Oxyfluorfen and Linuron: Residual Effect of Pre-Emergence Herbicides in Three Tropical Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of Soil Collections
2.2. Sample Preparation and Herbicide
2.3. Evaluation of the Residual Effect
2.4. Statistical Analysis
3. Results
3.1. Oxyfluorfen
3.2. Linuron
4. Discussion
4.1. Oxyfluorfen
4.2. Linuron
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Priya, R.S.; Chinnusamy, C.; Janaki, P.; Arthanari, P.M. Persistence and carryover effect of oxyfluorfen residues in red sandy clay loam soil. J. Pharmacogn. Phytochem. 2017, 6, 527–532. [Google Scholar]
- Mendes, M.F.; Sousa, R.N.; Dias, R.C.; Reis, M.R. Efeito residual de herbicidas em solos agricultáveis. In Contaminantes Orgânicos da Análise a Biorremediação; Tornisielo, V.L., Vilca, F.Z., Guimarães, C.D., Mendes, K., Eds.; FFEALQ: Piracicaba, Brazil, 2019; pp. 157–178. [Google Scholar]
- Ohadi, S.; Godar, A.; Madsen, J.; Al-khatib, K. Response of rice algal assemblage to fertilizer and chemical application: Implications for early algal bloom management. Agronomy 2021, 11, 542. [Google Scholar] [CrossRef]
- Pesticide Properties Data Base—PPDB. Oxyfluorfen. 2022. Available online: http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/502.htm (accessed on 8 August 2022).
- Pesticide Properties Data Base—PPDB. Linuron. 2022. Available online: http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/419.htm (accessed on 8 August 2022).
- Ministério da Agricultura, Pecuária e Abastecimento—MAPA. Available online: https://www.gov.br/agricultura/pt-br (accessed on 8 August 2022).
- Curran, W.S. Persistence of herbicides in soil. Crop. Soils 2016, 49, 16–21. [Google Scholar] [CrossRef]
- Guimarães, A.C.D.; Inoue, M.H.; Mendes, K.F.; Santos, A.W.; Oliveira, A.M. Processos de degradação biológica (biodegradação) dos herbicidas no solo. In Herbicidas No Ambiente: Impacto e Detecção, 1st ed.; Mendes, K.F., Inoue, M.H., Tornisielo, V.L., Eds.; Editora UFV: Viçosa, Brazil, 2022; pp. 9–35. [Google Scholar]
- Novo, M.D.; Cruz, L.S.P.; Lopes, E.S.; Nagai, V.; Ambrósio, L.A.; Pereira, J.C.V.N.A.; Lombardi, M.L.C.d.O. Persistência de linuron e orizalina em latossolo roxo sob cultivo de soja. Bragantia 2020, 51, 177–184. [Google Scholar] [CrossRef]
- Souza, A.P.; Lourdes, E.G.; Da Silva, J.F.; Ruiz, H.A. Efeito do oxyfluorfen, 2,4-D e glyphosate na atividade microbiana de solos com diferentes texturas e conteúdo de matéria orgânica. Planta Daninha 1996, 14, 55–64. [Google Scholar] [CrossRef]
- Deuber, R.; Pastre, W.; Giusto, A.B. Lixiviação de linuron em dois diferentes latossolos. Rev. Bras. Herbic. 2009, 8, 27–36. [Google Scholar]
- Melo, C.A.D.; Medeiros, W.N.; Tuffi, L.D.; Ferreira, F.A.; Tiburcio, R.A.S.; Ferreira, L.R. Lixiviação de sulfentrazone, isoxaflutole e oxyfluorfen no perfil de três solos. Planta Daninha 2010, 28, 385–392. [Google Scholar] [CrossRef]
- Inoue, M.H.; Fernandes, T.; Mendes, K.F.; Oliveira, R.S., Jr.; Guimaraes, A.C.D.; Maciel, C.D.G. Métodos de Detecção de Herbicidas no Solo Utilizando Bioensaios. In Herbicidas No Ambiente: Impacto e Detecção, 1st ed.; Mendes, K.F., Inoue, M.H., Tornisielo, V.L., Eds.; Editora UFV: Viçosa, Brazil, 2022; pp. 331–374. [Google Scholar]
- Empresa Brasileira de Pesquisa Agropecuária-EMBRAPA. Sistema Brasileiro de Classificação de Solos, 5th ed.; Editora Embrapa Solos: Brasília, Brazil, 2018; pp. 317–325. [Google Scholar]
- Hoagland, D.R.; Arnon, D.I. The Water Culture Method for Growing Plants without Soils Berkeley; California Agricultural Experimental Station: Berkeley, CA, USA, 1950; p. 347. [Google Scholar]
- Cometti, N.N.; Furlani, P.R.; Ruiz, H.A.; Fernandes, E.I. Soluções nutritivas: Formulação e aplicações. In Nutrição Mineral de Plantas, 2nd ed.; Editora SBCS: Viçosa, Brazil, 2006; pp. 90–112. [Google Scholar]
- Concenço, G.; Andres, A.; Schreiber, F.; Palharini, W.G.; Martins, M.B.; Moisinho, I.S.; Melo, T.S.; da Silva, L.B.X. Sweet Sorghum Establishment after Application of Residual Herbicides. Int. J. Adv. Eng. Res. Sci. 2018, 5, 296–304. [Google Scholar] [CrossRef]
- Dan, H.A.; Dan, L.G.M.; Barroso, A.L.L.; Procópio, S.O.; Oliveira, R.S., Jr.; Silva, A.G. Residual activity of herbicides used in soybean agriculture on grain sorghum crop succession. Planta Daninha 2010, 28, 1087–1095. [Google Scholar] [CrossRef] [Green Version]
- Alves, C.; Galon, L.; Kaizer, R.R.; Holz, C.M.; Winter, F.L.; Basso, F.J.M.; Forte, C.T. Selection of Species with Soil Phytoremediation Potential After the Application of Protox-Inhibiting Herbicides. Planta Daninha 2018, 36, e018174765. [Google Scholar] [CrossRef]
- Kuratle, H., III. The Mode of Action and Basis for Selectivity of Linuron Herbicide; University of Delaware: Newark, DE, USA, 1968. [Google Scholar]
- Geetha, A. Phytotoxicity due to fungicides and herbicides and its impact in crop physiological factors. In Advances in Agriculture Sciences; AkiNik Publications: New Delhi, India, 2019; Volume 16, pp. 29–66. [Google Scholar]
- El-Nahhal, Y.; Abadsa, M.; Affifi, S. Leaching potential of diuron and linuron in Gaza soils. Am. J. Plant Sci. 2014, 5, 4040. [Google Scholar] [CrossRef] [Green Version]
- Hoskins, W.M. Mathematical treatment of the rate of loss of pesticide residues. FAO Plant Prot. Bull. 1961, 9, 214–215. [Google Scholar]
- Fantke, P.; Juraske, R. Variability of pesticide dissipation half-lives in plants. Environ. Sci. Technol. 2013, 47, 3548–3562. [Google Scholar] [CrossRef]
- Lewis, K.; Tzilivakis, J. Development of a data set of pesticide dissipation rates in/on various plant matrices for the pesticide properties database (PPDB). Data 2017, 23, 28. [Google Scholar] [CrossRef] [Green Version]
- Seefeldt, S.S.; Jensen, J.E.; Fuerst, P. Loglogistic analysis of herbicide dose response relationships. Weed Technol. 1995, 9, 218–227. [Google Scholar] [CrossRef]
- Araújo, A.C.; José, A.R.S.; Soares, M.R.S.; Moreira, E.D.S. Eficiência e toxicidade do oxyfluorfen em água de irrigação na implantação a campo do gênero Eucalyptus. Ciênc. Florest. 2021, 31, 634–657. [Google Scholar] [CrossRef]
- Hao, G.F.; Zuo, Y.; Yang, S.G.; Yang, G.F. Protoporphyrinogen oxidase inhibitor: An ideal target for herbicide discovery. Chimia 2011, 65, 961–969. [Google Scholar] [CrossRef]
- Inoue, M.H.; Mendes, K.F.; Santana, C.T.C.; Possamai, A.C.S. Atividade residual de herbicidas pré-emergentes aplicados em solos contrastantes. Rev. Brasil. Herbic. 2011, 10, 232–242. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.K.; Bhattacharyya, A.; Chowdhury, A. Degradation of oxyfluorfen by Azotobacter chroococcum. Bull. Environ. Contam. Toxicol. 2002, 69, 203–209. [Google Scholar] [CrossRef]
- Mohamed, A.T.; El-hussein, A.A.; El-siddig, M.A.; Osman, A.G. Degradation of oxyfluorfen herbicide by soil microorganisms biodegradation of herbicides. Biotechnology 2011, 10, 274–279. [Google Scholar] [CrossRef] [Green Version]
- Xia, Q.; Rufty, T.; Shi, W. Soil microbial diversity and composition: Links to soil texture and associated properties. Soil Biol. Biochem. 2020, 149, 107953. [Google Scholar] [CrossRef]
- Mendes, K.F.; Silva, A.A. Plantas Daninhas: Herbicidas, 1st ed.; Oficina de Textos: São Paulo, Brasil, 2022; p. 200. [Google Scholar]
- Dorado, J.; Almendros, G. Organo-mineral interactions involved in herbicide sorption on soil amended with peats of different maturity degree. Agronomy 2021, 11, 869. [Google Scholar] [CrossRef]
- Prado, A.B.C.A.; Obara, F.E.B.; Brunharo, C.A.G.; Melo, M.S.C.; Christoffoleti, P.J.; Alves, M.C. Dinâmica de herbicidas aplicados em pré-emergência sobre palha de cana-de-açúcar em diferentes regimes hídricos. Rev. Brasil. Herbic. 2013, 12, 179–187. [Google Scholar] [CrossRef]
- Ebeling, A.G.; Anjos, L.H.C.D.; Pereira, M.G.; Pinheiro, É.F.M.; Valladares, G.S. Substâncias húmicas e relação com atributos edáficos. Bragantia 2011, 70, 157–165. [Google Scholar] [CrossRef]
- Mitchell, P.J.; Simpson, M.J. High Affinity sorption domains in soil are blocked by polar soil organic matter components. Environ. Sci. Technol. 2013, 47, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Dorado, J.; López-fando, C.; Zancada, M.C.; Almendros, G. Sorption−desorption of alachlor and linuron in a semiarid soil as influenced by organic matter properties after 16 years of periodic inputs. J. Agric. Food Chem. 2005, 53, 5359–5365. [Google Scholar] [CrossRef] [Green Version]
- Cycoń, M.; Piotrowska-seget, Z.; Kozdrój, J. Linuron effects on microbiological characteristics of sandy soils as determined in a pot study. Ann. Microbiol. 2010, 60, 439–449. [Google Scholar] [CrossRef]
- Breugelmans, P. Characterization of novel linuron-mineralizing bacterial consortia enriched from long-term linuron-treated agricultural soils. FEMS Microbiol. Ecol. 2007, 62, 374–385. [Google Scholar] [CrossRef] [Green Version]
- Medo, J.; Maková, J.; Medová, J.; Lipková, N.; Cinkocki, R.; Omelka, R.; Javoreková, S. Changes in soil microbial community and activity caused by application of dimethachlor and linuron. Sci. Rep. 2021, 11, e12786. [Google Scholar] [CrossRef]
- Guzzella, L.; Capri, E.; Corcia, A.; Giuliano, G. Fate of diuron and linuron in a field lysimeter experiment. J. Environ. Qual. 2006, 35, 312–323. [Google Scholar] [CrossRef]
Soil Classification 1 (Textural Class) | OM | pH | P | K+ | Ca2+ | Mg2+ | Al3+ | H+Al | CEC | Sand | Silt | Clay |
---|---|---|---|---|---|---|---|---|---|---|---|---|
% | H2O | mg dm−3 | ----------------cmolc dm−3---------------- | % | ||||||||
Ultisol (clay) | 4.6 | 6.2 | 9.3 | 203.0 | 6.7 | 2.9 | 0.0 | 3.9 | 14.1 | 3.4 | 17.3 | 79.3 |
Oxisol (clay) | 3.7 | 6.7 | 217.6 | 68.0 | 5.1 | 2.4 | 0.0 | 0.7 | 8.4 | 9.0 | 38.5 | 52.5 |
Inceptisol (loamy sand) | 0.5 | 5.6 | 59.0 | 57.0 | 1.2 | 0.4 | 0.0 | 2.6 | 4.4 | 78.6 | 6.5 | 14.9 |
Injury Level (%) | Symptoms Observed in Sorghum in the Presence of Oxyfluorfen Residues | Symptoms Observed in Cucumber in the Presence of Linuron Residues |
---|---|---|
1–9 | Slight reduction in growth | Very similar to the control, with slight reductions in growth |
10–19 | Slight whitish spots | Reductions in aerial growth |
20–29 | White spots on most of the leaves | Few chloroses on cotyledonary leaves |
30–39 | Small reductions in aerial growth and whitish spots | High chlorosis symptoms on cotyledonary leaves |
40–49 | Leaf shriveling | Few symptoms of necrosis on cotyledonary leaves |
50–59 | Growth reduction to 50% of the control | Growth reduction to 50% of the control |
60–69 | Hoarsening of young leaves | Evolution of necrosis symptoms in the cotyledonary leaves with reduction in the growth of the aerial part |
70–79 | Intense growth reduction and leaf shriveling | Few symptoms of necrosis on the apex leaves |
80–89 | Hoarsening of the youngest leaves and necrosis | Limited growth, with symptoms of necrosis in most leaves |
90–99 | Dying plants, all leaves with advanced symptoms of necrosis | Plant dying, all leaves with advanced necrosis symptoms |
100 | Dead plant | Dead plant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paula, D.F.d.; Ferreira, G.A.d.P.; Guimarães, T.; Brochado, M.G.d.S.; Hahn, L.; Mendes, K.F. Oxyfluorfen and Linuron: Residual Effect of Pre-Emergence Herbicides in Three Tropical Soils. Agrochemicals 2023, 2, 18-33. https://doi.org/10.3390/agrochemicals2010003
Paula DFd, Ferreira GAdP, Guimarães T, Brochado MGdS, Hahn L, Mendes KF. Oxyfluorfen and Linuron: Residual Effect of Pre-Emergence Herbicides in Three Tropical Soils. Agrochemicals. 2023; 2(1):18-33. https://doi.org/10.3390/agrochemicals2010003
Chicago/Turabian StylePaula, Dilma F. de, Guilherme A. de P. Ferreira, Tiago Guimarães, Maura G. da S. Brochado, Leandro Hahn, and Kassio F. Mendes. 2023. "Oxyfluorfen and Linuron: Residual Effect of Pre-Emergence Herbicides in Three Tropical Soils" Agrochemicals 2, no. 1: 18-33. https://doi.org/10.3390/agrochemicals2010003
APA StylePaula, D. F. d., Ferreira, G. A. d. P., Guimarães, T., Brochado, M. G. d. S., Hahn, L., & Mendes, K. F. (2023). Oxyfluorfen and Linuron: Residual Effect of Pre-Emergence Herbicides in Three Tropical Soils. Agrochemicals, 2(1), 18-33. https://doi.org/10.3390/agrochemicals2010003