. Potential for monitoring treatment effects. | [62] |
Hematological Clocks | Parameters from standard blood cell counts | White blood cell counts, lymphocyte-to-monocyte ratio, red cell distribution width. Reflects hematopoietic system aging. | High—readily available from routine labs. Useful for frailty assessment. | [63,64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Liu, H.; Ying, K. Biological Age, Aging Clocks, and the Interplay with Lymphoid Neoplasms: Mechanisms and Clinical Frontiers. Lymphatics 2025, 3, 19. https://doi.org/10.3390/lymphatics3030019
Wu X, Liu H, Ying K. Biological Age, Aging Clocks, and the Interplay with Lymphoid Neoplasms: Mechanisms and Clinical Frontiers. Lymphatics. 2025; 3(3):19. https://doi.org/10.3390/lymphatics3030019
Chicago/Turabian StyleWu, Xiaocan, Hanna Liu, and Kejun Ying. 2025. "Biological Age, Aging Clocks, and the Interplay with Lymphoid Neoplasms: Mechanisms and Clinical Frontiers" Lymphatics 3, no. 3: 19. https://doi.org/10.3390/lymphatics3030019
APA StyleWu, X., Liu, H., & Ying, K. (2025). Biological Age, Aging Clocks, and the Interplay with Lymphoid Neoplasms: Mechanisms and Clinical Frontiers. Lymphatics, 3(3), 19. https://doi.org/10.3390/lymphatics3030019