Reduction in Nitrogen Fertilization Rate for Spring Wheat Due to Carbon Mineralization-Induced Nitrogen Mineralization
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Experiments
2.2. Soil Sampling and Analysis
2.3. Data Analysis
3. Results
3.1. Soil Parameters
3.2. Reduction in Nitrogen Fertilization Rate and the Amount of Nitrogen Fertilizer Applied for Crops
3.3. Annualized Crop Yield
4. Discussion
4.1. Soil Carbon Dioxide Flush
4.2. Predicted Potential Nitrogen Mineralization
4.3. Soil Nitrate-Nitrogen Content
4.4. Reduction in Nitrogen Fertilization Rate and the Amount of Nitrogen Fertilizer Applied
4.5. Annualized Crop Yield
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Crews, T.E.; Peoples, M.B. Legume vs. fertilizer sources of nitrogen. Ecological tradeoffs and human needs. Agric. Ecosyst. Environ. 2004, 102, 279–297. [Google Scholar] [CrossRef]
- Huggins, D.R.; Pan, W.L. Key indicators for assessing nitrogen-use efficiency in cereal-based agroecosystems. J. Crop Prod. 2003, 8, 157–185. [Google Scholar] [CrossRef]
- Raun, W.R.; Johnson, G.V. Improving nitrogen-use efficiency in cereal production. Agron. J. 1999, 91, 357–363. [Google Scholar] [CrossRef]
- Smil, V. Enriching the Earth; Massachusetts Institute of Technology Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Sharma, L.K.; Bali, S.K. A review of methods to improve nitrogen-use efficiency in agriculture. Sustainability 2017, 10, 51. [Google Scholar] [CrossRef]
- Varvel, G.E.; Peterson, T.A. Residual soil nitrogen as affected by continuous, two-year, and four-year crop rotations. Agron. J. 1990, 82, 958–962. [Google Scholar] [CrossRef]
- Janzen, H.H.; Beauchamin, K.A.; Brunisma, Y.; Campbell, C.A.; Desjardins, R.L.; Ellert, B.H.; Smith, E.C. The fate of nitrogen in agroecosystems: An illustration using Canadian estimates. Nutr. Cycl. Agroecosyst. 2003, 67, 85–102. [Google Scholar] [CrossRef]
- Eickhout, B.; Bouwman, A.P.; van Zeijts, H. The role of nitrogen in world food production and environmental sustainability. Agric. Ecosyst. Environ. 2006, 116, 4–14. [Google Scholar] [CrossRef]
- Ross, S.M.; Izaurralde, R.C.; Janzen, H.H.; Robertson, J.A.; McGill, W.B. The nitrogen balance of three long-term agroecosystems on a boreal soil in western Canada. Agric. Ecosyst. Environ. 2008, 127, 241–250. [Google Scholar] [CrossRef]
- Rice, C.W.; Havlin, J.L. Integrating mineralizable nitrogen indices into fertilizer nitrogen recommendations. In Soil Testing Prospects for Improving Nutrient Recommendation; Havlin, J.L., Jacobsen, J.S., Eds.; Soil Science Society of America: Madison, WI, USA, 1997; Volume 40, pp. 1–13. [Google Scholar]
- Hurisso, T.T.; Culman, S.W. Is autoclaved citrate-extractable protein a viable indicator of soil nitrogen availability. In Soil Health Series. Laboratory Methods of Soil Health Analysis, 1st ed.; Karlen, D.L., Stott, D.E., Mikha, M.M., Eds.; John Wiley and Sons: Hoboken, NJ, USA, 2021; Volume 2, pp. 176–193. [Google Scholar]
- Rhoades, F.M. Nitrogen or water stress. Their interrelationships. In Nitrogen in Crop Production; Harsh, R.D., Ed.; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 1984; pp. 307–317. [Google Scholar]
- Scharf, P.C. Understanding nitrogen. In Managing Nitrogen in Crop Production; Scharf, P.C., Ed.; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 2015; pp. 1–10. [Google Scholar]
- Lenssen, A.W.; Waddell, J.; Johnson, G.; Carlson, G. Diversified cropping systems in semiarid Montana: Nitrogen use during drought. Soil Tillage Res. 2007, 74, 362–375. [Google Scholar] [CrossRef]
- Miller, P.R.; Gan, Y.; McConkey, B.G.; McDonald, C.I. Pulse crops for the northern Great Plains: Grain productivity and residual effects on soil water and nitrogen. Agron. J. 2003, 95, 972–979. [Google Scholar] [CrossRef]
- Sainju, U.M.; Stevens, W.B.; Caesar-Tonthat, T.; Montagne, C. Nitrogen dynamics affected by management practices in croplands transitioning from conservation reserve program. Agron. J. 2014, 106, 1677–1689. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Should soil testing services measure soil biological activity? Agric. Environ. Lett. 2016, 1, 150009. [Google Scholar] [CrossRef]
- Moebius-Clune, B.; Moebius-Clune, D.; Gugino, B.; Idowu, O.; Schindlebeck, R.; Ristow, A.J.; Abawi, G.S. Comprehensive Assessment of Soil Health: The Cornell Framework, 3rd ed.; Cornell University: Ithaca, NY, USA, 2017. [Google Scholar]
- Castellanos, J.Z.; Pratt, P.F. Mineralization of manure nitrogen—Correlation with laboratory indices. Soil Sci. Soc. Am. J. 1981, 45, 354–357. [Google Scholar] [CrossRef]
- Haney, R.L.; Hons, F.M.; Sanderson, M.A.; Franzluebbers, A.J. A rapid procedure for estimating nitrogen mineralization in manured soil. Biol. Fertil. Soils 2001, 33, 100–104. [Google Scholar] [CrossRef]
- Sainju, U.M.; Liptzin, D.; Dangi, S. Carbon dioxide flush as a soil health indicator related to soil properties and crop yields. Soil Sci. Soc. Am. J. 2021, 85, 1679–1697. [Google Scholar] [CrossRef]
- Sainju, U.M.; Caesar-TonThat, T.; Lenssen, A.W.; Evans, R.G. Dryland crop yields and soil organic matter as influenced by long-term tillage and cropping sequence. Agron. J. 2009, 101, 243–251. [Google Scholar] [CrossRef]
- Sainju, U.M.; Pradhan, G.P. Pea growth, yield, and quality affected by nitrogen fertilization to previous crop in small grain-pea rotations. Agron. J. 2024, 116, 1746–1757. [Google Scholar] [CrossRef]
- Haney, R.L.; Brinton, W.F.; Evans, E. Soil CO2 respiration: Comparison of chemical titration, CO2 IRGA analysis, and Solvitta gel system. Renew. Agric. Food Syst. 2008, 23, 171–176. [Google Scholar] [CrossRef]
- Bundy, L.G.; Meisinger, J.J. Nitrogen availability indices. In Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties; Weaver, R.W., Angle, S., Bottomley, P., Bezdicek, D., Smith, S., Tabatabai, A., Wollum, A., Eds.; Soil Science Society of America: Madison, WI, USA, 1994; pp. 951–984. [Google Scholar]
- Littell, R.C.; Milliken, G.A.; Stroup, W.W.; Wolfinger, R.D. SAS System for Mixed Models; SAS Institute Inc.: Cary, NC, USA, 1996. [Google Scholar]
- Wang, W.J.; Dalal, R.C.; Moody, P.W.; Smith, C.J. Relationships of soil respiration to microbial biomass, substrate availability, and clay content. Soil Biol. Biochem. 2003, 35, 273–284. [Google Scholar] [CrossRef]
- Mosier, A.R.; Halvorson, A.D.; Reule, C.A.; Liu, X.J. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. J. Environ. Qual. 2006, 35, 1584–1598. [Google Scholar] [CrossRef]
- Sainju, U.M.; Caesar-ThonThat, T.; Lenssen, A.W.; Barsotti, J.L. Dryland soil greenhouse gas emissions affected by cropping sequence and nitrogen fertilization. Soil Sci. Soc. Am. J. 2012, 76, 1741–1757. [Google Scholar] [CrossRef]
- Sainju, U.M.; Caesar-Tonthat, T.; Lenssen, A.W.; Evans, R.G.; Kohlberg, R. Tillage and cropping sequence impacts on nitrogen cycling in dryland farming in eastern Montana, USA. Soil Tillage Res. 2009, 103, 332–341. [Google Scholar] [CrossRef]
- Halvorson, A.D.; Wienhold, B.J.; Black, A.L. Tillage, nitrogen, and cropping system effects on soil carbon sequestration. Soil Sci. Soc. Am. J. 2002, 66, 906–912. [Google Scholar] [CrossRef]
- Sainju, U.M. Tillage, cropping sequence, and nitrogen fertilization influence dryland soil nitrogen. Agron. J. 2013, 105, 1253–1263. [Google Scholar] [CrossRef]
- Krupinsky, J.N.; Bailey, K.L.; McMullen, M.P.; Gossen, B.D.; Turkington, T.K. Managing plant disease risk in diversified cropping systems. Agron. J. 2002, 94, 198–209. [Google Scholar] [CrossRef]
- Stevenson, F.C.; van Kessel, C. A landscape-scale assessment of the nitrogen and non-nitrogen rotation benefit of pea. Soil Sci. Soc. Am. J. 1996, 60, 1797–1805. [Google Scholar] [CrossRef]
Cropping Sequence a | CF (kg CO2-C ha−1) | Predicted PNM (kg N ha−1) | NO3-N Content (kg N ha−1) |
---|---|---|---|
Froid | |||
FSTCW | 97.5 ab b | 45.5 ab | 17.4 ab |
NTCW1 | 102.3 ab | 48.0 ab | 12.4 b |
NTWP1 | 126.7 a | 60.7 a | 18.4 a |
STWF | 59.2 b | 25.6 b | 13.6 ab |
Sidney | |||
CTWF | 49.0 b | 54.5 b | 19.4 a |
NTCW2 | 88.2 a | 74.1 a | 7.4 b |
NTWF | 57.6 b | 58.8 b | 21.5 a |
NTWP2 | 72.0 ab | 66.0 ab | 8.4 b |
Cropping Sequence a | RNFR (kg N ha−1) | ANFA (kg N ha−1) | ||
---|---|---|---|---|
Without PNM | With PNM | Without PNM | With PNM | |
Froid | ||||
FSTCW | 17.4 ab b | 62.9 b | 82.6 ab | 37.1 b |
NTCW1 | 12.4 b | 60.4 b | 87.6 a | 39.6 b |
NTWP1 | 18.4 a | 79.1 a | 81.6 b | 20.9 c |
STWF | 13.6 ab | 39.2 c | 86.4 ab | 60.8 a |
Sidney | ||||
CTWF | 19.4 a | 73.9 b | 80.6 b | 26.1 a |
NTCW2 | 7.4 b | 81.5 a | 92.6 a | 18.5 b |
NTWF | 21.5 a | 80.3 a | 78.5 b | 19.7 b |
NTWP2 | 8.4 b | 74.4 b | 91.6 a | 25.6 a |
Cropping Sequence a | Annualized Crop Yield (Mg ha−1) | |
---|---|---|
Without PNM | With PNM | |
Froid | ||
FSTCW | 1.82 b b | 1.70 a |
NTCW1 | 1.96 b | 1.88 a |
NTWP1 | 2.32 a | 2.07 a |
STWF | 1.45 c | 1.30 b |
Sidney | ||
CTWF | 2.02 b | 1.94 b |
NTCW2 | 3.00 a | 2.85 a |
NTWF | 2.01 b | 1.89 b |
NTWP2 | 2.97 a | 2.76 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sainju, U.M. Reduction in Nitrogen Fertilization Rate for Spring Wheat Due to Carbon Mineralization-Induced Nitrogen Mineralization. Agrochemicals 2024, 3, 209-218. https://doi.org/10.3390/agrochemicals3030014
Sainju UM. Reduction in Nitrogen Fertilization Rate for Spring Wheat Due to Carbon Mineralization-Induced Nitrogen Mineralization. Agrochemicals. 2024; 3(3):209-218. https://doi.org/10.3390/agrochemicals3030014
Chicago/Turabian StyleSainju, Upendra M. 2024. "Reduction in Nitrogen Fertilization Rate for Spring Wheat Due to Carbon Mineralization-Induced Nitrogen Mineralization" Agrochemicals 3, no. 3: 209-218. https://doi.org/10.3390/agrochemicals3030014
APA StyleSainju, U. M. (2024). Reduction in Nitrogen Fertilization Rate for Spring Wheat Due to Carbon Mineralization-Induced Nitrogen Mineralization. Agrochemicals, 3(3), 209-218. https://doi.org/10.3390/agrochemicals3030014