Previous Issue
Volume 3, June
 
 

Agrochemicals, Volume 3, Issue 3 (September 2024) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
13 pages, 250 KiB  
Article
Exploring Chemical and Cultural Weed Management for Industrial Hemp Production in Georgia, USA
by Hannah E. Wright-Smith, Timothy W. Coolong, A. Stanley Culpepper, Taylor M. Randell-Singleton and Jenna C. Vance
Agrochemicals 2024, 3(3), 219-231; https://doi.org/10.3390/agrochemicals3030015 - 7 Aug 2024
Viewed by 660
Abstract
Industrial hemp (Cannabis sativa) production is complex, with strict regulatory constraints and challenges associated with a lack of labeled pesticides due to its status as a novel crop in the US. Four experiments were conducted in 2020 and 2021 to establish [...] Read more.
Industrial hemp (Cannabis sativa) production is complex, with strict regulatory constraints and challenges associated with a lack of labeled pesticides due to its status as a novel crop in the US. Four experiments were conducted in 2020 and 2021 to establish herbicide tolerances for hemp production in the coastal plain of Georgia, USA. Objectives included evaluating hemp response to pretransplant or posttransplant herbicides, determining if planting method influenced herbicide injury from residual preplant applied herbicides, and understanding how plastic mulch may influence hemp flower yields. When applied one day prior to transplanting, maximum hemp crop visual injury was less than 12% compared to the untreated control, with acetochlor, flumioxazin, fomesafen, pendimethalin, and norflurazon while dithiopyr, halosulfuron, isoxaben, and isoxaflutole resulted in greater than 50% injury. Posttransplant applications of S-metolachlor, acetochlor, pendimethalin, and clethodim resulted in less than 15% injury while halosulfuron, metribuzin, trifloxysulfuron, imazethapyr, and prometryn applications resulted in greater than 50% injury to plants. Preplant and posttransplant applied herbicides were found to have little effect on total tetrahydrocannabinol (THC), cannabidiol (CBD), or total cannabinoids in the dry flower after harvest. In a separate experiment, injury from halosulfuron and metribuzin was 52% to 56% less when planted with a mechanical transplanter as compared to the practice of using a transplant wheel to depress a hole in the soil followed by hand transplanting. In the final experiment, hemp dry flower yield in a non-plastic mulched (bareground) system was similar to that in a plastic mulched system. However, early season plant above-ground biomass was less in the plastic mulched system, which may have been due to elevated soil temperatures inhibiting early season growth. Full article
(This article belongs to the Special Issue Feature Papers on Agrochemicals)
10 pages, 405 KiB  
Article
Reduction in Nitrogen Fertilization Rate for Spring Wheat Due to Carbon Mineralization-Induced Nitrogen Mineralization
by Upendra M. Sainju
Agrochemicals 2024, 3(3), 209-218; https://doi.org/10.3390/agrochemicals3030014 - 11 Jul 2024
Viewed by 375
Abstract
Using predicted potential N mineralization (PNM) from its relationship with CO2 flush at 1 d incubation (CF) of soil samples in recommended N rates can reduce N fertilization rates for crops. This study used predicted PNM at the 0–15 cm depth to [...] Read more.
Using predicted potential N mineralization (PNM) from its relationship with CO2 flush at 1 d incubation (CF) of soil samples in recommended N rates can reduce N fertilization rates for crops. This study used predicted PNM at the 0–15 cm depth to reduce N fertilization rates and examined spring wheat (Triticum aestivum L.) yields at two sites (Froid and Sidney) in Montana, USA. Cropping sequences at Froid were fall and spring till continuous spring wheat (FSTCW), no-till continuous spring wheat (NTCW1), no-till spring wheat–pea (Pisum sativum L.) (NTWP1), and spring till spring wheat–fallow (STWF). At Sidney, cropping sequences were conventional till spring wheat–fallow (CTWF), no-till spring wheat–fallow (NTWF), no-till continuous spring wheat (NTCW2), and no-till spring wheat–pea (NTWP2). Soil samples collected to a depth of 15 cm in September 2021 at both sites were analyzed for CF, PNM, and NO3-N contents, from which the reduction in N fertilization rate (RNFA) and the amount of N fertilizer applied (ANFA) to 2022 spring wheat were determined. In April 2022, spring wheat was grown with or without predicted PNM and annualized crop yields were compared. The CF and PNM were 114–137% greater for NTWP1 than STWF at Froid and 26–80% greater for NTCW2 than CTWF and NTWF at Sidney. The reduction in N fertilization rate was 26–102% greater for NTWP1 at Froid and 8–10% greater for NTCW2 and NTWF than other cropping sequences at Sidney. Annualized crop yield was 26–60% lower for crop–fallow than continuous cropping, but was not significantly different between with or without PNM at both sites. Using PNM can significantly reduce N fertilization rates for crops while sustaining dryland yields. Full article
(This article belongs to the Section Fertilizers and Soil Improvement Agents)
Show Figures

Figure 1

28 pages, 7633 KiB  
Article
Insights on the Use of Pesticides in Two Main Food-Supplier Coastal Valleys of Lima City, Peru
by Perla N. Chávez-Dulanto, Oliver Vögler, Salomón Helfgott-Lerner and Fernando P. Carvalho
Agrochemicals 2024, 3(3), 181-208; https://doi.org/10.3390/agrochemicals3030013 - 29 Jun 2024
Viewed by 700
Abstract
The food security of Lima—Peru’s capital city, which shelters over 30% of the total country’s population—depends on the food production of its nearest agricultural areas, the Chancay-Huaral and Chillón valleys, wherein agrochemicals are widely used. This study primarily aimed to determine the characteristics [...] Read more.
The food security of Lima—Peru’s capital city, which shelters over 30% of the total country’s population—depends on the food production of its nearest agricultural areas, the Chancay-Huaral and Chillón valleys, wherein agrochemicals are widely used. This study primarily aimed to determine the characteristics of pesticide use in these two valleys, located 83 and 30 km north of Lima City, respectively. A second aim was to assess whether proximity to Lima provides access to technical assistance regarding agricultural activities. A questionnaire-based survey assessing socioeconomic aspects, occupational exposure, and agrochemical-related knowledge was conducted on a sample of 102 participants (farmers and fieldworkers). The results revealed that the average age for starting to handle pesticides was 15 years, while life-long occupational-exposure averaged 30 years. Most pesticides used were organophosphates and carbamates. Personal protective equipment was not used and, therefore, dermal exposure and inhalation were major routes of intoxication. Despite their proximity to Lima, both valleys lack an official agronomic advisory agency, and this void has been occupied by agrochemical manufacturing companies and trading houses focused on increasing their sales. Based on the results, it is urgent to implement an official technical advisory service and a capacity-building program on pesticide use in Peru, as well as the implementation of measures for improved control, trade, and storage of pesticides. Simultaneously, a permanent epidemiological surveillance at the country level is needed to improve public health and to contribute to achieving the Sustainable Development Goals of the United Nations’ 2030 Agenda in Peru. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop