Comprehensive Roles of ZIP and ZnT Zinc Transporters in Metabolic Inflammation
Abstract
1. Introduction
2. Key Machinery for Zinc Homeostasis
2.1. ZnT and ZIP Families: The Core Zinc Transporters
2.2. Metallothioneins: Crucial Intracellular Zinc Buffers
2.3. Key Cellular Zinc Compartments and Organelle-Specific Zinc Trafficking
3. Functional Links Between Zinc and Metaflammation
3.1. The Influence of Zinc Transporter Imbalance in Metaflammation
3.2. Zinc Transporters and MicroRNA-Mediated Regulation of Metaflammation
4. Tissue-Specific Roles of Zinc Transporters
4.1. Liver
4.2. Pancreas
4.3. Adipose Tissue
4.4. Gut Barrier
5. Zinc-Modulated Signaling Pathways
Zinc’s Crosstalk with Canonical Pathways: NF-κB, MAPKs, NLRP3, and TLRs
6. Therapeutic Implications and Translational Potential of Zinc Transporters
Pharmaceutical Development and Contemporary Case Analyses
7. Future Perspectives and Open Questions
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, B.; Yu, P.; Chan, W.N.; Xie, F.; Zhang, Y.; Liang, L.; Leung, K.T.; Lo, K.W.; Yu, J.; Tse, G.M.K.; et al. Cellular Zinc Metabolism and Zinc Signaling: From Biological Functions to Diseases and Therapeutic Targets. Signal Transduct. Target. Ther. 2024, 9, 6. [Google Scholar] [CrossRef]
- Kimura, T.; Kambe, T. The Functions of Metallothionein and ZIP and ZnT Transporters: An Overview and Perspective. Int. J. Mol. Sci. 2016, 17, 336. [Google Scholar] [CrossRef]
- Charles-Messance, H.; Mitchelson, K.A.J.; Castro, E.D.M.; Sheedy, F.J.; Roche, H.M. Regulating Metabolic Inflammation by Nutritional Modulation. J. Allergy Clin. Immunol. 2020, 146, 706–720. [Google Scholar] [CrossRef] [PubMed]
- Aydemir, T.B.; Troche, C.; Kim, M.-H.; Cousins, R.J. Hepatic ZIP14-Mediated Zinc Transport Contributes to Endosomal Insulin Receptor Trafficking and Glucose Metabolism. J. Biol. Chem. 2016, 291, 23939–23951. [Google Scholar] [CrossRef]
- Barman, S.; Srinivasan, K. Diabetes and Zinc Dyshomeostasis: Can Zinc Supplementation Mitigate Diabetic Complications? Crit. Rev. Food Sci. Nutr. 2022, 62, 1046–1061. [Google Scholar] [CrossRef] [PubMed]
- Barman, S.; Pradeep, S.R.; Srinivasan, K. Zinc Supplementation Mitigates Its Dyshomeostasis in Experimental Diabetic Rats by Regulating the Expression of Zinc Transporters and Metallothionein. Metallomics 2017, 9, 1765–1777. [Google Scholar] [CrossRef]
- Barman, S.; Srinivasan, K. Ameliorative Effect of Zinc Supplementation on Compromised Small Intestinal Health in Streptozotocin-Induced Diabetic Rats. Chem. Biol. Interact. 2019, 307, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.-G.; Wu, T.-Y.; Zhao, L.-X.; Jia, R.-J.; Ren, H.; Hou, W.-J.; Wang, Z.-Y. From Zinc Homeostasis to Disease Progression: Unveiling the Neurodegenerative Puzzle. Pharmacol. Res. 2024, 199, 107039. [Google Scholar] [CrossRef]
- Paik, S.; Kim, J.K.; Silwal, P.; Sasakawa, C.; Jo, E.-K. An Update on the Regulatory Mechanisms of NLRP3 Inflammasome Activation. Cell. Mol. Immunol. 2021, 18, 1141–1160. [Google Scholar] [CrossRef]
- Jeong, J.; Eide, D.J. The SLC39 Family of Zinc Transporters. Mol. Asp. Med. 2013, 34, 612–619. [Google Scholar] [CrossRef]
- Kambe, T.; Taylor, K.M.; Fu, D. Zinc Transporters and Their Functional Integration in Mammalian Cells. J. Biol. Chem. 2021, 296, 100320. [Google Scholar] [CrossRef]
- Roca-Umbert, A.; Garcia-Calleja, J.; Vogel-González, M.; Fierro-Villegas, A.; Ill-Raga, G.; Herrera-Fernández, V.; Bosnjak, A.; Muntané, G.; Gutiérrez, E.; Campelo, F.; et al. Human Genetic Adaptation Related to Cellular Zinc Homeostasis. PLoS Genet. 2023, 19, e1010950. [Google Scholar] [CrossRef]
- Krężel, A.; Maret, W. The Bioinorganic Chemistry of Mammalian Metallothioneins. Chem. Rev. 2021, 121, 14594–14648. [Google Scholar] [CrossRef]
- Thirumoorthy, N.; Manisenthil Kumar, K.; Shyam Sundar, A.; Panayappan, L.; Chatterjee, M. Metallothionein: An Overview. World J. Gastroenterol. 2007, 13, 993–996. [Google Scholar] [CrossRef] [PubMed]
- Bafaro, E.; Liu, Y.; Xu, Y.; Dempski, R.E. The Emerging Role of Zinc Transporters in Cellular Homeostasis and Cancer. Signal Transduct. Target. Ther. 2017, 2, 17029. [Google Scholar] [CrossRef] [PubMed]
- Oteiza, P.I. Zinc and the Modulation of Redox Homeostasis. Free Radic. Biol. Med. 2012, 53, 1748–1759. [Google Scholar] [CrossRef]
- Laity, J.H.; Andrews, G.K. Understanding the Mechanisms of Zinc-Sensing by Metal-Response Element Binding Transcription Factor-1 (MTF-1). Arch. Biochem. Biophys. 2007, 463, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Amagai, Y.; Sannino, S.; Tempio, T.; Anelli, T.; Harayama, M.; Masui, S.; Sorrentino, I.; Yamada, M.; Sitia, R.; et al. Zinc Regulates ERp44-Dependent Protein Quality Control in the Early Secretory Pathway. Nat. Commun. 2019, 10, 603. [Google Scholar] [CrossRef]
- Wagatsuma, T.; Shimotsuma, K.; Sogo, A.; Sato, R.; Kubo, N.; Ueda, S.; Uchida, Y.; Kinoshita, M.; Kambe, T. Zinc Transport via ZNT5-6 and ZNT7 Is Critical for Cell Surface Glycosylphosphatidylinositol-Anchored Protein Expression. J. Biol. Chem. 2022, 298, 102011. [Google Scholar] [CrossRef]
- Kim, M.-H.; Aydemir, T.B.; Kim, J.; Cousins, R.J. Hepatic ZIP14-Mediated Zinc Transport Is Required for Adaptation to Endoplasmic Reticulum Stress. Proc. Natl. Acad. Sci. USA 2017, 114, E5805–E5814. [Google Scholar] [CrossRef]
- Amagai, Y.; Yamada, M.; Kowada, T.; Watanabe, T.; Du, Y.; Liu, R.; Naramoto, S.; Watanabe, S.; Kyozuka, J.; Anelli, T.; et al. Zinc Homeostasis Governed by Golgi-Resident ZnT Family Members Regulates ERp44-Mediated Proteostasis at the ER-Golgi Interface. Nat. Commun. 2023, 14, 2683. [Google Scholar] [CrossRef]
- Suzuki, T.; Ishihara, K.; Migaki, H.; Ishihara, K.; Nagao, M.; Yamaguchi-Iwai, Y.; Kambe, T. Two Different Zinc Transport Complexes of Cation Diffusion Facilitator Proteins Localized in the Secretory Pathway Operate to Activate Alkaline Phosphatases in Vertebrate Cells. J. Biol. Chem. 2005, 280, 30956–30962. [Google Scholar] [CrossRef]
- Yuasa, H.; Morino, N.; Wagatsuma, T.; Munekane, M.; Ueda, S.; Matsunaga, M.; Uchida, Y.; Katayama, T.; Katoh, T.; Kambe, T. ZNT5-6 and ZNT7 Play an Integral Role in Protein N-Glycosylation by Supplying Zn2+ to Golgi α-Mannosidase II. J. Biol. Chem. 2024, 300, 107378. [Google Scholar] [CrossRef]
- McCormick, N.H.; Kelleher, S.L. ZnT4 Provides Zinc to Zinc-Dependent Proteins in the Trans-Golgi Network Critical for Cell Function and Zn Export in Mammary Epithelial Cells. Am. J. Physiol.-Cell Physiol. 2012, 303, C291–C297. [Google Scholar] [CrossRef]
- Liu, H.Y.; Gale, J.R.; Reynolds, I.J.; Weiss, J.H.; Aizenman, E. The Multifaceted Roles of Zinc in Neuronal Mitochondrial Dysfunction. Biomedicines 2021, 9, 489. [Google Scholar] [CrossRef]
- Ishida, H.; Yo, R.; Zhang, Z.; Shimizu, T.; Ohto, U. Cryo-EM Structures of the Zinc Transporters ZnT3 and ZnT4 Provide Insights into Their Transport Mechanisms. FEBS Lett. 2025, 599, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Rivera, O.C.; Geddes, D.T.; Barber-Zucker, S.; Zarivach, R.; Gagnon, A.; Soybel, D.I.; Kelleher, S.L. A Common Genetic Variant in Zinc Transporter ZnT2 (Thr288Ser) Is Present in Women with Low Milk Volume and Alters Lysosome Function and Cell Energetics. Am. J. Physiol.-Cell Physiol. 2020, 318, C1166–C1177. [Google Scholar] [CrossRef] [PubMed]
- Chowanadisai, W.; Lönnerdal, B.; Kelleher, S.L. Identification of a Mutation in SLC30A2 (ZnT-2) in Women with Low Milk Zinc Concentration That Results in Transient Neonatal Zinc Deficiency. J. Biol. Chem. 2006, 281, 39699–39707. [Google Scholar] [CrossRef] [PubMed]
- Davidson, H.W.; Wenzlau, J.M.; O’Brien, R.M. Zinc Transporter 8 (ZnT8) and β Cell Function. Trends Endocrinol. Metab. 2014, 25, 415–424. [Google Scholar] [CrossRef]
- Kukic, I.; Lee, J.K.; Coblentz, J.; Kelleher, S.L.; Kiselyov, K. Zinc-Dependent Lysosomal Enlargement in TRPML1-Deficient Cells Involves MTF-1 Transcription Factor and ZnT4 (Slc30a4) Transporter. Biochem. J. 2013, 451, 155–163. [Google Scholar] [CrossRef]
- Aydemir, T.B.; Liuzzi, J.P.; McClellan, S.; Cousins, R.J. Zinc Transporter ZIP8 (SLC39A8) and Zinc Influence IFN-γ Expression in Activated Human T Cells. J. Leukoc. Biol. 2009, 86, 337–348. [Google Scholar] [CrossRef]
- Wang, F.; Dufner-Beattie, J.; Kim, B.-E.; Petris, M.J.; Andrews, G.; Eide, D.J. Zinc-Stimulated Endocytosis Controls Activity of the Mouse ZIP1 and ZIP3 Zinc Uptake Transporters. J. Biol. Chem. 2004, 279, 24631–24639. [Google Scholar] [CrossRef]
- Xian, Y.; Zhou, M.; Hu, Y.; Liu, J.; Zhu, W.; Wang, Y. Free Zinc Determines the Formability of the Vesicular Dense Core in Diabetic Beta Cells. Cell Insight 2022, 1, 100020. [Google Scholar] [CrossRef] [PubMed]
- McAllister, B.B.; Dyck, R.H. Zinc Transporter 3 (ZnT3) and Vesicular Zinc in Central Nervous System Function. Neurosci. Biobehav. Rev. 2017, 80, 329–350. [Google Scholar] [CrossRef]
- Lee, S.; Rivera, O.C.; Kelleher, S.L. Zinc Transporter 2 Interacts with Vacuolar ATPase and Is Required for Polarization, Vesicle Acidification, and Secretion in Mammary Epithelial Cells. J. Biol. Chem. 2017, 292, 21598–21613. [Google Scholar] [CrossRef] [PubMed]
- Kambe, T.; Matsunaga, M.; Takeda, T. Understanding the Contribution of Zinc Transporters in the Function of the Early Secretory Pathway. Int. J. Mol. Sci. 2017, 18, 2179. [Google Scholar] [CrossRef]
- Wijesekara, N.; Dai, F.F.; Hardy, A.B.; Giglou, P.R.; Bhattacharjee, A.; Koshkin, V.; Chimienti, F.; Gaisano, H.Y.; Rutter, G.A.; Wheeler, M.B. Beta Cell Specific ZnT8 Deletion in Mice Causes Marked Defects in Insulin Processing, Crystallization and Secretion. Diabetologia 2010, 53, 1656–1668. [Google Scholar] [CrossRef]
- Palmiter, R.D.; Cole, T.B.; Quaife, C.J.; Findley, S.D. ZnT-3, a Putative Transporter of Zinc into Synaptic Vesicles. Proc. Natl. Acad. Sci. USA 1996, 93, 14934–14939. [Google Scholar] [CrossRef]
- Fukunaka, A.; Kurokawa, Y.; Teranishi, F.; Sekler, I.; Oda, K.; Ackland, M.L.; Faundez, V.; Hiromura, M.; Masuda, S.; Nagao, M.; et al. Tissue Nonspecific Alkaline Phosphatase Is Activated via a Two-Step Mechanism by Zinc Transport Complexes in the Early Secretory Pathway. J. Biol. Chem. 2011, 286, 16363–16373. [Google Scholar] [CrossRef]
- Thornton, J.K.; Taylor, K.M.; Ford, D.; Valentine, R.A. Differential Subcellular Localization of the Splice Variants of the Zinc Transporter ZnT5 Is Dictated by the Different C-Terminal Regions. PLoS ONE 2011, 6, e23878. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Cui, Y.; Sang, Z.; Gao, S.; Zhao, H.; Mei, X. Zinc Ions Regulate Mitochondrial Quality Control in Neurons under Oxidative Stress and Reduce PANoptosis in Spinal Cord Injury Models via the Lgals3-Bax Pathway. Free Radic. Biol. Med. 2024, 221, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Dabravolski, S.A.; Sadykhov, N.K.; Kartuesov, A.G.; Borisov, E.E.; Sukhorukov, V.N.; Orekhov, A.N. Interplay between Zn2+ Homeostasis and Mitochondrial Functions in Cardiovascular Diseases and Heart Ageing. Int. J. Mol. Sci. 2022, 23, 6890. [Google Scholar] [CrossRef]
- Deng, H.; Qiao, X.; Xie, T.; Fu, W.; Li, H.; Zhao, Y.; Guo, M.; Feng, Y.; Chen, L.; Zhao, Y.; et al. SLC-30A9 Is Required for Zn2+ Homeostasis, Zn2+ Mobilization, and Mitochondrial Health. Proc. Natl. Acad. Sci. USA 2021, 118, e2023909118. [Google Scholar] [CrossRef]
- Jiang, D.; Sullivan, P.G.; Sensi, S.L.; Steward, O.; Weiss, J.H. Zn2+ Induces Permeability Transition Pore Opening and Release of Pro-Apoptotic Peptides from Neuronal Mitochondria. J. Biol. Chem. 2001, 276, 47524–47529. [Google Scholar] [CrossRef]
- Mendoza, A.D.; Dietrich, N.; Tan, C.-H.; Herrera, D.; Kasiah, J.; Payne, Z.; Cubillas, C.; Schneider, D.L.; Kornfeld, K. Lysosome-Related Organelles Contain an Expansion Compartment That Mediates Delivery of Zinc Transporters to Promote Homeostasis. Proc. Natl. Acad. Sci. USA 2024, 121, e2307143121. [Google Scholar] [CrossRef] [PubMed]
- Lichtlen, P.; Schaffner, W. Putting Its Fingers on Stressful Situations: The Heavy Metal-regulatory Transcription Factor MTF-1. BioEssays 2001, 23, 1010–1017. [Google Scholar] [CrossRef] [PubMed]
- Hotamisligil, G.S. Foundations of Immunometabolism and Implications for Metabolic Health and Disease. Immunity 2017, 47, 406–420. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Beltrán-Velasco, A.I.; Redondo-Flórez, L.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023, 15, 2749. [Google Scholar] [CrossRef]
- Diet Review: Anti-Inflammatory Diet. The Nutrition Source. 2021. Available online: https://nutritionsource.hsph.harvard.edu/healthy-weight/diet-reviews/anti-inflammatory-diet/ (accessed on 18 January 2025).
- Milanski, M.; Degasperi, G.; Coope, A.; Morari, J.; Denis, R.; Cintra, D.E.; Tsukumo, D.M.L.; Anhe, G.; Amaral, M.E.; Takahashi, H.K.; et al. Saturated Fatty Acids Produce an Inflammatory Response Predominantly through the Activation of TLR4 Signaling in Hypothalamus: Implications for the Pathogenesis of Obesity. J. Neurosci. 2009, 29, 359–370. [Google Scholar] [CrossRef]
- Finucane, O.M.; Lyons, C.L.; Murphy, A.M.; Reynolds, C.M.; Klinger, R.; Healy, N.P.; Cooke, A.A.; Coll, R.C.; McAllan, L.; Nilaweera, K.N.; et al. Monounsaturated Fatty Acid–Enriched High-Fat Diets Impede Adipose NLRP3 Inflammasome–Mediated IL-1β Secretion and Insulin Resistance Despite Obesity. Diabetes 2015, 64, 2116–2128. [Google Scholar] [CrossRef]
- Li, X.; Ren, Y.; Chang, K.; Wu, W.; Griffiths, H.R.; Lu, S.; Gao, D. Adipose Tissue Macrophages as Potential Targets for Obesity and Metabolic Diseases. Front. Immunol. 2023, 14, 1153915. [Google Scholar] [CrossRef] [PubMed]
- Barman, S.; Srinivasan, K. Zinc Supplementation Ameliorates Diabetic Cataract Through Modulation of Crystallin Proteins and Polyol Pathway in Experimental Rats. Biol. Trace Elem. Res. 2019, 187, 212–223. [Google Scholar] [CrossRef]
- Izgilov, R.; Kislev, N.; Omari, E.; Benayahu, D. Advanced Glycation End-Products Accelerate Amyloid Deposits in Adipocyte’s Lipid Droplets. Cell Death Dis. 2024, 15, 846. [Google Scholar] [CrossRef]
- Asadipooya, K.; Lankarani, K.B.; Raj, R.; Kalantarhormozi, M. RAGE Is a Potential Cause of Onset and Progression of Nonalcoholic Fatty Liver Disease. Int. J. Endocrinol. 2019, 2019, 2151302. [Google Scholar] [CrossRef]
- Barman, S.; Srinivasan, K. Attenuation of Oxidative Stress and Cardioprotective Effects of Zinc Supplementation in Experimental Diabetic Rats. Br. J. Nutr. 2017, 117, 335–350. [Google Scholar] [CrossRef]
- Barman, S.; Pradeep, S.R.; Srinivasan, K. Zinc Supplementation Alleviates the Progression of Diabetic Nephropathy by Inhibiting the Overexpression of Oxidative-Stress-Mediated Molecular Markers in Streptozotocin-Induced Experimental Rats. J. Nutr. Biochem. 2018, 54, 113–129. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Inflammation, Metaflammation and Immunometabolic Disorders. Nature 2017, 542, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Marreiro, D.d.N.; Cruz, K.J.C.; Morais, J.B.S.; Beserra, J.B.; Severo, J.S.; de Oliveira, A.R.S. Zinc and Oxidative Stress: Current Mechanisms. Antioxidants 2017, 6, 24. [Google Scholar] [CrossRef]
- Wessels, I.; Maywald, M.; Rink, L. Zinc as a Gatekeeper of Immune Function. Nutrients 2017, 9, 1286. [Google Scholar] [CrossRef]
- Wessels, I.; Haase, H.; Engelhardt, G.; Rink, L.; Uciechowski, P. Zinc Deficiency Induces Production of the Proinflammatory Cytokines IL-1β and TNFα in Promyeloid Cells via Epigenetic and Redox-Dependent Mechanisms. J. Nutr. Biochem. 2013, 24, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Dierichs, L.; Kloubert, V.; Rink, L. Cellular Zinc Homeostasis Modulates Polarization of THP-1-Derived Macrophages. Eur. J. Nutr. 2018, 57, 2161–2169. [Google Scholar] [CrossRef] [PubMed]
- Kulik, L.; Maywald, M.; Kloubert, V.; Wessels, I.; Rink, L. Zinc Deficiency Drives Th17 Polarization and Promotes Loss of Treg Cell Function. J. Nutr. Biochem. 2019, 63, 11–18. [Google Scholar] [CrossRef]
- Liuzzi, J.P.; Lichten, L.A.; Rivera, S.; Blanchard, R.K.; Aydemir, T.B.; Knutson, M.D.; Ganz, T.; Cousins, R.J. Interleukin-6 Regulates the Zinc Transporter Zip14 in Liver and Contributes to the Hypozincemia of the Acute-Phase Response. Proc. Natl. Acad. Sci. USA 2005, 102, 6843–6848. [Google Scholar] [CrossRef]
- Merriman, C.; Fu, D. Down-Regulation of the Islet-Specific Zinc Transporter-8 (ZnT8) Protects Human Insulinoma Cells against Inflammatory Stress. J. Biol. Chem. 2019, 294, 16992–17006. [Google Scholar] [CrossRef]
- Liu, M.-J.; Bao, S.; Gálvez-Peralta, M.; Pyle, C.J.; Rudawsky, A.C.; Pavlovicz, R.E.; Killilea, D.W.; Li, C.; Nebert, D.W.; Wewers, M.D.; et al. ZIP8 Regulates Host Defense through Zinc-Mediated Inhibition of NF-κB. Cell Rep. 2013, 3, 386–400. [Google Scholar] [CrossRef]
- Summersgill, H.; England, H.; Lopez-Castejon, G.; Lawrence, C.B.; Luheshi, N.M.; Pahle, J.; Mendes, P.; Brough, D. Zinc Depletion Regulates the Processing and Secretion of IL-1β. Cell Death Dis. 2014, 5, e1040. [Google Scholar] [CrossRef]
- Jimenez-Rondan, F.R.; Ruggiero, C.H.; Cousins, R.J. Long Noncoding RNA, MicroRNA, Zn Transporter Zip14 (Slc39a14) and Inflammation in Mice. Nutrients 2022, 14, 5114. [Google Scholar] [CrossRef]
- Taslim, N.A.; Graciela, A.M.; Harbuwono, D.S.; Syauki, A.Y.; Anthony, A.N.; Ashari, N.; Aman, A.M.; Tjandrawinata, R.R.; Hardinsyah, H.; Bukhari, A.; et al. Zinc as a Modulator of miRNA Signaling in Obesity. Nutrients 2025, 17, 3375. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Cheng, M.; Fan, L.; Ma, J.; Zhang, Y.; Gu, P.; Xie, Y.; You, X.; Zhou, M.; Wang, B.; et al. Plasma microRNA Expression Profiles Associated with Zinc Exposure and Type 2 Diabetes Mellitus: Exploring Potential Role of miR-144-3p in Zinc-Induced Insulin Resistance. Environ. Int. 2023, 172, 107807. [Google Scholar] [CrossRef] [PubMed]
- Barman, S.; Srinivasan, K. Zinc Supplementation Alleviates Hyperglycemia and Associated Metabolic Abnormalities in Streptozotocin-Induced Diabetic Rats. Can. J. Physiol. Pharmacol. 2016, 94, 1356–1365. [Google Scholar] [CrossRef]
- Mitchell, S.B.; Aydemir, T.B. Roles of Zinc and Zinc Transporters in Development, Progression, and Treatment of Inflammatory Bowel Disease (IBD). Front. Nutr. 2025, 12, 1649658. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Zhang, B. The Impact of Zinc and Zinc Homeostasis on the Intestinal Mucosal Barrier and Intestinal Diseases. Biomolecules 2022, 12, 900. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, X.; Yang, L.; Wang, J.; Hu, Y.; Bian, A.; Liu, J.; Ma, J. Zinc Inhibits High Glucose-Induced NLRP3 Inflammasome Activation in Human Peritoneal Mesothelial Cells. Mol. Med. Rep. 2017, 16, 5195–5202. [Google Scholar] [CrossRef] [PubMed]
- Aydemir, T.B.; Cousins, R.J. The Multiple Faces of the Metal Transporter ZIP14 (SLC39A14). J. Nutr. 2018, 148, 174–184. [Google Scholar] [CrossRef]
- Winslow, J.W.W.; Limesand, K.H.; Zhao, N. The Functions of ZIP8, ZIP14, and ZnT10 in the Regulation of Systemic Manganese Homeostasis. Int. J. Mol. Sci. 2020, 21, 3304. [Google Scholar] [CrossRef]
- Aydemir, T.B.; Chang, S.-M.; Guthrie, G.J.; Maki, A.B.; Ryu, M.-S.; Karabiyik, A.; Cousins, R.J. Zinc Transporter ZIP14 Functions in Hepatic Zinc, Iron and Glucose Homeostasis during the Innate Immune Response (Endotoxemia). PLoS ONE 2012, 7, e48679. [Google Scholar] [CrossRef]
- Gartmann, L.; Wex, T.; Grüngreiff, K.; Reinhold, D.; Kalinski, T.; Malfertheiner, P.; Schütte, K. Expression of Zinc Transporters ZIP4, ZIP14 and ZnT9 in Hepatic Carcinogenesis—An Immunohistochemical Study. J. Trace Elem. Med. Biol. 2018, 49, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Feng, M.; Liu, Y.; Cao, R.; Liu, Y.; Tang, J.; Pan, K.; Lan, R.; Mao, Z. ZnT8 Deficiency Protects From APAP-Induced Acute Liver Injury by Reducing Oxidative Stress Through Upregulating Hepatic Zinc and Metallothioneins. Front. Pharmacol. 2021, 12, 721471. [Google Scholar] [CrossRef]
- Germanos, M.; Gao, A.; Taper, M.; Yau, B.; Kebede, M.A. Inside the Insulin Secretory Granule. Metabolites 2021, 11, 515. [Google Scholar] [CrossRef]
- Lemaire, K.; Ravier, M.A.; Schraenen, A.; Creemers, J.W.M.; Van de Plas, R.; Granvik, M.; Van Lommel, L.; Waelkens, E.; Chimienti, F.; Rutter, G.A.; et al. Insulin Crystallization Depends on Zinc Transporter ZnT8 Expression, but Is Not Required for Normal Glucose Homeostasis in Mice. Proc. Natl. Acad. Sci. USA 2009, 106, 14872–14877. [Google Scholar] [CrossRef]
- da Silva Xavier, G.; Bellomo, E.A.; McGinty, J.A.; French, P.M.; Rutter, G.A. Animal Models of GWAS-Identified Type 2 Diabetes Genes. J. Diabetes Res. 2013, 2013, 906590. [Google Scholar] [CrossRef]
- Sladek, R.; Rocheleau, G.; Rung, J.; Dina, C.; Shen, L.; Serre, D.; Boutin, P.; Vincent, D.; Belisle, A.; Hadjadj, S.; et al. A Genome-Wide Association Study Identifies Novel Risk Loci for Type 2 Diabetes. Nature 2007, 445, 881–885. [Google Scholar] [CrossRef]
- Cai, Y.; Kirschke, C.P.; Huang, L. SLC30A Family Expression in the Pancreatic Islets of Humans and Mice: Cellular Localization in the β-Cells. J. Mol. Histol. 2018, 49, 133–145. [Google Scholar] [CrossRef]
- Liu, Y.; Batchuluun, B.; Ho, L.; Zhu, D.; Prentice, K.J.; Bhattacharjee, A.; Zhang, M.; Pourasgari, F.; Hardy, A.B.; Taylor, K.M.; et al. Characterization of Zinc Influx Transporters (ZIPs) in Pancreatic β Cells. J. Biol. Chem. 2015, 290, 18757–18769. [Google Scholar] [CrossRef] [PubMed]
- Egefjord, L.; Jensen, J.L.; Bang-Berthelsen, C.H.; Petersen, A.B.; Smidt, K.; Schmitz, O.; Karlsen, A.E.; Pociot, F.; Chimienti, F.; Rungby, J.; et al. Zinc Transporter Gene Expression Is Regulated by Pro-Inflammatory Cytokines: A Potential Role for Zinc Transporters in Beta-Cell Apoptosis? BMC Endocr. Disord. 2009, 9, 7. [Google Scholar] [CrossRef]
- Troche, C.; Beker Aydemir, T.; Cousins, R.J. Zinc Transporter Slc39a14 Regulates Inflammatory Signaling Associated with Hypertrophic Adiposity. Am. J. Physiol.-Endocrinol. Metab. 2016, 310, E258–E268. [Google Scholar] [CrossRef] [PubMed]
- Aydemir, T.B.; Kim, M.-H.; Kim, J.; Colon-Perez, L.M.; Banan, G.; Mareci, T.H.; Febo, M.; Cousins, R.J. Metal Transporter Zip14 (Slc39a14) Deletion in Mice Increases Manganese Deposition and Produces Neurotoxic Signatures and Diminished Motor Activity. J. Neurosci. 2017, 37, 5996–6006. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, S.B.; Thorn, T.L.; Lee, M.-T.; Kim, Y.; Comrie, J.M.C.; Bai, Z.S.; Johnson, E.L.; Aydemir, T.B. Metal Transporter SLC39A14/ZIP14 Modulates Regulation between the Gut Microbiome and Host Metabolism. Am. J. Physiol.-Gastrointest. Liver Physiol. 2023, 325, G593–G607. [Google Scholar] [CrossRef]
- McCabe, S.; Limesand, K.; Zhao, N. Recent Progress toward Understanding the Role of ZIP14 in Regulating Systemic Manganese Homeostasis. Comput. Struct. Biotechnol. J. 2023, 21, 2332–2338. [Google Scholar] [CrossRef]
- Tepaamorndech, S.; Kirschke, C.P.; Pedersen, T.L.; Keyes, W.R.; Newman, J.W.; Huang, L. Zinc Transporter 7 Deficiency Affects Lipid Synthesis in Adipocytes by Inhibiting Insulin-Dependent Akt Activation and Glucose Uptake. FEBS J. 2016, 283, 378–394. [Google Scholar] [CrossRef]
- Fukunaka, A.; Fukada, T.; Bhin, J.; Suzuki, L.; Tsuzuki, T.; Takamine, Y.; Bin, B.-H.; Yoshihara, T.; Ichinoseki-Sekine, N.; Naito, H.; et al. Zinc Transporter ZIP13 Suppresses Beige Adipocyte Biogenesis and Energy Expenditure by Regulating C/EBP-β Expression. PLoS Genet. 2017, 13, e1006950. [Google Scholar] [CrossRef]
- Barman, S.; Srinivasan, K. Enhanced Intestinal Absorption of Micronutrients in Streptozotocin-Induced Diabetic Rats Maintained on Zinc Supplementation. J. Trace Elem. Med. Biol. 2018, 50, 182–187. [Google Scholar] [CrossRef]
- Andrews, G.K. Regulation and Function of Zip4, the Acrodermatitis Enteropathica Gene. Biochem. Soc. Trans. 2008, 36, 1242–1246. [Google Scholar] [CrossRef]
- Kuliyev, E.; Zhang, C.; Sui, D.; Hu, J. Zinc Transporter Mutations Linked to Acrodermatitis Enteropathica Disrupt Function and Cause Mistrafficking. J. Biol. Chem. 2021, 296, 100269. [Google Scholar] [CrossRef]
- Hu, X.; Xiao, W.; Lei, Y.; Green, A.; Lee, X.; Maradana, M.R.; Gao, Y.; Xie, X.; Wang, R.; Chennell, G.; et al. Aryl Hydrocarbon Receptor Utilises Cellular Zinc Signals to Maintain the Gut Epithelial Barrier. Nat. Commun. 2023, 14, 5431. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Rondan, F.R.; Ruggiero, C.H.; Riva, A.; Yu, F.; Stafford, L.S.; Cross, T.R.; Larkin, J.; Cousins, R.J. Deletion of Metal Transporter Zip14 Reduces Major Histocompatibility Complex II Expression in Murine Small Intestinal Epithelial Cells. Proc. Natl. Acad. Sci. USA 2025, 122, e2422321121. [Google Scholar] [CrossRef]
- Podany, A.B.; Wright, J.; Lamendella, R.; Soybel, D.I.; Kelleher, S.L. ZnT2-Mediated Zinc Import into Paneth Cell Granules Is Necessary for Coordinated Secretion and Paneth Cell Function in Mice. Cell. Mol. Gastroenterol. Hepatol. 2016, 2, 369–383. [Google Scholar] [CrossRef]
- Shao, Y.-X.; Lei, Z.; Wolf, P.G.; Gao, Y.; Guo, Y.-M.; Zhang, B.-K. Zinc Supplementation, via GPR39, Upregulates PKCζ to Protect Intestinal Barrier Integrity in Caco-2 Cells Challenged by Salmonella Enterica Serovar Typhimurium. J. Nutr. 2017, 147, 1282–1289. [Google Scholar] [CrossRef] [PubMed]
- Franco, C.; Canzoniero, L.M.T. Zinc Homeostasis and Redox Alterations in Obesity. Front. Endocrinol. 2024, 14, 1273177. [Google Scholar] [CrossRef] [PubMed]
- Lichten, L.A.; Ryu, M.-S.; Guo, L.; Embury, J.; Cousins, R.J. MTF-1-Mediated Repression of the Zinc Transporter Zip10 Is Alleviated by Zinc Restriction. PLoS ONE 2011, 6, e21526. [Google Scholar] [CrossRef]
- Jou, M.-Y.; Hall, A.G.; Philipps, A.F.; Kelleher, S.L.; Lönnerdal, B. Tissue-Specific Alterations in Zinc Transporter Expression in Intestine and Liver Reflect a Threshold for Homeostatic Compensation during Dietary Zinc Deficiency in Weanling Rats. J. Nutr. 2009, 139, 835–841. [Google Scholar] [CrossRef]
- Ziatdinova, M.M.; Valova, Y.V.; Mukhammadiyeva, G.F.; Fazlieva, A.S.; Karimov, D.D.; Kudoyarov, E.R. Analysis of MT1 and ZIP1 Gene Expression in the Liver of Rats with Chronic Poisoning with Cadmium Chloride. Hyg. Sanit. 2021, 100, 1298–1302. [Google Scholar] [CrossRef]
- Dufner-Beattie, J.; Huang, Z.L.; Geiser, J.; Xu, W.; Andrews, G.K. Mouse ZIP1 and ZIP3 Genes Together Are Essential for Adaptation to Dietary Zinc Deficiency during Pregnancy. Genesis 2006, 44, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Fukada, T.; Civic, N.; Furuichi, T.; Shimoda, S.; Mishima, K.; Higashiyama, H.; Idaira, Y.; Asada, Y.; Kitamura, H.; Yamasaki, S.; et al. The Zinc Transporter SLC39A13/ZIP13 Is Required for Connective Tissue Development; Its Involvement in BMP/TGF-β Signaling Pathways. PLoS ONE 2008, 3, e3642. [Google Scholar] [CrossRef]
- Bahadoran, Z.; Ghafouri-Taleghani, F.; Todorčević, M. Zinc and Adipose Organ Dysfunction: Molecular Insights into Obesity and Metabolic Disorders. Curr. Nutr. Rep. 2025, 14, 117. [Google Scholar] [CrossRef]
- Samuelson, D.R.; Haq, S.; Knoell, D.L. Divalent Metal Uptake and the Role of ZIP8 in Host Defense Against Pathogens. Front. Cell Dev. Biol. 2022, 10, 924820. [Google Scholar] [CrossRef]
- McMahon, R.J.; Cousins, R.J. Regulation of the Zinc Transporter ZnT-1 by Dietary Zinc. Proc. Natl. Acad. Sci. USA 1998, 95, 4841–4846. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Wu, X.; Wang, T.; Song, Z.; Ni, P.; Zhong, M.; Su, Y.; Xie, E.; Sun, S.; Lin, Y.; et al. SLC39A8-Mediated Zinc Dyshomeostasis Potentiates Kidney Disease. Proc. Natl. Acad. Sci. USA 2025, 122, e2426352122. [Google Scholar] [CrossRef]
- Chen, W.; Lu, H.; Ying, Y.; Li, H.; Shen, H.; Cai, J. Zinc and Chronic Kidney Disease: A Review. J. Nutr. Sci. Vitaminol. 2024, 70, 98–105. [Google Scholar] [CrossRef]
- Chi, Y.; Zhang, X.; Liang, D.; Wang, Y.; Cai, X.; Dong, J.; Li, L.; Chi, Z. ZnT8 Exerts Anti-Apoptosis of Kidney Tubular Epithelial Cell in Diabetic Kidney Disease Through TNFAIP3-NF-κB Signal Pathways. Biol. Trace Elem. Res. 2023, 201, 2442–2457. [Google Scholar] [CrossRef]
- Liuzzi, J.P.; Blanchard, R.K.; Cousins, R.J. Differential Regulation of Zinc Transporter 1, 2, and 4 mRNA Expression by Dietary Zinc in Rats. J. Nutr. 2001, 131, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Grubman, A.; Lidgerwood, G.E.; Duncan, C.; Bica, L.; Tan, J.-L.; Parker, S.J.; Caragounis, A.; Meyerowitz, J.; Volitakis, I.; Moujalled, D.; et al. Deregulation of Subcellular Biometal Homeostasis through Loss of the Metal Transporter, Zip7, in a Childhood Neurodegenerative Disorder. Acta Neuropathol. Commun. 2014, 2, 25. [Google Scholar] [CrossRef]
- Sabouri, S.; Rostamirad, M.; Dempski, R.E. Unlocking the Brain’s Zinc Code: Implications for Cognitive Function and Disease. Front. Biophys. 2024, 2, 1406868. [Google Scholar] [CrossRef]
- Mao, Z.; Lin, H.; Su, W.; Li, J.; Zhou, M.; Li, Z.; Zhou, B.; Yang, Q.; Zhou, M.; Pan, K.; et al. Deficiency of ZnT8 Promotes Adiposity and Metabolic Dysfunction by Increasing Peripheral Serotonin Production. Diabetes 2019, 68, 1197–1209. [Google Scholar] [CrossRef]
- Alshawaf, A.J.; Alnassar, S.A.; Al-Mohanna, F.A. The Interplay of Intracellular Calcium and Zinc Ions in Response to Electric Field Stimulation in Primary Rat Cortical Neurons In Vitro. Front. Cell. Neurosci. 2023, 17, 1118335. [Google Scholar] [CrossRef]
- Jarosz, M.; Olbert, M.; Wyszogrodzka, G.; Młyniec, K.; Librowski, T. Antioxidant and Anti-Inflammatory Effects of Zinc. Zinc-Dependent NF-κB Signaling. Inflammopharmacology 2017, 25, 11–24. [Google Scholar] [CrossRef]
- Anson, K.J.; Corbet, G.A.; Palmer, A.E. Zn2+ Influx Activates ERK and Akt Signaling Pathways. Proc. Natl. Acad. Sci. USA 2021, 118, e2015786118. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Yang, C.; Liu, D.; Zhi, Q.; Hua, Z.-C. Zinc Depletion Induces JNK/P38 Phosphorylation and Suppresses Akt/mTOR Expression in Acute Promyelocytic NB4 Cells. J. Trace Elem. Med. Biol. 2023, 79, 127264. [Google Scholar] [CrossRef] [PubMed]
- Maywald, M.; Wessels, I.; Rink, L. Zinc Signals and Immunity. Int. J. Mol. Sci. 2017, 18, 2222. [Google Scholar] [CrossRef]
- Fessler, M.B.; Rudel, L.L.; Brown, M. Toll-like Receptor Signaling Links Dietary Fatty Acids to the Metabolic Syndrome. Curr. Opin. Lipidol. 2009, 20, 379–385. [Google Scholar] [CrossRef]
- Kim, B.; Lee, W.-W. Regulatory Role of Zinc in Immune Cell Signaling. Mol. Cells 2021, 44, 335–341. [Google Scholar] [CrossRef]
- Prasad, A.S.; Bao, B. Molecular Mechanisms of Zinc as a Pro-Antioxidant Mediator: Clinical Therapeutic Implications. Antioxidants 2019, 8, 164. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Eom, J.-W.; Koh, J.-Y. Mechanism of Zinc Excitotoxicity: A Focus on AMPK. Front. Neurosci. 2020, 14, 577958. [Google Scholar] [CrossRef]
- Wong, V.V.T.; Nissom, P.M.; Sim, S.-L.; Yeo, J.H.M.; Chuah, S.-H.; Yap, M.G.S. Zinc as an Insulin Replacement in Hybridoma Cultures. Biotechnol. Bioeng. 2006, 93, 553–563. [Google Scholar] [CrossRef]
- Huang, Q.; Du, J.; Merriman, C.; Gong, Z. Genetic, Functional, and Immunological Study of ZnT8 in Diabetes. Int. J. Endocrinol. 2019, 2019, 1524905. [Google Scholar] [CrossRef] [PubMed]
- Chim, S.M.; Howell, K.; Dronzek, J.; Wu, W.; Hout, C.V.; Ferreira, M.A.R.; Ye, B.; Li, A.; Brydges, S.; Arunachalam, V.; et al. Genetic Inactivation of Zinc Transporter SLC39A5 Improves Liver Function and Hyperglycemia in Obesogenic Settings. eLife 2023, 12, RP90419. [Google Scholar] [CrossRef]
- Fukunaka, A.; Fujitani, Y. Role of Zinc Homeostasis in the Pathogenesis of Diabetes and Obesity. Int. J. Mol. Sci. 2018, 19, 476. [Google Scholar] [CrossRef]
- Horton, T.M.; Allegretti, P.A.; Lee, S.; Moeller, H.P.; Smith, M.; Annes, J.P. Zinc-Chelating Small Molecules Preferentially Accumulate and Function within Pancreatic β Cells. Cell Chem. Biol. 2019, 26, 213–222.e6. [Google Scholar] [CrossRef]
- Ranasinghe, P.; Wathurapatha, W.S.; Galappatthy, P.; Katulanda, P.; Jayawardena, R.; Constantine, G.R. Zinc Supplementation in Prediabetes: A Randomized Double-Blind Placebo-Controlled Clinical Trial. J. Diabetes 2018, 10, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Ranasinghe, P.; Jayawardena, R.; Pigera, A.; Katulanda, P.; Constantine, G.R.; Galappaththy, P. Zinc Supplementation in Pre-Diabetes: Study Protocol for a Randomized Controlled Trial. Trials 2013, 14, 52. [Google Scholar] [CrossRef] [PubMed]
- Chim, S.M.; Howell, K.; Dronzek, J.; Wu, W.; Hout, C.V.; Ferreira, M.A.R.; Ye, B.; Li, A.; Brydges, S.; Arunachalam, V.; et al. Genetic Inactivation of Zinc Transporter SLC39A5 Improves Liver Function and Hyperglycemia in Obesogenic Settings. medRxiv 2021, 2021.12.08.21267440. [Google Scholar] [CrossRef]
- Bin, B.-H.; Hojyo, S.; Ryong Lee, T.; Fukada, T. Spondylocheirodysplastic Ehlers-Danlos Syndrome (SCD-EDS) and the Mutant Zinc Transporter ZIP13. Rare Dis. 2014, 2, e974982. [Google Scholar] [CrossRef]
- Hu, R.; Ma, Q.; Kong, Y.; Wang, Z.; Xu, M.; Chen, X.; Su, Y.; Xiao, T.; He, Q.; Wang, X.; et al. A Compound Screen Based on Isogenic hESC-Derived β Cell Reveals an Inhibitor Targeting ZnT8-Mediated Zinc Transportation to Protect Pancreatic β Cell from Stress-Induced Cell Death. Adv. Sci. 2025, 12, 2413161. [Google Scholar] [CrossRef]
- Batta, I.; Sharma, G. Molecular Docking Simulation to Predict Inhibitors Against Zinc Transporters. ChemRxiv 2024. [Google Scholar] [CrossRef]
- Jangid, H.; Shah, N.H.; Dar, M.A.; Wani, A.K. Identification of Potent Phytochemical Inhibitors against Mobilized Colistin Resistance: Molecular Docking, MD Simulations, ADMET, and Toxicity Predictions. Silico Res. Biomed. 2025, 1, 100013. [Google Scholar] [CrossRef]
- Kim, B.; Kim, H.Y.; Yoon, B.R.; Yeo, J.; In Jung, J.; Yu, K.-S.; Kim, H.C.; Yoo, S.-J.; Park, J.K.; Kang, S.W.; et al. Cytoplasmic Zinc Promotes IL-1β Production by Monocytes and Macrophages through mTORC1-Induced Glycolysis in Rheumatoid Arthritis. Sci. Signal. 2022, 15, eabi7400. [Google Scholar] [CrossRef]
- Kang, J.-A.; Kwak, J.-S.; Park, S.-H.; Sim, K.-Y.; Kim, S.K.; Shin, Y.; Jung, I.J.; Yang, J.-I.; Chun, J.-S.; Park, S.-G. ZIP8 Exacerbates Collagen-Induced Arthritis by Increasing Pathogenic T Cell Responses. Exp. Mol. Med. 2021, 53, 560–571. [Google Scholar] [CrossRef]
- Kim, J.-H.; Jeon, J.; Shin, M.; Won, Y.; Lee, M.; Kwak, J.-S.; Lee, G.; Rhee, J.; Ryu, J.-H.; Chun, C.-H.; et al. Regulation of the Catabolic Cascade in Osteoarthritis by the Zinc-ZIP8-MTF1 Axis. Cell 2014, 156, 730–743. [Google Scholar] [CrossRef] [PubMed]
- Gálvez-Peralta, M.; Wang, Z.; Bao, S.; Knoell, D.L.; Nebert, D.W. Tissue-Specific Induction of Mouse ZIP8 and ZIP14 Divalent Cation/Bicarbonate Symporters by, and Cytokine Response to, Inflammatory Signals. Int. J. Toxicol. 2014, 33, 246–258. [Google Scholar] [CrossRef]
- Briassoulis, G.; Briassoulis, P.; Ilia, S.; Miliaraki, M.; Briassouli, E. The Anti-Oxidative, Anti-Inflammatory, Anti-Apoptotic, and Anti-Necroptotic Role of Zinc in COVID-19 and Sepsis. Antioxidants 2023, 12, 1942. [Google Scholar] [CrossRef] [PubMed]
- Barman, N.; Haque, M.A.; Ridwan, M.; Ghosh, D.; Islam, A.B.M.M.K. Loss-of-Function Variant of SLC30A8 Rs13266634 (C > T) Protects against Type 2 Diabetes by Stabilizing ZnT8: Insights from Epidemiological and Computational Analyses. J. Genet. Eng. Biotechnol. 2025, 23, 100565. [Google Scholar] [CrossRef]
- Thomsen, S.K.; Gloyn, A.L. Human Genetics as a Model for Target Validation: Finding New Therapies for Diabetes. Diabetologia 2017, 60, 960–970. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.C.; Zhao, M.; Chernikova, D.; Arias-Jayo, N.; Zhou, Y.; Situ, J.; Gutta, A.; Chang, C.; Liang, F.; Lagishetty, V.; et al. ZIP8 A391T Crohn’s Disease-Linked Risk Variant Induces Colonic Metal Ion Dyshomeostasis, Microbiome Compositional Shifts, and Inflammation. Dig. Dis. Sci. 2024, 69, 3760–3772. [Google Scholar] [CrossRef]
- Hall, S.C.; Smith, D.R.; Dyavar, S.R.; Wyatt, T.A.; Samuelson, D.R.; Bailey, K.L.; Knoell, D.L. Critical Role of Zinc Transporter (Zip8) in Myeloid Innate Immune Cell Function and the Host Response against Bacterial Pneumonia. J. Immunol. 2021, 207, 1357–1370. [Google Scholar] [CrossRef]
- Miyai, T.; Hojyo, S.; Ikawa, T.; Kawamura, M.; Irié, T.; Ogura, H.; Hijikata, A.; Bin, B.-H.; Yasuda, T.; Kitamura, H.; et al. Zinc Transporter SLC39A10/ZIP10 Facilitates Antiapoptotic Signaling during Early B-Cell Development. Proc. Natl. Acad. Sci. USA 2014, 111, 11780–11785. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, X.; Zhao, H.; Yang, Q.; Xu, Z. Downregulation of the Zinc Transporter SLC39A13 (ZIP13) Is Responsible for the Activation of CaMKII at Reperfusion and Leads to Myocardial Ischemia/Reperfusion Injury in Mouse Hearts. J. Mol. Cell. Cardiol. 2021, 152, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Weaver, B.; Zhang, Y.; Hiscox, S.; Guo, G.; Apte, U.; Taylor, K.; Sheline, C.; Wang, L.; Andrews, G. Zip4 (Slc39a4) Expression Is Activated in Hepatocellular Carcinomas and Functions to Repress Apoptosis, Enhance Cell Cycle and Increase Migration. PLoS ONE 2010, 5, e13158. [Google Scholar] [CrossRef]
- Sun, S.; Xie, E.; Xu, S.; Ji, S.; Wang, S.; Shen, J.; Wang, R.; Shen, X.; Su, Y.; Song, Z.; et al. The Intestinal Transporter SLC30A1 Plays a Critical Role in Regulating Systemic Zinc Homeostasis. Adv. Sci. 2024, 11, 2406421. [Google Scholar] [CrossRef]
- Trial|NCT01062347. Available online: https://cdek.pharmacy.purdue.edu/trial/NCT01062347/ (accessed on 19 November 2025).
- Hara, T.; Yoshigai, E.; Ohashi, T.; Fukada, T. Zinc Transporters as Potential Therapeutic Targets: An Updated Review. J. Pharmacol. Sci. 2022, 148, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yang, J.; Wang, C. Analysis of the Prognostic Significance of Solute Carrier (SLC) Family 39 Genes in Breast Cancer. Biosci. Rep. 2020, 40, BSR20200764. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, L.; Zhu, Z.; Ren, S.; Jiang, H.; Huang, Y.; Sun, X.; Sui, X.; Jin, L.; Sun, X. Zinc Transporters Serve as Prognostic Predictors and Their Expression Correlates with Immune Cell Infiltration in Specific Cancer: A Pan-Cancer Analysis. J. Cancer 2024, 15, 939–954. [Google Scholar] [CrossRef] [PubMed]

| Organelle | Transporters Involved | Function and Physiological Significance | Key Experimental Study Details and Insights | Reference |
|---|---|---|---|---|
| Cytosol | ZIP family (influx), ZnT family (efflux into organelles/extracellular space) | Maintains low free Zn2+ (picomolar) to support signaling and prevent toxicity; main hub for zinc-sensitive enzymes and kinases. | ZIP1/ZIP3 found in intracellular organelles (HEK293, mouse), localize dynamically based on zinc status. Cytosolic zinc waves observed in mast cells, dependent on ZIP/ZnT activity. | [32] |
| Secretory Vesicles (e.g., synaptic, insulin granules) | ZnT3, ZnT8, ZnT2, ZnT4 | Accumulate high vesicular zinc (millimolar range); ZnT3 loads synaptic vesicles (neurons); ZnT8 loads insulin granules (pancreatic β-cells); ZnT2 regulates glandular vesicles; ZnT4 traffics vesicles in secretory tissues. | ZnT8 knockout and variant studies confirm granule-specific insulin packaging/diabetes risk. ZnT3 is involved in heterogeneous synaptic vesicle assembly and neurotransmission. ZnT2 is critical for zinc vesicle formation and stress protection. | [29,33,34,35,36,37,38] |
| Golgi Apparatus and ER | ZnT5, ZnT6, ZnT7 (influx into lumen); ZIP7, ZIP13 (efflux into cytosol) | Zinc is required for folding and activation of secreted/membrane proteins, e.g., tissue-nonspecific alkaline phosphatase (TNAP), ERp44; ZIP exports zinc in “zinc wave” for cytosolic signaling; ZnT5/6/7 localized to Golgi and ER, essential for ALP activation. | ZnT5 variant B localizes to ER, colocalizes with ZIP7, forming zinc efflux pathway; ZIP7 essential for cytosolic zinc signaling. ZnT7 localizes to proximal Golgi and regulates ERp44-dependent homeostasis. ZnT5/6/7 activate tissue-nonspecific alkaline phosphatase in two-step mechanism. | [15,18,21,22,39,40] |
| Mitochondria | ZnT2 (suggested), ZnT9 (SLC30A9), ZIP family (potential roles) | Mitochondrial zinc pools regulate oxidative metabolism, apoptosis, mitophagy; zinc influx/efflux affects mitochondrial stress resilience and cytochrome c release. | SLC30A9 (ZnT9) loss causes zinc mishandling and mitochondrial overload in HeLa cells, shown by live dye tracking and ERC coevolution analysis. Zn-induced mitochondrial swelling triggers mPTP opening, mediates apoptosis. | [25,41,42,43,44] |
| Lysosome-Related Organelles (LROs) | CDF-2 (ZnT family), ZIPT-2.3 (ZIP family, C. elegans), ZnT4 | Dynamic zinc storage and release; maintain organellar zinc pools for protein degradation/homeostasis, critical in stress adaptation. | In C. elegans, CDF-2 stores zinc in LROs during excess, ZIPT-2.3 releases zinc during deficiency; co-regulation and colocalization confirmed by super-resolution microscopy and transgenics. Morphological changes reflect zinc status and transporter levels. | [45] |
| Nucleus | Metallothioneins (MTs), potential transporters | Zinc primarily bound to transcription factors (zinc fingers), essential for gene expression/DNA replication; labile pool controls TF binding/dynamics. | Single-molecule microscopy reveals that zinc availability modulates DNA binding of zinc finger TFs (MTF-1, CTCF, GR) in live mammalian cells; zinc depletion shortens TF dwell time. MTs buffer nuclear zinc and protect against oxidative injury. | [2,46] |
| Pathogenic Trigger | Zinc-Related Impact | Inflammatory Outcome/Mechanism | Mechanistic/Clinical Notes | |
|---|---|---|---|---|
| SFAs, ROS, glucose overload | Disruption of zinc transporter expression: ZIP14 ↑ (in hepatocytes, adipocytes), ZnT8 ↓ (in pancreatic β-cells) | NLRP3 inflammasome activation, increased IL-1β/IL-18 release, chronic metabolic inflammation | ZIP14 upregulation in response to TLR4 activation and IL-6 drives hepatic/adipose zinc accumulation and insulin resistance. ZnT8 downregulation impairs insulin granule formation and β-cell function. High glucose and ROS amplify IL-1β/IL-18 via NLRP3. | [51,64,65] |
| Zinc deficiency | Reduced Treg (regulatory T) cell numbers, increased NF-κB activation, impaired metallothionein buffering | Chronic low-grade inflammation, heightened NLRP3 activation, increased cytokine output | Zn deficiency leads to lysosomal stress, ROS generation, and NLRP3 inflammasome activation/secretion of IL-1β. Zinc supplementation inhibits NLRP3 and supports immune balance. | [56,67,71] |
| Zinc transporter dysfunction | Alters zinc distribution in pancreas (ZnT8), liver/adipose (ZIP14), gut (ZnT2/ZIP8) | Insulin resistance, gut barrier leakiness, cytokine imbalance | Genetic or acquired dysfunction in ZnT8/ZIP14 impairs insulin packaging/secretion and hepatic/adipose zinc homeostasis. ZnT2/ZIP8 regulate intestinal barrier integrity; dysfunction increases permeability and systemic inflammation. | [64,65,72,73] |
| Oxidative stress | Displaces zinc from protein binding sites, impairs antioxidant function | Amplifies ROS, triggers NLRP3 activation, further immune cell recruitment and cytokine release | Oxidative stress displaces zinc, activates stress kinases, and amplifies pro-inflammatory signaling. Zinc repletion reduces ROS and NLRP3 activity, supporting antioxidant defenses. | [56,74] |
| Tissue | Zinc Transporters | Functions | Pathological Implications and Supporting Studies | References |
|---|---|---|---|---|
| Liver | ZIP14, ZIP8, ZIP1, ZIP10, ZnT1, ZnT5, ZnT6 | ZIP14/ZIP8: hepatic zinc uptake; ZIP14 acute-phase-responsive; ZIP1/ZIP10 vesicular influx; ZnT1 zinc efflux. | ZIP14: hepatic inflammation, NAFLD, insulin resistance. ZnT1: systemic zinc balance. ZIP1: membrane/vesicle shuttling. | [76,78,101,102,103] |
| Pancreas | ZnT8, ZnT5, ZnT7, ZIP6, ZIP7, ZIP8, ZIP1 | ZnT8: insulin granule zinc loading (T2D-linked); ZnT5/7: ER/Golgi zinc for hormone biosynthesis; ZIPs (ZIP1/ZIP3): cytosolic and organelle zinc homeostasis. | ZnT8: β-cell failure, impaired insulin secretion, diabetes risk. ZIP6/7/8: proinsulin processing, stress responses. ZIP1: vesicular localization. | [37,84,104] |
| Adipose Tissue | ZIP14, ZIP13, ZIP8, ZIP1, ZnT7, ZnT5 | ZIP14: inflammatory zinc influx and immune signaling; ZIP13: secretory pathway and adipocyte differentiation/BMP–TGF-β; ZnT7: fat metabolism. | ZIP13: adipose inflammation, altered fat mass. ZIP14: metabolic syndrome, obesity-related inflammation. ZnT7: insulin sensitivity, adiposity. ZIP1/ZIP8: adipocyte zinc and cytokine regulation. | [88,91,92,105,106] |
| Gut (Intestine) | ZIP4, ZIP8, ZIP1, ZIP10, ZnT1, ZnT2, ZnT4 | ZIP4: dietary zinc uptake (mutations → acrodermatitis enteropathica); ZIP8: immune cell zinc; ZIP1/ZIP10: epithelial zinc balance; ZnT1: basolateral export; ZnT2: zinc secretion from Paneth/goblet cells. | ZIP4: intestinal integrity, systemic zinc. ZnT1: gut zinc export, serum zinc. ZnT4: vesicle trafficking in enterocytes. ZIP8/ZIP1/ZIP10: intestinal immunity and barrier function. | [94,95,96,98,107,108] |
| Kidney | ZIP8, ZIP1, ZnT3, ZIP10, ZnT1, ZnT4, ZnT8 | ZIPs/ZnTs support renal zinc reabsorption, homeostasis, and excretion; ZnT1/2 mRNA unique in kidneys; ZnT4 and ZnT6 traffic in vesicular compartment. | ZnT3, ZIP8, ZIP1: nephropathy risk, renal zinc handling. Transporter regulation in acute-phase zinc redistribution. | [57,109,110,111,112] |
| Brain | ZIP3, ZIP8, ZIP1, ZIP6, ZIP7, ZnT1, ZnT3, ZnT4, ZnT6 | ZnT3: synaptic vesicle zinc; ZIP3/8/1/6: neuronal zinc influx and homeostasis; ZIP7: Golgi/ER zinc in neurons and glia; ZnT4/ZnT6: neural vesicular zinc. | ZnT3: synaptic zinc, plasticity, neurodegeneration. ZIP7: ER/Golgi zinc signaling in neurons/glia. Imbalance: cognition and neuroinflammation. | [34,113,114] |
| Signaling Pathway | Zinc’s Role | Physiological Impact | Study Details | References |
|---|---|---|---|---|
| Zinc Waves | Acts as a second messenger; rapid release from ER/perinuclear stores after receptor stimulation (FcεRI, TLR, cAMP/PKA) | Modulates protein tyrosine phosphatase activity, prolongs MAPK activation, amplifies/controls cytokine (IL-6, TNF-α) production | Zinc waves occur within minutes after FcεRI crosslinking, dependent on Ca2+ and MEK signals. Inhibits phosphatases and sustains MAPKs; first described in mast cells. | [1] |
| NF-κB | Inhibits IκB kinase (IKK), stabilizes IκB, directly and indirectly restricts NF-κB nuclear translocation | Suppresses pro-inflammatory gene expression (e.g., TNF-α, IL-1β); zinc deficiency or transporter dysfunction relieves this suppression | Zinc wave enhances cytokine gene induction via prolonged MAPK and potentially NF-κB activation after FcεRI stimulation. Zinc essentially gates the amplitude/duration of the NF-κB response. | [1,9,51] |
| MTF-1 | Direct zinc sensor: zinc binding activates metal response elements, upregulating metallothioneins and select ZnT genes | Promotes cellular defense against oxidative stress; increases zinc buffering capacity; adapts transporter profile to stress | Zinc exposure or cytosolic elevation leads to MTF-1 nuclear translocation and oxidative stress protection, well documented in immune and liver cells. | [17] |
| MAPKs (ERK, JNK, p38) | Zinc waves/influx modulate phosphorylation, inhibiting protein phosphatases, sustaining MAPK signaling | Controls cell proliferation, inflammation, cytokine output, and survival/differentiation signals | Zinc ionophores mimic zinc waves by prolonging MAPK activation, increasing late-phase IL-6/TNF-α expression in mast cells. | [1] |
| NLRP3 Inflammasome | Zinc deficiency or oxidation-driven displacement of zinc from proteins activates NLRP3 inflammasome, increases IL-1β | Promotes metaflammation, insulin resistance, and chronic inflammatory disease | Zinc supplementation inhibits NLRP3 activation; deficiency/oxidative stress enhances it. Linked to response in macrophages, adipose tissue. | [51] |
| TLRs | Zinc suppresses MyD88 and canonical NF-κB pathway activation in TLR4/2 signaling, modulates inflammatory threshold | Prevents excessive cytokine release on microbial/metabolic stimulation; restricts prolonged inflammation | TLR activation results in rapid transporter regulation and a decrease in free zinc as an early signal for dendritic cell activation. ZIP14 and ZIP8 up-/downregulation tightly couple TLR activity to zinc homeostasis. | [77,122] |
| Insulin Signaling | Zinc enhances Akt activation, supports phosphorylation cascade; ZnT8 ensures proper insulin packaging/release | Promotes glucose uptake, insulin secretion, and β-cell function; deficiency linked to impaired glycemic control | ZnT8 mutations disrupt insulin granule biogenesis and secretion, increasing T2D risk. Zinc signaling also influences IRS-1/PI3K/Akt sensitivity in target tissues. | [125,126] |
| Zinc Transporter/Target | Mechanism/Rationale | Disease/Condition | Drug/Intervention Type | Study Details | References |
|---|---|---|---|---|---|
| ZnT8 | Zinc transport into insulin granules (β-cell specific); impacts insulin maturation and secretion | Type 2 diabetes (T2D) | Targeted modulator/precision therapy (in development) | GWASs and rare-variant studies: loss-of-function alleles reduce T2D risk. Ongoing drug development focused on enhancing or mimicking protective variants. ZnT8-KO mouse studies confirm islet-specific function. | [142,143] |
| ZIP5 | Regulates glucose sensing and insulin secretion in β-cells; impacts gut/pancreas zinc handling | Diabetes, metabolic diseases | Small-molecule/genetic modulation (preclinical) | Mouse knockout protects against glucose dysregulation and pancreatic zinc toxicity. SLC39A5 variants studied in large cohorts; shown to modulate serum zinc and glucose homeostasis in humans and animals. | [127] |
| ZIP8 | Modulates zinc uptake in gut/liver/adipose; influences innate immunity, metabolism, Crohn’s disease risk | Crohn’s disease, gut/liver inflammation | Genetic and pharmacological modulation (early translational phase) | Functional variant linked to Crohn’s disease and microbiome composition. Modifiers of ZIP8 studied in immune/inflammatory disease animal models. | [144,145] |
| ZIP10 | Controls B-cell receptor signaling, humoral immunity, anti-apoptotic signaling | Hematologic malignancy, immunodeficiency | Genetic targeting/therapeutic antibodies (preclinical) | ZIP10 critical for B cell survival; mouse genetic studies. ZIP10 inhibitors/enhancers are under investigation for immune modulation; drug development in early preclinical phase. | [146] |
| ZIP13 | Regulates vascular and cardiac/skin function; upregulation linked to fibrosis and inflammation | Cardiovascular disease, fibrosis | Small-molecule inhibitor/antisense RNA (in development) | Mouse ZIP13 downregulation reduces ischemia/reperfusion injury via CaMKII regulation. Pharmacologic inhibition as a therapeutic strategy is under study. | [147] |
| ZIP4 | Dietary zinc absorption/homeostasis; overexpression in cancer | Pancreatic and GI cancers, acrodermatitis enteropathica | Antibody drugs/antisense oligonucleotides | Anti-ZIP4 therapies in preclinical cancer studies. Genetic therapies for acrodermatitis enteropathica are under development. | [94,148] |
| ZnT1 | Exports zinc from cells; affects systemic and tissue zinc levels | Zinc deficiency/excess, intestinal disorders | Dietary/pharmacological/translational biomarker | Plays a role in dietary and supplemental zinc absorption; involved in biomarker trial (NCT01062347). | [149,150] |
| SLC transporters (class) | General therapeutic target class: several subtypes, including SLC30A, SLC39A, individually druggable | T2D, metabolic, cancer, inflammation | Small-molecule/monoclonal antibody/combo therapy | SLC30A8 and related SLCs identified as most promising for metabolic indications from human genetic and animal studies; some SLCs targeted in marketed and experimental cancer/metabolic drugs. | [151,152,153] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Barman, S.; Pradeep, S.R.; Srinivasan, K. Comprehensive Roles of ZIP and ZnT Zinc Transporters in Metabolic Inflammation. Targets 2026, 4, 5. https://doi.org/10.3390/targets4010005
Barman S, Pradeep SR, Srinivasan K. Comprehensive Roles of ZIP and ZnT Zinc Transporters in Metabolic Inflammation. Targets. 2026; 4(1):5. https://doi.org/10.3390/targets4010005
Chicago/Turabian StyleBarman, Susmita, Seetur R. Pradeep, and Krishnapura Srinivasan. 2026. "Comprehensive Roles of ZIP and ZnT Zinc Transporters in Metabolic Inflammation" Targets 4, no. 1: 5. https://doi.org/10.3390/targets4010005
APA StyleBarman, S., Pradeep, S. R., & Srinivasan, K. (2026). Comprehensive Roles of ZIP and ZnT Zinc Transporters in Metabolic Inflammation. Targets, 4(1), 5. https://doi.org/10.3390/targets4010005

