A Report on the Antidepressant-like Activity of Paullinia pinnata Methanol Leaf Extract in Mice and Possible Involvement of Monoaminergic Mechanisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Plant Material and Extraction
2.2. Drugs and Chemicals
2.3. Experimental Animals
2.4. Evaluation of Anxiolytic Activity
2.4.1. Hole-Board Test
2.4.2. Elevated Plus Maze Test
2.5. Evaluation of Antidepressant Activity
2.5.1. Forced Swim Test
2.5.2. Tail Suspension Test
2.6. Mechanistic Evaluation of Neuropharmacological Activities
2.6.1. Evaluation of Effect of Extract on Reserpine-Induced Depression
2.6.2. Evaluation of the Effect of Extract on Noradrenergic Mechanism
2.6.3. Evaluation of the Effect of Extract on Serotonergic Mechanism
2.7. Statistical Analysis and Data Presentation
3. Results
3.1. PPME Did Not Produce Significant Anxiolytic Effects
3.2. PPME Significantly Reduced Duration of Immobility in FST and TST
3.3. PPME Enhanced Noradrenergic and Serotonergic Mechanisms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
5-HT | 5-hydroxyl tryptamine |
DALY | Disability-adjusted life years |
EPM | Elevated plus maze |
FST | Forced swim test |
GC-MS | Gas chromatography–mass spectrometry |
MDD | Major depressive disorder |
PPME | Paullinia pinnata methanol leaf extract |
TST | Tail suspension test |
VMAT-2 | Vesicular monoamine transporter-2 |
References
- Fekadu, N.; Shibeshi, W.; Engidawork, E. Major depressive disorder: Pathophysiology and clinical management. J. Depress. Anxiety 2017, 6, 255–257. [Google Scholar] [CrossRef]
- World Health Organization. Depression Key Facts. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 11 February 2025).
- GBD 2021 Diseases and Injuries Collaborators. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2133–2161. [Google Scholar] [CrossRef]
- Brådvik, L. Suicide Risk and Mental Disorders. Int. J. Environ. Res. Public Health 2018, 15, 2028. [Google Scholar] [CrossRef]
- Machado-Vieira, R.; Baumann, J.; Wheeler-Castillo, C.; Latov, D.; Henter, I.D.; Salvadore, G.; Zarate, C.A. The Timing of Antidepressant Effects: A Comparison of Diverse Pharmacological and Somatic Treatments. Pharmaceuticals 2010, 3, 19–41. [Google Scholar] [CrossRef] [PubMed]
- Browning, M.; Kingslake, J.; Dourish, C.T.; Goodwin, G.M.; Harmer, C.J.; Dawson, G.R. Predicting treatment response to antidepressant medication using early changes in emotional processing. Eur. Neuropsychopharmacol. 2019, 29, 66–75. [Google Scholar] [CrossRef]
- Mahomoodally, M.F. Traditional medicines in Africa: An appraisal of ten potent african medicinal plants. Evid. Based Complement. Alternat Med. 2013, 2013, 617459. [Google Scholar] [CrossRef]
- Ozolua, R.I.; Anaka, O.N.; Okpo, S.O.; Idogun, S.E. Acute and sub-acute toxicological assessment of the aqueous seed extract of Persea americana mill (Lauraceae) in rats. Afr. J. Tradit. Complement. Altern. Med. 2009, 6, 573–578. [Google Scholar] [CrossRef]
- Yeung, K.S.; Hernandez, M.; Mao, J.J.; Haviland, I.; Gubili, J. Herbal medicine for depression and anxiety: A systematic review with assessment of potential psycho-oncologic relevance. Phytother. Res. 2018, 32, 865–891. [Google Scholar] [CrossRef]
- Chhabra, S.C.; Mahunnah, R.L.; Mshiu, E.N. Plants used in traditional medicine in eastern Tanzania. V. Angiosperms (Passifloraceae to Sapindaceae). J. Ethnopharmacol. 1991, 33, 143–157. [Google Scholar] [CrossRef]
- Zamble, A.; Carpentier, M.; Kandoussi, A.; Sahpaz, S.; Petrault, O.; Ouk, T.; Hennuyer, N.; Fruchart, J.C.; Staels, B.; Bordet, R.; et al. Paullinia pinnata extracts rich in polyphenols promote vascular relaxation via endothelium-dependent mechanisms. J. Cardiovasc. Pharmacol. 2006, 47, 599–608. [Google Scholar] [CrossRef]
- Tseuguem, P.P.; Ngangoum, D.A.M.; Pouadjeu, J.M.; Piégang, B.N.; Sando, Z.; Kolber, B.J.; Tidgewell, K.J.; Nguelefack, T.B. Aqueous and methanol extracts of Paullinia pinnata L. (Sapindaceae) improve inflammation, pain and histological features in CFA-induced mono-arthritis: Evidence from in vivo and in vitro studies. J. Ethnopharmacol. 2019, 236, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Meléndez, P.A.; Capriles, V.A. Molluscicidal activity of plants from Puerto Rico. Ann. Trop. Med. Parasitol. 2002, 96, 209–218. [Google Scholar] [CrossRef]
- Maje, I.M.; Anuka, J.A.; Hussaini, I.M.; Katsayal, U.A.; Yaro, A.H.; Magaji, M.G.; Jamilu, Y.; Sani, M.; Musa, Y. Evaluation of the anti-malarial activity of the ethanolic leaves extract of Paullinia pinnata (Linn.)(sapindaceae). Niger. J. Pharm. Sci. 2007, 6, 67–72. [Google Scholar]
- Ikhane, D.; Banwo, K.; Omotade, O.; Sanni, A. Phytochemical and antimicrobial activities of methanolic extract of Paullinia pinnata leaves on some selected bacterial pathogens. J. Herbs Spices Med. Plants 2015, 21, 59–74. [Google Scholar] [CrossRef]
- Lunga, P.K.; Nkodo, J.M.; Tamokou, J.D.; Kuiate, J.R.; Gatsing, D.; Tchoumboue, J. Post-treatment evaluation of the side effects of methanol leaf extract from Paullinia pinnata (Linn.), an antityphoid plant. Pharmacologia 2015, 6, 264–272. [Google Scholar]
- Nyegue, M.A.; Afagnigni, A.D.; Ndam, Y.N.; Djova, S.V.; Fonkoua, M.C.; Etoa, F.X. Toxicity and Activity of Ethanolic Leaf Extract of Paullinia pinnata Linn (Sapindaceae) in Shigella flexneri-Induced Diarrhea in Wistar Rats. J. Evid. Based Integr. Med. 2020, 25, 2515690X19900883. [Google Scholar] [CrossRef]
- Jimoh, F.O.; Sofidiya, M.O.; Afolayan, A.J. Antioxidant properties of the methanol extracts from the leaves of Paullinia pinnata. J. Med. Food 2007, 10, 707–711. [Google Scholar] [CrossRef] [PubMed]
- Ajibade, M.A.; Akhigbemen, A.M.; Okolie, N.P.; Ozolua, R.I. Methanol leaf extract of Paullinia pinnata exerts sleep-enhancing and anticonvulsant effects via a mechanism involving the GABAergic pathway. Epilepsy Res. 2022, 183, 106943. [Google Scholar] [CrossRef]
- Weckerle, C.S.; Stutz, M.A.; Baumann, T.W. Purine alkaloids in Paullinia. Phytochemistry 2003, 64, 735–742. [Google Scholar] [CrossRef]
- Miemanang, R.S.; Krohn, K.; Hussain, H.; Dongo, E. Paullinoside A and paullinomide A: A new cerebroside and a new ceramide from leaves of Paullinia pinnata. Z. Naturforschung B 2006, 61, 1123–1127. [Google Scholar] [CrossRef]
- National Institute of Health, NIH. Guide for the Care and Use of Laboratory Animals; U.S. Department of Health Education and Welfare. NIH publication: Rockville, MD, USA, 1985; pp. 85–123. [Google Scholar]
- Sonavane, G.S.; Sarveiya, V.P.; Kasture, V.S.; Kasture, S.B. Anxiogenic activity of Myristica fragrans seeds. Pharmacol. Biochem. Behav. 2002, 71, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Akanmu, M.A. Anxiolytic and Antidepressant Agents. In Handbook of Techniques in Experimental Pharmacology; Ozolua, R.I., Bafor, E.E., Eds.; Mindex Publishing Co.: Benin City, Nigeria, 2019; pp. 203–228. [Google Scholar]
- Herrera-Ruiz, M.; Román-Ramos, R.; Zamilpa, A.; Tortoriello, J.; Jiménez-Ferrer, J.E. Flavonoids from Tilia americana with anxiolytic activity in plus-maze test. J. Ethnopharmacol. 2008, 118, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Porsolt, R.D.; Bertin, A.; Jalfre, M. Behavioral despair in mice: A primary screening test for antidepressants. Arch. Int. Pharmacodyn. Ther. 1977, 229, 327–336. [Google Scholar]
- Zomkowski, A.D.; Santos, A.R.; Rodrigues, A.L. Evidence for the involvement of the opioid system in the agmatine antidepressant-like effect in the forced swimming test. Neurosci. Lett. 2005, 381, 279–283. [Google Scholar] [CrossRef]
- Steru, L.; Chermat, R.; Thierry, B.; Simon, P. The tail suspension test: A new method for screening antidepressants in mice. Psychopharmacology 1985, 85, 367–370. [Google Scholar] [CrossRef]
- Mao, Q.; Huang, Z.; Ip, S.; Che, C. Antidepressant-like effect of ethanol extract from Paeonia lactiflora in mice. Phytother. Res. 2008, 22, 1496–1499. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.; Zhong, X.; Mao, Q.; Huang, Z. The antidepressant-like effects of paeoniflorin in mouse models. Exp. Ther. Med. 2013, 5, 1113–1116. [Google Scholar] [CrossRef]
- Bilkei-Gorzó, A.; Gyertyán, I. Some doubts about the basic concept of hole-board test. Neurobiology 1996, 4, 405–415. [Google Scholar]
- Takeda, H.; Tsuji, M.; Matsumiya, T. Changes in head-dipping behavior in the hole-board test reflect the anxiogenic and/or anxiolytic state in mice. Eur. J. Pharmacol. 1998, 350, 21–29. [Google Scholar] [CrossRef]
- Dawson, G.R.; Tricklebank, M.D. Use of the elevated plus maze in the search for novel anxiolytic agents. Trends Pharmacol. Sci. 1995, 16, 33–36. [Google Scholar] [CrossRef]
- Pellow, S.; File, S.E. Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: A novel test of anxiety in the rat. Pharmacol. Biochem. Behav. 1986, 24, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Bourin, M. Is it possible to predict the activity of a new antidepressant in animals with simple psychopharmacological tests? Fundam. Clin. Pharmacol. 1990, 4, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Willner, P. The validity of animal models of depression. Psychopharmacology 1984, 83, 1–16. [Google Scholar] [CrossRef]
- Cryan, J.F.; Valentino, R.J.; Lucki, I. Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci. Biobehav. Rev. 2005, 29, 547–569. [Google Scholar] [CrossRef]
- Nagakura, Y.; Oe, T.; Aoki, T.; Matsuoka, N. Biogenic amine depletion causes chronic muscular pain and tactile allodynia accompanied by depression: A putative animal model of fibromyalgia. Pain. 2009, 146, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Yaffe, D.; Forrest, L.R.; Schuldiner, S. The ins and outs of vesicular monoamine transporters. J. Gen. Physiol. 2018, 150, 671–682. [Google Scholar] [CrossRef]
- Mcgrath, W.R.; Ketteler, H.J. Potentiation of the Anti-Reserpine Effects of Dihydroxyphenylalanine by Antidepressants and Stimulants. Nature 1963, 199, 917–918. [Google Scholar] [CrossRef]
- Gao, S.; Cui, Y.L.; Yu, C.Q.; Wang, Q.S.; Zhang, Y. Tetrandrine exerts antidepressant-like effects in animal models: Role of brain-derived neurotrophic factor. Behav. Brain Res. 2013, 238, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Huang, C.; Chen, X.F.; Tong, L.J.; Zhang, W. Tetramethylpyrazine Produces Antidepressant-Like Effects in Mice Through Promotion of BDNF Signaling Pathway. Int. J. Neuropsychopharmacol. 2015, 18, pyv010. [Google Scholar] [CrossRef]
- Hedgecock, T.; Phillips, A.; Ludrick, B.; Golden, T.; Wu, N. Molecular Mechanisms and Applications of a Reserpine-Induced Rodent Model [Molecular Mechanisms and Applications of a Reserpine-Induced Rodent Model]. SSR Inst. Int. J. Life Sci. 2019, 5, 2160–2167. [Google Scholar] [CrossRef]
- Elhwuegi, A.S. Central monoamines and their role in major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2004, 28, 435–451. [Google Scholar] [CrossRef] [PubMed]
- Maletic, V.; Eramo, A.; Gwin, K.; Offord, S.J.; Duffy, R.A. The Role of Norepinephrine and Its α-Adrenergic Receptors in the Pathophysiology and Treatment of Major Depressive Disorder and Schizophrenia: A Systematic Review. Front. Psychiatry 2017, 8, 42. [Google Scholar] [CrossRef] [PubMed]
- Rajkowska, G. Histopathology of the prefrontal cortex in major depression: What does it tell us about dysfunctional monoaminergic circuits? Prog. Brain Res. 2000, 126, 397–412. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.; Kerndt, C.C.; Maani, C.V. Labetalol. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Ranchord, A.M.; Spertus, J.A.; Buchanan, D.M.; Gosch, K.L.; Chan, P.S. Initiation of β-blocker therapy and depression after acute myocardial infarction. Am. Heart J. 2016, 174, 37–42. [Google Scholar] [CrossRef]
- Riemer, T.G.; Villagomez Fuentes, L.E.; Algharably, E.A.E.; Schäfer, M.S.; Mangelsen, E.; Fürtig, M.A.; Bittner, N.; Bär, A.; Zaidi Touis, L.; Wachtell, K.; et al. Do β-Blockers Cause Depression?: Systematic Review and Meta-Analysis of Psychiatric Adverse Events During β-Blocker Therapy. Hypertension 2021, 77, 1539–1548. [Google Scholar] [CrossRef]
- Bornand, D.; Reinau, D.; Jick, S.S.; Meier, C.R. β-Blockers and the Risk of Depression: A Matched Case-Control Study. Drug Saf. 2022, 45, 181–189. [Google Scholar] [CrossRef]
- Yunusa, I.; El Helou, M.L. The Use of Risperidone in Behavioral and Psychological Symptoms of Dementia: A Review of Pharmacology, Clinical Evidence, Regulatory Approvals, and Off-Label Use. Front. Pharmacol. 2020, 11, 596. [Google Scholar] [CrossRef]
- Bymaster, F.P.; Zhang, W.; Carter, P.A.; Shaw, J.; Chernet, E.; Phebus, L.; Wong, D.T.; Perry, K.W. Fluoxetine, but not other selective serotonin uptake inhibitors, increases norepinephrine and dopamine extracellular levels in prefrontal cortex. Psychopharmacology 2002, 160, 353–361. [Google Scholar] [CrossRef]
- Hussain, G.; Schmitt, F.; Loeffler, J.P.; Gonzalez de Aguilar, J.L. Fatting the brain: A brief of recent research. Front. Cell Neurosci. 2013, 7, 144. [Google Scholar] [CrossRef]
- Troubat, R.; Barone, P.; Leman, S.; Desmidt, T.; Cressant, A.; Atanasova, B.; Brizard, B.; El Hage, W.; Surget, A.; Belzung, C.; et al. Neuroinflammation and depression: A review. Eur. J. Neurosci. 2021, 53, 151–171. [Google Scholar] [CrossRef]
- Kofi, A.; Stephen, G.; Francis, A. Antibacterial and radical scavenging activity of fatty acids from Paullinia pinnata L. Pharmacogn. Mag. 2009, 5, 119. [Google Scholar]
- Iyare, W.F.; Bolanle, I.O.; Akhigbemen, A.M.; Uwaya, D.O.; Oboigba, O.G.; Gabriel, B.O.; Salami, E.O.; Ozolua, R.I. Evaluation of the neuropharmacologic potentials of methanol leaf extract of Cnidoscolus aconitifolius in mice. Phytomed. Plus 2024, 4, 100529. [Google Scholar] [CrossRef]
- Cervo, L.; Canetta, A.; Calcagno, E.; Burbassi, S.; Sacchetti, G.; Caccia, S.; Fracasso, C.; Albani, D.; Forloni, G.; Invernizzi, R.W. Genotype-dependent activity of tryptophan hydroxylase-2 determines the response to citalopram in a mouse model of depression. J. Neurosci. 2005, 25, 8165–8172. [Google Scholar] [CrossRef] [PubMed]
- Machado, D.G.; Kaster, M.P.; Binfaré, R.W.; Dias, M.; Santos, A.R.; Pizzolatti, M.G.; Brighente, I.M.; Rodrigues, A.L. Antidepressant-like effect of the extract from leaves of Schinus molle L. in mice: Evidence for the involvement of the monoaminergic system. Prog. Neuropsychopharmacol. Biol. Psychiatry 2007, 31, 421–428. [Google Scholar] [CrossRef]
Treatment Groups | Mean Ptosis Score |
---|---|
5% Tween 80 + 5 mg/kg reserpine | 1.83 ± 0.17 |
100 mg/kg PPME + 5 mg/kg reserpine | 1.00 ± 0.26 |
200 mg/kg PPME + 5 mg/kg reserpine | 0.67 ± 0.21 |
400 mg/kg PPME + 5 mg/kg reserpine | 0.50 ± 0.22 * |
100 mg/kg pargyline + 5 mg/kg reserpine | 0.33 ± 0.21 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozolua, R.I.; Ajibade, M.A.; Uwaya, D.O.; Akhigbemen, A.M.; Bolanle, I.O. A Report on the Antidepressant-like Activity of Paullinia pinnata Methanol Leaf Extract in Mice and Possible Involvement of Monoaminergic Mechanisms. Targets 2025, 3, 22. https://doi.org/10.3390/targets3020022
Ozolua RI, Ajibade MA, Uwaya DO, Akhigbemen AM, Bolanle IO. A Report on the Antidepressant-like Activity of Paullinia pinnata Methanol Leaf Extract in Mice and Possible Involvement of Monoaminergic Mechanisms. Targets. 2025; 3(2):22. https://doi.org/10.3390/targets3020022
Chicago/Turabian StyleOzolua, Raymond I., Muideen A. Ajibade, Dickson O. Uwaya, Abigail M. Akhigbemen, and Israel O. Bolanle. 2025. "A Report on the Antidepressant-like Activity of Paullinia pinnata Methanol Leaf Extract in Mice and Possible Involvement of Monoaminergic Mechanisms" Targets 3, no. 2: 22. https://doi.org/10.3390/targets3020022
APA StyleOzolua, R. I., Ajibade, M. A., Uwaya, D. O., Akhigbemen, A. M., & Bolanle, I. O. (2025). A Report on the Antidepressant-like Activity of Paullinia pinnata Methanol Leaf Extract in Mice and Possible Involvement of Monoaminergic Mechanisms. Targets, 3(2), 22. https://doi.org/10.3390/targets3020022