The Postmortem Evaluation of Anatomical Thymic Parameters in the Context of Age, Cause of Death, Sex, and Body Mass Index in the Elderly Human Population
Abstract
:1. Introduction
2. Results
2.1. Description of the KYCOM Cohort
2.2. Summary of the Thymic Measurements
2.3. The Associations between Thymic Parameters and Age
2.4. The Associations between Thymic Parameters and the COD
2.5. The Associations between the Thymic Parameters and BMI
3. Discussion
4. Materials and Methods
4.1. The KYCOM Cohort Characteristics
4.2. Organ Retrieval
4.3. Determination of the BMI
4.4. Thymic Measurements
4.5. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nikolich-Zugich, J. The twilight of immunity: Emerging concepts in aging of the immune system. Nat. Immunol. 2018, 19, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Weyand, C.M.; Goronzy, J.J. Aging of the Immune System. Mechanisms and Therapeutic Targets. Ann. Am. Thorac. Soc. 2016, 13 (Suppl. 5), S422–S428. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.F.; Osoba, D. Current concepts of the immunological function of the thymus. Physiol. Rev. 1967, 47, 437–520. [Google Scholar] [CrossRef] [PubMed]
- Cowan, J.E.; Takahama, Y.; Bhandoola, A.; Ohigashi, I. Postnatal Involution and Counter-Involution of the Thymus. Front. Immunol. 2020, 11, 897. [Google Scholar] [CrossRef] [PubMed]
- Caramalho, I.; Nunes-Cabaço, H.; Foxall, R.B.; Sousa, A.E. Regulatory T-Cell Development in the Human Thymus. Front. Immunol. 2015, 6, 395. [Google Scholar] [CrossRef] [PubMed]
- Corbeaux, T.; Hess, I.; Swann, J.B.; Kanzler, B.; Haas-Assenbaum, A.; Boehm, T. Thymopoiesis in mice depends on a Foxn1-positive thymic epithelial cell lineage. Proc. Natl. Acad. Sci. USA 2010, 107, 16613–16618. [Google Scholar] [CrossRef] [PubMed]
- Douek, D.C.; McFarland, R.D.; Keiser, P.H.; Gage, E.A.; Massey, J.M.; Haynes, B.F.; Polis, M.A.; Haase, A.T.; Feinberg, M.B.; Sullivan, J.L.; et al. Changes in thymic function with age and during the treatment of HIV infection. Nature 1998, 396, 690–695. [Google Scholar] [CrossRef] [PubMed]
- Feinstein, L.; Ferrando-Martínez, S.; Leal, M.; Zhou, X.; Sempowski, G.D.; Wildman, D.E.; Uddin, M.; Aiello, A.E. Population Distributions of Thymic Function in Adults: Variation by Sociodemographic Characteristics and Health Status. Biodemography Soc. Biol. 2016, 62, 208–221. [Google Scholar] [CrossRef] [PubMed]
- Haynes, B.F.; Heinly, C.S. Early human T cell development: Analysis of the human thymus at the time of initial entry of hematopoietic stem cells into the fetal thymic microenvironment. J. Exp. Med. 1995, 181, 1445–1458. [Google Scholar] [CrossRef]
- Jamieson, B.D.; Douek, D.C.; Killian, S.; Hultin, L.E.; Scripture-Adams, D.D.; Giorgi, J.V.; Marelli, D.; Koup, R.A.; Zack, J.A. Generation of functional thymocytes in the human adult. Immunity 1999, 10, 569–575. [Google Scholar] [CrossRef]
- Thapa, P.; Farber, D.L. The Role of the Thymus in the Immune Response. Thorac. Surg. Clin. 2019, 29, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Haynes, B.F.; Markert, M.L.; Sempowski, G.D.; Patel, D.D.; Hale, L.P. The role of the thymus in immune reconstitution in aging, bone marrow transplantation, and HIV-1 infection. Annu. Rev. Immunol. 2000, 18, 529–560. [Google Scholar] [CrossRef] [PubMed]
- Haynes, B.F.; Sempowski, G.D.; Wells, A.F.; Hale, L.P. The human thymus during aging. Immunol. Res. 2000, 22, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Rezzani, R.; Nardo, L.; Favero, G.; Peroni, M.; Rodella, L.F. Thymus and aging: Morphological, radiological, and functional overview. Age 2014, 36, 313–351. [Google Scholar] [CrossRef] [PubMed]
- Thome, J.J.C.; Grinshpun, B.; Kumar, B.V.; Kubota, M.; Ohmura, Y.; Lerner, H.; Sempowski, G.D.; Shen, Y.; Farber, D.L. Long-term maintenance of human naïve T cells through in situ homeostasis in lymphoid tissue sites. Sci. Immunol. 2016, 1, eaah6506. [Google Scholar] [CrossRef] [PubMed]
- Kanneganti, P.; Lyle, J.; Smith, J.H.; McGuire, H.; Denlinger, R.; Simm, M. The unilateral involution in the thymus of a 96-year-old male leads to the preservation of structural integrity in one thymic lobe, as assessed by the expression of medullar and cortical antigens and the presence of CD3+ cells. Heliyon 2022, 8, e11734. [Google Scholar] [CrossRef] [PubMed]
- Simanovsky, N.; Hiller, N.; Loubashevsky, N.; Rozovsky, K. Normal CT characteristics of the thymus in adults. Eur. J. Radiol. 2012, 81, 3581–3586. [Google Scholar] [CrossRef] [PubMed]
- Araki, T.; Nishino, M.; Gao, W.; Dupuis, J.; Hunninghake, G.M.; Murakami, T.; Washko, G.R.; O’connor, G.T.; Hatabu, H. Normal thymus in adults: Appearance on CT and associations with age, sex, BMI and smoking. Eur. Radiol. 2016, 26, 15–24. [Google Scholar] [CrossRef]
- Gui, J.; Mustachio, L.M.; Su, D.-M.; Craig, R.W. Thymus Size and Age-related Thymic Involution: Early Programming, Sexual Dimorphism, Progenitors and Stroma. Aging Dis. 2012, 3, 280–290. [Google Scholar]
- Kendall, M.D.; Johnson, H.R.; Singh, J. The weight of the human thymus gland at necropsy. J. Anat. 1980, 131, 483–497. [Google Scholar]
- Zdrojewicz, Z.; Pachura, E.; Pachura, P. The Thymus: A Forgotten, But Very Important Organ. Adv. Clin. Exp. Med. 2016, 25, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Ackman, J.B.; Kovacina, B.; Carter, B.W.; Wu, C.C.; Sharma, A.; Shepard, J.-A.O.; Halpern, E.F. Sex difference in normal thymic appearance in adults 20–30 years of age. Radiology 2013, 268, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Brelińska, R. Thymic epithelial cells in age-dependent involution. Microsc. Res. Tech. 2003, 62, 488–500. [Google Scholar] [CrossRef]
- Chen, Y.; Qiao, S.; Tuckermann, J.; Okret, S.; Jondal, M. Thymus-derived glucocorticoids mediate androgen effects on thymocyte homeostasis. FASEB J. 2010, 24, 5043–5051. [Google Scholar]
- Ribatti, D.; Crivellato, E.; Vacca, A. Miller’s seminal studies on the role of thymus in immunity. Clin. Exp. Immunol. 2006, 144, 371–375. [Google Scholar] [CrossRef]
- Chinn, I.K.; Blackburn, C.C.; Manley, N.R.; Sempowski, G.D. Changes in primary lymphoid organs with aging. Semin. Immunol. 2012, 24, 309–320. [Google Scholar] [CrossRef] [PubMed]
- George, A.J.; Ritter, M.A. Thymic involution with ageing: Obsolescence or good housekeeping? Immunol. Today 1996, 17, 267–272. [Google Scholar] [CrossRef]
- Vick, L.V.; Collins, C.P.; Khuat, L.T.; Wang, Z.; Dunai, C.; Aguilar, E.G.; Stoffel, K.; Yendamuri, S.; Smith, R.; Mukherjee, S.; et al. Aging augments obesity-induced thymic involution and peripheral T cell exhaustion altering the “obesity paradox”. Front. Immunol. 2022, 13, 1012016. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.Y.; Cesari, M.; Anton, S.; Marzetti, E.; Giovannini, S.; Seo, A.Y.; Carter, C.; Yu, B.P.; Leeuwenburgh, C. Molecular inflammation: Underpinnings of aging and age-related diseases. Ageing Res. Rev. 2009, 8, 18–30. [Google Scholar] [CrossRef]
- Flegal, K.M.; Graubard, B.I.; Williamson, D.F.; Gail, M.H. Weight-Associated Deaths in the United States. J. Women’s Health 2007, 16, 1368–1370. [Google Scholar] [CrossRef]
- Haslam, S.Z. Experimental mouse model of hormonal therapy effects on the postmenopausal mammary gland. Breast Dis. 2006, 24, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Gulvady, A.A.; Ciolino, H.P.; Cabrera, R.M.; Jolly, C.A. Resveratrol inhibits the deleterious effects of diet-induced obesity on thymic function. J. Nutr. Biochem. 2013, 24, 1625–1633. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Youm, Y.-H.; Sun, Y.; Rim, J.-S.; Galbán, C.J.; Vandanmagsar, B.; Dixit, V.D. Axin expression in thymic stromal cells contributes to an age-related increase in thymic adiposity and is associated with reduced thymopoiesis independently of ghrelin signaling. J. Leukoc. Biol. 2009, 85, 928–938. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Nakashima, E.; Kubo, Y.; Yamaoka, M.; Kajimura, J.; Kyoizumi, S.; Hayashi, T.; Ohishi, W.; Kusunoki, Y. Inverse associations between obesity indicators and thymic T-cell production levels in aging atomic-bomb survivors. PLoS ONE 2014, 9, e91985. [Google Scholar] [CrossRef] [PubMed]
- Pawelec, G. Age and immunity: What is “immunosenescence”? Exp. Gerontol. 2018, 105, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Curtin, S.C.; Tejada-Vera, B.; Bastian, B.A. Deaths: Leading Causes for 2020. Natl Vital Stat Rep. 2023, 72, 1–115. [Google Scholar] [PubMed]
- Baron, R.L.; Levitt, R.G.; Sagel, S.S.; White, M.J.; Roper, C.L.; Marbarger, J.P. Computed tomography in the preoperative evaluation of bronchogenic carcinoma. Radiology 1982, 145, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Bertho, J.-M.; Demarquay, C.; Moulian, N.; Van Der Meeren, A.; Berrih-Aknin, S.; Gourmelon, P. Phenotypic and immunohistological analyses of the human adult thymus: Evidence for an active thymus during adult life. Cell. Immunol. 1997, 179, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Francis, I.; Glazer, G.; Bookstein, F.; Gross, B.; Francis, G.G.I.; Heiberg, E.; Wolverson, M.; Sundaram, M.; Nouri, S.; Ackman, J.B.; et al. The thymus: Reexamination of age-related changes in size and shape. Am. J. Roentgenol. 1985, 145, 249–254. [Google Scholar] [CrossRef]
- Paparazzo, E.; Geracitano, S.; Lagani, V.; Citrigno, L.; Bartolomeo, D.; Aceto, M.A.; Bruno, F.; Maletta, R.; Passarino, G.; Montesanto, A. Thymic function and survival at advance ages in nursing home residents from Southern Italy. Immun. Ageing 2023, 20, 1–8. [Google Scholar] [CrossRef]
- Kulesh, V.; Peskov, K.; Helmlinger, G.; Bocharov, G. An integrative mechanistic model of thymocyte dynamics. Front. Immunol. 2024, 15, 1321309. [Google Scholar] [CrossRef]
- Olsen, N.J.; Olson, G.; Viselli, S.M.; Gu, X.; Kovacs, W.J. Androgen receptors in thymic epithelium modulate thymus size and thymocyte development. Endocrinology 2001, 142, 1278–1283. [Google Scholar] [CrossRef]
- Dragin, N.; Bismuth, J.; Cizeron-Clairac, G.; Biferi, M.G.; Berthault, C.; Serraf, A.; Nottin, R.; Klatzmann, D.; Cumano, A.; Barkats, M.; et al. Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases. J. Clin. Investig. 2016, 126, 1525–1537. [Google Scholar] [CrossRef] [PubMed]
- Nunes-Alves, C.; Nobrega, C.; Behar, S.M.; Correia-Neves, M. Tolerance has its limits: How the thymus copes with infection. Trends Immunol. 2013, 34, 502–510. [Google Scholar] [CrossRef]
- Wang, J.; Zhuo, Y.; Yin, L.; Wang, H.; Jiang, Y.; Liu, X.; Zhang, M.; Du, F.; Xia, S.; Shao, Q. Doxycycline Protects Thymic Epithelial Cells from Mitomycin C-Mediated Apoptosis In Vitro via Trx2-NF-kappaB-Bcl-2/Bax Axis. Cell Physiol Biochem. 2016, 38, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Mo, X.; Liu, J.; Ye, S.; Zeng, X.; Chen, D. Thymic function in the regulation of T cells, and molecular mechanisms underlying the modulation of cytokines and stress signaling (Review). Mol. Med. Rep. 2017, 16, 7175–7184. [Google Scholar] [CrossRef] [PubMed]
- Suster, S.; Rosai, J. Histology of the Normal Thymus. Am. J. Surg. Pathol. 1990, 14, 284–303. [Google Scholar] [CrossRef] [PubMed]
- Youm, Y.H.; Yang, H.; Amin, R.; Smith, S.R.; Leff, T.; Dixit, V.D. Thiazolidinedione treatment and constitutive-PPARgamma activation induces ectopic adipogenesis and promotes age-related thymic involution. Aging Cell 2010, 9, 478–489. [Google Scholar] [CrossRef] [PubMed]
- Youm, Y.-H.; Yang, H.; Sun, Y.; Smith, R.G.; Manley, N.R.; Vandanmagsar, B.; Dixit, V.D. Deficient ghrelin receptor-mediated signaling compromises thymic stromal cell microenvironment by accelerating thymic adiposity. J. Biol. Chem. 2009, 284, 7068–7077. [Google Scholar] [CrossRef]
- Bauer, M.E.D.; Lorenz, R.P.; Bauer, S.T.; Rao, K.; Anderson, F.W. Maternal Deaths Due to Sepsis in the State of Michigan, 1999–2006. Obstet. Gynecol. 2015, 126, 747–752. [Google Scholar] [CrossRef]
- Castle, S.C. Impact of age-related immune dysfunction on risk of infections. Z. Gerontol. Geriatr. 2000, 33, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Simon, A.K.; Hollander, G.A.; McMichael, A. Evolution of the immune system in humans from infancy to old age. Proc. R. Soc. B Biol. Sci. 2015, 282, 20143085. [Google Scholar] [CrossRef]
- Yan, S.-X.; Wei, W. Castration reverses immunosenescence in aged mice. Acta Pharmacol. Sin. 2011, 32, 1085–1086. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Bonafè, M. Centenarians as a model for healthy aging. Biochem. Soc. Trans. 2003, 31, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Diseases NIoDaDaK. Body Weight Planner. Available online: https://www.niddk.nih.gov/bwp (accessed on 10 January 2024).
- Kartvelishvili, A.; Lesner, A.; Szponar, M.; Simm, M. Microarray analysis of differentially expressed genes in cells resistant to HIV-1. Immunol. Lett. 2004, 93, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, R.; Shilpi, R.Y.; Simm, M. The interplay between the X-DING-CD4, IFN-alpha and IL-8 gene activity in quiescent and mitogen- or HIV-1-exposed PBMCs from HIV-1 elite controllers, AIDS progressors and HIV-negative controls. Innate Immun. 2014, 20, 173–183. [Google Scholar] [CrossRef]
- Shilpi, R.Y.; Sachdeva, R.; Simm, M. Cellular resistance to HIV-1 infection in target cells coincides with a rapid induction of X-DING-CD4 mRNA: Indication of the unique host innate response to virus regulated through function of the X-DING-CD4 gene. J. Endotoxin Res. 2012, 18, 563–570. [Google Scholar] [CrossRef]
Cohort Characteristics | |
---|---|
Sex | Female (n = 38) |
Male (n = 25) | |
Age | 55–75 (n = 15) |
78–85 (n = 16) | |
86–95 (n = 26) | |
96+ (n = 6) | |
Race | White (n = 59) |
Black (n = 4) | |
Cause of Death | Infection (n = 6) |
Cancer (n = 12) | |
Organ Failure (n = 36) | |
Cognitive (n = 6) | |
Trauma (n = 3) | |
BMI | Low/Normal BMI (n = 36) |
Elevated BMI (n = 27) |
Female | |||||
---|---|---|---|---|---|
Age Group | Thymic Anatomy Mean Data | ||||
LL Length (cm) | RL Length (cm) | TD Length (cm) | Thymic Weight (g) | Capsule Present | |
55–75 (n = 9) | 7.600 ± 2.031 p < 0.0001 | 6.456 ± 1.864 p < 0.0001 | 7.611 ± 3.334 p = 0.0026 | 15.90 ± 14.31 p = 0.8072 | n = 6 (66%) |
76–85 (n = 8) | 7.888 ± 2.951 p = 0.0017 | 6.733 ± 4.879 p = 0.0534 | 5.050 ± 3.026 p = 0.0756 | 7.314 ± 6.212 p = 0.0029 | n = 4 (50%) |
86–95 (n = 17) | 7.012 ± 3.580 p = 0.0002 | 6.659 ± 3.104 p < 0.0001 | 6.953 ± 3.446 p = 0.0001 | 13.75 ± 13.40 p = 0.3183 | n = 10 (59%) |
96+ | 6.775 ± 2.392 p = 0.0433 | 7.575 ± 2.123 p = 0.0117 | 6.825 ± 2.424 p = 0.0456 | 17.52 ± 4.158 p = 0.8545 | n = 1 (25%) |
Male | |||||
Age Group | Thymic Anatomy Mean Data | ||||
LL Length (cm) | RL Length (cm) | TD Length (cm) | Thymic Weight (g) | Capsule Present | |
55–75 (n = 6) | 8.750 ± 4.127 p = 0.0340 | 9.500 ± 4.460 p = 0.0239 | 9.117 ± 4.378 p = 0.0324 | 21.25 ± 21.23 p = 0.6523 | n = 5 (83%) |
76-85 (n = 8) | 9.163 ± 2.197 p = 0.0002 | 8.725 ± 2.597 p = 0.0002 | 8.275 ± 4.020 p = 0.0173 | 22.69 ± 18.93 p = 0.4312 | n = 5 (63%) |
86–95 (n = 9) | 8.413 ± 2.579 p = 0.0013 | 7.656 ± 3.940 p = 0.0041 | 7.789 ± 4.249 p = 0.0244 | 18.00 ± 18.44 p = 0.8866 | n = 4 (44%) |
96+ (n = 2) | 7.050 ± 1.909 p = 0.2445 | 4.000 ± 1.414 p = 0.3611 | 5.800 ± 2.546 p = 0.4778 | 6.885 ± 4.038 p = 0.1735 | n = 0 (0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Denlinger, R.; Smith, J.H.; Lyle, J.; Clapp, I.; Janumpalli, C.; Amick, S.; Simm, M. The Postmortem Evaluation of Anatomical Thymic Parameters in the Context of Age, Cause of Death, Sex, and Body Mass Index in the Elderly Human Population. Lymphatics 2024, 2, 83-96. https://doi.org/10.3390/lymphatics2020007
Denlinger R, Smith JH, Lyle J, Clapp I, Janumpalli C, Amick S, Simm M. The Postmortem Evaluation of Anatomical Thymic Parameters in the Context of Age, Cause of Death, Sex, and Body Mass Index in the Elderly Human Population. Lymphatics. 2024; 2(2):83-96. https://doi.org/10.3390/lymphatics2020007
Chicago/Turabian StyleDenlinger, Richaela, Julia H. Smith, Joseph Lyle, Ian Clapp, Chandrika Janumpalli, Sydney Amick, and Malgorzata Simm. 2024. "The Postmortem Evaluation of Anatomical Thymic Parameters in the Context of Age, Cause of Death, Sex, and Body Mass Index in the Elderly Human Population" Lymphatics 2, no. 2: 83-96. https://doi.org/10.3390/lymphatics2020007
APA StyleDenlinger, R., Smith, J. H., Lyle, J., Clapp, I., Janumpalli, C., Amick, S., & Simm, M. (2024). The Postmortem Evaluation of Anatomical Thymic Parameters in the Context of Age, Cause of Death, Sex, and Body Mass Index in the Elderly Human Population. Lymphatics, 2(2), 83-96. https://doi.org/10.3390/lymphatics2020007