Using Nitrogen for the Control of Stored Product Insects: One Single Application for Multiple Purposes
Abstract
:1. From Theory to Practice
2. Application of Nitrogen in Chambers and Silos
3. Advanced Sensing Technologies
4. Effect of Abiotic Conditions
5. Variations among Different Species and Life Stages
6. Effect on Different Commodities
7. Future Trends
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Racke, K.D. A Reduced Risk Insecticide for Organic Agriculture: Spinosad Case Study. In Crop Prot. Products for Organic Agriculture: Environmental, Health and Efficacy Assessment; Felsot, A.S., Racke, K.D., Eds.; ACS: Washington, DC, USA, 2006; pp. 92–108. [Google Scholar]
- Hertlein, M.B.; Thompson, G.D.; Subramanyam, B.; Athanassiou, C.G. Spinosad: A new natural product for stored grain protection. J. Stored Prod. Res. 2011, 47, 131–146. [Google Scholar] [CrossRef]
- Arthurs, S.; Dara, S.K. Microbial biopesticides for invertebrate pests and their markets in the United States. J. Invertebr. Pathol. 2019, 165, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Arthur, F.H. Grain protectants: Current status and prospects for the future. J. Stored Prod. Res. 1996, 32, 293–302. [Google Scholar] [CrossRef]
- Bajwa, U.; Sandhu, K.S. Effect of handling and processing on pesticide residues in food-a review. J. Food Sci. Technol. 2014, 51, 201–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wijayaratne, L.W.; Fields, P.G.; Arthur, F.H. Residual efficacy of methoprene for control of Tribolium castaneum (Coleoptera: Tenebrionidae) larvae at different temperatures on varnished wood, concrete, and wheat. J. Econ. Entomol. 2012, 105, 718–725. [Google Scholar] [CrossRef] [Green Version]
- (UNEP) United Nations Environment Programme. Report of the Methyl Bromide Technical Options Committee, 1998; Assessment of Alternatives to Methyl Bromide; United Nations Environment Programme: Nairobi, Kenya, 1998. [Google Scholar]
- Fields, P.G.; White, N.D. Alternatives to methyl bromide treatments for stored-product and quarantine insects. Annu. Rev. Entomol. 2002, 47, 331. [Google Scholar] [CrossRef] [Green Version]
- Sousa, A.D.; Faroni, L.D.A.; Guedes, R.N.C.; Tótola, M.; Urruchi, W.I. Ozone as management alternative against phosphine-resistant insect pests of stored products. J. Stored Prod. Res. 2008, 44, 379–385. [Google Scholar] [CrossRef]
- Jagadeesan, R.; Nayak, M.K. Phosphine resistance does not confer cross-resistance to sulfuryl fluoride in four major stored grain insect pests. Pest Manag. Sci. 2017, 73, 1391–1401. [Google Scholar] [CrossRef]
- Sakka, M.K.; Gatzali, F.; Karathanos, V.T.; Athanassiou, C.G. Effect of Nitrogen on Phosphine-Susceptible and-Resistant Populations of Stored Product Insects. Insects 2020, 11, 885. [Google Scholar] [CrossRef]
- Agrafioti, P.; Athanassiou, C.G.; Subramanyam, B. Efficacy of heat treatment on phosphine resistant and susceptible populations of stored product insects. J. Stored Prod. Res. 2019, 81, 100–106. [Google Scholar] [CrossRef]
- Navarro, S. The use of modified and controlled atmospheres for the disinfestation of stored products. J. Pest Sci. 2012, 85, 301–322. [Google Scholar] [CrossRef]
- Mitcham, E.; Martin, T.; Zhou, S. The mode of action of insecticidal controlled atmospheres. Bull. Entomol. Res. 2006, 96, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Navarro, S. Modified Atmospheres for the Control of Stored-Product Insects and Mites. In Insect Management for Food Storage and Processing, 2nd ed.; Heaps, J.W., Ed.; AACC International: St. Paul, MN, USA, 2006; pp. 105–146. [Google Scholar]
- Adler, C.; Corinth, H.G.; Reichmuth, C. Modified atmospheres. In Alternatives to Pesticides in Stored-Product IPM; Subramanyam, B., Hagstrum, D.W., Eds.; Kluwer: Boston, MA, USA, 2000; pp. 105–146. [Google Scholar]
- Athanassiou, C.G.; Chiou, A.; Rumbos, C.I.; Sotiroudas, V.; Sakka, M.; Nikolidaki, E.K.; Panagopoulou, E.A.; Kouvelas, A.; Katechaki, E.; Karathanos, V.T. Effect of nitrogen in combination with elevated temperatures on insects, microbes and organoleptic characteristics of stored currants. J. Pest Sci. 2017, 90, 557–567. [Google Scholar] [CrossRef]
- Navarro, S.; Calderon, M. Integrated approach to the use of controlled atmospheres for insect control in grain storage. In Controlled Atmosphere Storage of Grains; Shejbal, J., Ed.; Elsevier: Amsterdam, The Netherlands, 1980; pp. 73–78. [Google Scholar]
- Agrafioti, P.; Kaloudis, E.; Athanassiou, C.G. Utilizing low oxygen to mitigate resistance of stored product insects to phosphine. J. Sci. Food Agric. 2022, 102, 6080–6087. [Google Scholar] [CrossRef]
- Aliniazee, T.M. Susceptibility of the confused and red flour beetles to anoxia produced by helium and nitrogen at various temperatures. J. Econ. Entomol. 1972, 65, 60–64. [Google Scholar] [CrossRef]
- Howe, R.W. Problems in the laboratory investigation of the toxicity of phosphine to stored product insects. J. Stored Prod. Res. 1974, 10, 167–181. [Google Scholar] [CrossRef]
- Agrafioti, P.; Sotiroudas, V.; Kaloudis, E.; Bantas, S.; Athanassiou, C.G. Real time monitoring of phosphine and insect mortality in different storage facilities. J. Stored Prod. Res. 2020, 89, 101726. [Google Scholar] [CrossRef]
- Isikber, A.A.; Navarro, S.; Finkelman, S.; Rindner, M. Propylene Oxide: A potential quarantine and pre-shipment fumigant for disinfestation of nuts. Phytoparasitica 2006, 34, 412–419. [Google Scholar] [CrossRef]
- Flingelli, G.; Schöller, M.; Klementz, D.W.; Reichmuth, C. Influence of temperature and exposure time on the mortality of Tribolium castaneum eggs at fumigation with sulfuryl fluoride with regard to the progressive egg development. J. Kulturpflanzen 2014, 66, 7–14. [Google Scholar]
- Navarro, S.; Athanassiou, C.G.; Varnava, A.; Vroom, N.; Yiassoumis, D.; Leandrou, I.; Hadjioannou, S. Control of stored grain insects using nitrogen in large concrete silos in Cyprus. In Proceedings of the 9th International Conference of Controlled Atmospheres and Fumigation in Stored Products, Antalya, Turkey, 15–19 October 2012; ARBER Professional: Ankara, Turkey, 2012; pp. 478–487. [Google Scholar]
- Radek, A.; Vlastimil, K.; Jan, P.; Vaclav, S. Field efficacy of brief exposure of adults of six storage pests to nitrogen-controlled atmospheres. Plant Prot. Sci. 2017, 53, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Sakka, M.K.; Gatzali, F.; Karathanos, V.; Athanassiou, C.G. Efficacy of low oxygen against Trogoderma granarium Everts, Tribolium castaneum (Herbst) and Callosobruchus maculatus (F.) in commercial applications. J. Stored Prod. Res. 2022, 97, 101968. [Google Scholar] [CrossRef]
- Agrafioti, P.; Kaloudis, E.; Bantas, S.; Sotiroudas, V.; Athanassiou, C.G. Phosphine distribution and insect mortality in commercial metal shipping containers using wireless sensors and CFD modeling. Comput. Electron. Agric. 2021, 184, 106087. [Google Scholar] [CrossRef]
- Brabec, D.; Kaloudis, E.; Athanassiou, C.G.; Campbell, J.; Agrafioti, P.; Scheff, D.S.; Bantas, S.; Sotiroudas, V. Fumigation Monitoring and Modeling of Hopper-Bottom Railcars Loaded with Corn Grits. J. Biosyst. Eng. 2022, 47, 358–369. [Google Scholar] [CrossRef]
- Agrafioti, P.; Kaloudis, E.; Bantas, S.; Sotiroudas, V.; Athanassiou, C.G. Modeling the distribution of phosphine and insect mortality in cylindrical grain silos with computational fluid dynamics: Validation with field trials. Comput. Electron. Agric. 2020, 173, 105383. [Google Scholar] [CrossRef]
- Pandiselvam, R.; Chandrasekar, V.; Thirupathi, V. Numerical simulation of ozone concentration profile and flow characteristics in paddy bulks. Pest Manag. Sci. 2017, 73, 1698–1702. [Google Scholar] [CrossRef]
- Silva, M.V.A.; Faroni, L.R.A.; Martins, M.A.; Sousa, A.H.; Bustos-Vanegas, J.D. CFD simulation of ozone gas flow for controlling Sitophilus zeamais in rice grains. J Stored Prod Res. 2020, 88, 101675. [Google Scholar] [CrossRef]
- Soderstrom, E.L.; Brandl, D.G.; Mackey, B. High temperature combined with carbon dioxide enriched or reduced oxygen atmospheres for control of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Stored Prod. Res. 1992, 28, 235–238. [Google Scholar] [CrossRef]
- Ofuya, T.I.; Reichmuth, C. Effect of relative humidity on the susceptibility of Callosobruchus maculatus (Fabricius) (Coleoptera: Bruchidae) to two modified atmospheres. J. Stored Prod. Res. 2002, 38, 139–146. [Google Scholar] [CrossRef]
- Mbata, G.N.; Phillips, T.W. Effects of temperature and exposure time on mortality of stored-product insects exposed to low pressure. J. Econ. Entomol. 2001, 94, 1302–1307. [Google Scholar] [CrossRef]
- Boina, D.; Subramanyam, B. Relative susceptibility of Tribolium confusum life stages exposed to elevated temperatures. J. Econ. Entomol. 2004, 97, 2168–2173. [Google Scholar] [CrossRef]
- Brijwani, M.; Subramanyam, B.; Flinn, P.W.; Langemeier, M.R.; Hartzer, M.; Hulasare, R. Susceptibility of Tribolium castaneum life stages exposed to elevated temperatures during heat treatments of a pilot flour mill: Influence of sanitation, temperatures attained among mills floors, and costs. J. Econ. Entomol. 2012, 105, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Jay, E.G.; Arbogast, R.T.; Pearman, G.C., Jr. Relative humidity: Its importance in the control of stored-product insects with modified atmospheric gas concentrations. J. Stored Prod. Res. 1971, 6, 325–329. [Google Scholar] [CrossRef]
- Banks, H.J. Effects of controlled atmosphere storage on grain quality: A review. Food Technol. Aust. 1981, 33, 335–340. [Google Scholar]
- Hertog, M.L.; Nicholson, S.E.; Whitmore, K. The effect of modified atmospheres on the rate of quality change in ‘Hass’ avocado. Postharvest Biol. Technol. 2003, 29, 41–53. [Google Scholar] [CrossRef] [Green Version]
- Ochoa-Velasco, C.E.; Guerrero-Beltrán, J.Á. The effects of modified atmospheres on prickly pear (Opuntia albicarpa) stored at different temperatures. Postharvest Biol. Technol. 2016, 111, 314–321. [Google Scholar] [CrossRef]
- Ali, S.; Khan, A.S.; Malik, A.U.; Shahid, M. Effect of controlled atmosphere storage on pericarp browning, bioactive compounds and antioxidant enzymes of litchi fruits. Food Chem. 2016, 206, 18–29. [Google Scholar] [CrossRef]
- Jiang, Y.M.; Fu, J.R. Postharvest browning of litchi fruit by water loss and its prevention by controlled atmosphere storage at high relative humidity. LWT-Food Sci.Technol. 1999, 32, 278–283. [Google Scholar] [CrossRef]
- Lu, L.X.; Tang, Y.L.; Lu, S.Y. A kinetic model for predicting the relative humidity in modified atmosphere packaging and its application in Lentinula edodes packages. Mathe. Probl. Eng. 2013, 2013, 304016. [Google Scholar]
- Adler, C.; Reichmuth, C. The efficacy of carbon dioxide or nitrogen to control different stored products insects in metal grain bins. Nachr. Pflanzenschutz DDR 1989, 43, 177–183. [Google Scholar]
- Navarro, S. The effects of low oxygen tensions on three stored product insect pests. Phytoparasitica 1978, 6, 51–58. [Google Scholar] [CrossRef]
- Riudavets, J.; Castane, C.; Alomar, O.; Pons, M.J.; Gabarra, R. Modified atmosphere packaging (MAP) as an alternative measure for controlling ten pests that attack processed food products. J. Stored Prod. Res. 2009, 45, 91–96. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Phillips, T.W.; Wakil, W. Biology and control of the khapra beetle, Trogoderma granarium, a major quarantine threat to global food security. Annu. Rev. Entomol. 2019, 64, 131–148. [Google Scholar] [CrossRef] [PubMed]
- Ghimire, M.N.; Myers, S.W.; Arthur, F.H.; Phillips, T.W. Susceptibility of Trogoderma granarium Everts and Trogoderma inclusum LeConte (Coleoptera: Dermestidae) to residual contact insecticides. J. Stored Prod. Res. 2017, 72, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Kavallieratos, N.G.; Athanassiou, C.G.; Barda, M.S.; Boukouvala, M.C. Efficacy of five insecticides for the control of Trogoderma granarium Everts (Coleoptera: Dermestidae) larvae on concrete. J. Stored Prod. Res. 2016, 66, 18–24. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Kavallieratos, N.G.; Boukouvala, M.C.; Mavroforos, M.E.; Kontodimas, D.C. Efficacy of alpha-cypermethrin and thiamethoxam against Trogoderma granarium Everts (Coleoptera: Dermestidae) and Tenebrio molitor L. (Coleoptera: Tenebrionidae) on concrete. J. Stored Prod. Res. 2015, 62, 101–107. [Google Scholar] [CrossRef]
- Vassilakos, T.N.; Riudavets, J.; Castañé, C.; Iturralde-Garcia, R.D.; Athanassiou, C.G. Efficacy of modified atmospheres on Trogoderma granarium (Coleoptera: Dermestidae) and Sitophilus zeamais (Coleoptera: Curculionidae). J. Econ. Entomol. 2019, 112, 2450–2457. [Google Scholar] [CrossRef]
- Wilches, D.M.; Laird, R.A.; Floate, K.D.; Fields, P.G. Control of Trogoderma granarium (Coleoptera: Dermestidae) using high temperatures. Journal Econ. Entomol. 2019, 112, 963–968. [Google Scholar] [CrossRef] [Green Version]
- Mohammadzadeh, M.; Izadi, H. Cooling rate and starvation affect supercooling point and cold tolerance of the Khapra beetle, Trogoderma granarium Everts fourth instar larvae (Coleoptera: Dermestidae). J. Therm. Biol. 2018, 71, 24–31. [Google Scholar] [CrossRef]
- Williams, J.O.; Adesuyi, S.A.; Shejbal, J. Susceptibility of the life stages of Sitophilus zeamais and Trogoderma granarium larvae to nitrogen atmosphere in minisilos. In Developments in Agricultural Engineering; Elsevier: Amsterdam, The Netherlands, 1980; Volume 1, pp. 93–100. [Google Scholar]
- Guarrasi, V.; Giacomazza, D.; Germana, M.A.; Amenta, M.; Biagio, P.L.S. Monitoring the shelf-life of minimally processed fresh-cut apple slices by physical-chemical analysis and electronic nose. Agrotechnology 2014, 3, 126. [Google Scholar] [CrossRef] [Green Version]
- Mattheis, J.; Fellman, J.K. Impacts of modified atmosphere packaging and controlled atmospheres on aroma, flavor, and quality of horticultural commodities. HortTechnology 2000, 10, 507–510. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, M.O.; Pires, I.; Barbosa, A.; Barros, G.; Riudavets, J.; Garcia, A.C.; Brites, C.; Navarro, S. The use of modified atmospheres to control Sitophilus zeamais and Sitophilus oryzae on stored rice in Portugal. J. Stored Prod. Res. 2012, 50, 49–56. [Google Scholar] [CrossRef]
- Plumier, B.; Maier, D. Use of a 3D finite element model to predict post fumigation phosphine desorption. In Proceedings of the 12th International Working Conference on Stored Product Protection (IWCSPP), Berlin, Germany, 7–11 October 2018; p. 80. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Athanassiou, C.G.; Sakka, M.K. Using Nitrogen for the Control of Stored Product Insects: One Single Application for Multiple Purposes. Agrochemicals 2022, 1, 22-28. https://doi.org/10.3390/agrochemicals1010004
Athanassiou CG, Sakka MK. Using Nitrogen for the Control of Stored Product Insects: One Single Application for Multiple Purposes. Agrochemicals. 2022; 1(1):22-28. https://doi.org/10.3390/agrochemicals1010004
Chicago/Turabian StyleAthanassiou, Christos G., and Maria K. Sakka. 2022. "Using Nitrogen for the Control of Stored Product Insects: One Single Application for Multiple Purposes" Agrochemicals 1, no. 1: 22-28. https://doi.org/10.3390/agrochemicals1010004