Non-Fasting Plasma Triglycerides Are Positively Associated with Diabetes Mortality in a Representative US Adult Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Definitions of Comorbidities
2.3. Diabetes Mortality
2.4. Covariates
2.5. Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. Association of Non-Fasting Triglycerides with Plasma Glucose, Blood Hemoglobin A1c, Serum Insulin, and Diabetes
3.3. Association of Non-Fasting Triglycerides with Diabetes Mortality
3.4. Sensitivtiy Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Diabetes. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 31 August 2023).
- Centers for Disease Control and Prevention. Diabetes. 2024. Available online: https://www.cdc.gov/nchs/fastats/diabetes.htm (accessed on 17 May 2024).
- Nordestgaard, B.G.; Varbo, A. Triglycerides and cardiovascular disease. Lancet 2014, 384, 626–635. [Google Scholar] [CrossRef] [PubMed]
- Raposeiras-Roubin, S.; Rosselló, X.; Oliva, B.; Fernández-Friera, L.; Mendiguren, J.M.; Andrés, V.; Bueno, H.; Sanz, J.; Martínez de Vega, V.; Abu-Assi, E.; et al. Triglycerides and Residual Atherosclerotic Risk. J. Am. Coll. Cardiol. 2021, 77, 3031–3041. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fang, Y.; Magliano, D.J.; Charchar, F.J.; Sobey, C.G.; Drummond, G.R.; Golledge, J. Fasting triglycerides are positively associated with cardiovascular mortality risk in people with diabetes. Cardiovasc. Res. 2023, 119, 826–834. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, Y. Fasting status modifies the association between triglyceride and all-cause mortality: A cohort study. Health Sci. Rep. 2022, 5, e642. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y. Higher fasting triglyceride predicts higher risks of diabetes mortality in US adults. Lipids Health Dis. 2021, 20, 181. [Google Scholar] [CrossRef] [PubMed]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart J. 2019, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Pearson, G.J.; Thanassoulis, G.; Anderson, T.J.; Barry, A.R.; Couture, P.; Dayan, N.; Francis, G.A.; Genest, J.; Grégoire, J.; Grover, S.A.; et al. Canadian cardiovascular society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult. Can. J. Cardiol. 2021, 37, 1129–1150. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association, 2. 10. American Diabetes Association, 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes. Diabetes Care. [CrossRef]
- Liu, L.; Miura, K.; Kadota, A.; Fujiyoshi, A.; Gracely, E.J.; Xue, F.; Liu, Z.; Takashima, N.; Miyagawa, N.; Ohkubo, T.; et al. The impact of sex on risk of cardiovascular disease and all-cause mortality in adults with or without diabetes mellitus: A comparison between the U.S. and Japan. J. Diabetes Complicat. 2019, 33, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L., Jr.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T., Jr.; et al. Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 2003, 42, 1206–1252. [Google Scholar] [CrossRef] [PubMed]
- Urrutia, I.; Martín-Nieto, A.; Martínez, R.; Casanovas-Marsal, J.O.; Aguayo, A.; Del Olmo, J.; Arana, E.; Fernandez-Rubio, E.; Castaño, L.; Gaztambide, S. Incidence of diabetes mellitus and associated risk factors in the adult population of the Basque country, Spain. Sci. Rep. 2021, 11, 3016. [Google Scholar] [CrossRef]
- Al-Mawali, A.; Al-Harrasi, A.; Jayapal, S.K.; Morsi, M.; Pinto, A.D.; Al-Shekaili, W.; Al-Kharusi, H.; Al-Balushi, Z.; Idikula, J. Prevalence and risk factors of diabetes in a large community-based study in the Sultanate of Oman: STEPS survey 2017. BMC Endocr. Disord. 2021, 21, 42. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.S.; Dyck, R.; Janzen, B.; Karunanayake, C.; Dosman, J.; Pahwa, P. Risk factors, incidence, and prevalence of diabetes among rural farm and non-farm residents of Saskatchewan, Canada; A population-based longitudinal cohort study. J. Diabetes Metab. Disord. 2020, 19, 1563–1582. [Google Scholar] [CrossRef]
- Wang, Y. Stage 1 hypertension and risk of cardiovascular disease mortality in United States adults with or without diabetes. J. Hypertens. 2022, 40, 794–803. [Google Scholar] [CrossRef]
- Turner, N. Chi-squared test. J. Clin. Nurs. 2000, 9, 93. [Google Scholar] [PubMed]
- Elkahwagy, D.; Kiriacos, C.J. Logistic regression and other statistical tools in diagnostic biomarker studies. Clin. Transl. Oncol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Brancato, D.; Saura, G.; Fleres, M.; Ferrara, L.; Scorsone, A.; Aiello, V.; Di Noto, A.; Spano, L.; Provenzano, V. Prognostic accuracy of continuous glucose monitoring in the prediction of diabetes mellitus in children with incidental hyperglycemia: Receiver operating characteristic analysis. Diabetes Technol. Ther. 2013, 15, 580–585. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Y. Postabsorptive homeostasis model assessment for insulin resistance is a reliable biomarker for cardiovascular disease mortality and all-cause mortality. Diabetes Epidemiol. Manag. 2021, 6, 100045. [Google Scholar] [CrossRef]
- Perkins, N.J.; Schisterman, E.F. The inconsistency of “optimal” cutpoints obtained using two criteria based on the receiver operating characteristic curve. Am. J. Epidemiol. 2006, 163, 670–675. [Google Scholar] [CrossRef] [PubMed]
- Tao, C.; Hu, N.; Liu, Y.; Wang, H.; Wang, Z.; Zhang, K.; Wang, L.; Chen, B.; Wu, F.; Rong, W.; et al. Long-term outcome of adjuvant radiotherapy upon postoperative relapse of centrally located hepatocellular carcinoma: A real-world study. Sci. Rep. 2024, 14, 8506. [Google Scholar] [CrossRef]
- Wang, Y. Fasting triglycerides in the upper normal range are independently associated with an increased risk of diabetes mortality in a large representative US population. J. Cardiovasc. Dev. Dis. 2024, 11, 128. [Google Scholar] [CrossRef]
- Aung, H.H.; Lame, M.W.; Gohil, K.; An, C.I.; Wilson, D.W.; Rutledge, J.C. Induction of ATF3 gene network by triglyceride-rich lipoprotein lipolysis products increases vascular apoptosis and inflammation. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 2088–2096. [Google Scholar] [CrossRef]
- Pradhan, A.D. A New Beginning for Triglyceride-Lowering Therapies. Circulation 2019, 140, 167–169. [Google Scholar] [CrossRef]
- Tirosh, A.; Shai, I.; Bitzur, R.; Kochba, I.; Tekes-Manova, D.; Israeli, E.; Shochat, T.; Rudich, A. Changes in triglyceride levels over time and risk of type 2 diabetes in young men. Diabetes Care 2008, 31, 2032–2037. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Y.; Wei, F.; Song, J.; Cao, Z.; Chen, C.; Zhang, K.; Feng, S.; Li, W.-D. Triglyceride is an independent predictor of type 2 diabetes among middle-aged and older adults: A prospective study with 8-year follow-ups in two cohorts. J. Transl. Med. 2019, 17, 403. [Google Scholar] [CrossRef] [PubMed]
- Beshara, A.; Cohen, E.; Goldberg, E.; Lilos, P.; Garty, M.; Krause, I. Triglyceride levels and risk of type 2 diabetes mellitus: A longitudinal large study. J. Investig. Med. 2016, 64, 383–387. [Google Scholar] [CrossRef]
- Guo, R.; Wei, L.; Cao, Y.; Zhao, W. Normal triglyceride concentration and the risk of diabetes mellitus type 2 in the general population of China. Front. Endocrinol. 2024, 15, 1330650. [Google Scholar] [CrossRef]
- Szili-Torok, T.; Bakker, S.J.L.; Tietge, U.J.F. Normal fasting triglyceride levels and incident type 2 diabetes in the general population. Cardiovasc. Diabetol. 2022, 21, 111. [Google Scholar] [CrossRef] [PubMed]
- Araki, M.; Nakagawa, Y.; Oishi, A.; Han, S.I.; Kumagai, K.; Ohno, H.; Mizunoe, Y.; Iwasaki, H.; Sekiya, M.; Matsuzaka, T.; et al. The peroxisome proliferator-activated receptor α (PPARα) agonist pemafibrate protects against diet-induced obesity in mice. Int. J. Mol. Sci. 2018, 19, 2148. [Google Scholar] [CrossRef] [PubMed]
- Tenenbaum, A.; Motro, M.; Fisman, E.Z.; Schwammenthal, E.; Adler, Y.; Goldenberg, I.; Leor, J.; Boyko, V.; Mandelzweig, L.; Behar, S. Peroxisome proliferator–activated receptor ligand bezafibrate for prevention of type 2 diabetes mellitus in patients with coronary artery disease. Circulation 2004, 109, 2197–2202. [Google Scholar] [CrossRef]
- The ACCORD Study Group. Effects of combination lipid therapy in type 2 diabetes mellitus. N. Engl. J. Med. 2010, 362, 1563–1574. [Google Scholar] [CrossRef]
- Keech, A.C.; Mitchell, P.; Summanen, P.A.; O’Day, J.; Davis, T.M.; Moffitt, M.S.; Taskinen, M.R.; Simes, R.J.; Tse, D.; Williamson, E.; et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): A randomised controlled trial. Lancet 2007, 370, 1687–1697. [Google Scholar] [CrossRef]
- Hoy, A.J.; Brandon, A.E.; Turner, N.; Watt, M.J.; Bruce, C.R.; Cooney, G.J.; Kraegen, E.W. Lipid and insulin infusion-induced skeletal muscle insulin resistance is likely due to metabolic feedback and not changes in IRS-1, Akt, or AS160 phosphorylation. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E67–E75. [Google Scholar] [CrossRef] [PubMed]
- Høeg, L.D.; Sjøberg, K.A.; Jeppesen, J.; Jensen, T.E.; Frøsig, C.; Birk, J.B.; Bisiani, B.; Hiscock, N.; Pilegaard, H.; Wojtaszewski, J.F.P.; et al. Lipid-induced insulin resistance affects women less than men and is not accompanied by inflammation or impaired proximal insulin signaling. Diabetes 2010, 60, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Jeon, S.; Lee, M.; Yoon, M. Fenofibrate alleviates insulin resistance by reducing tissue inflammation in obese ovariectomized mice. Nutr. Diabetes 2023, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; Ferranti, S.d.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the management of blood cholesterol: A report of the american college of cardiology/american heart association task force on clinical practice guidelines. Circulation 2019, 139, e1082–e1143. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fang, Y.; Vrablik, M. Homeostasis model assessment for insulin resistance mediates the positive association of triglycerides with diabetes. Diagnostics 2024, 14, 733. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.; Al-Shali, K.Z.; Hegele, R.A. Hypertriglyceridemia: Its etiology, effects and treatment. CMAJ 2007, 176, 1113–1120. [Google Scholar] [CrossRef]
- Simha, V. Management of hypertriglyceridemia. BMJ 2020, 371, m3109. [Google Scholar] [CrossRef] [PubMed]
- Jeppesen, J.ø.; Hein, H.O.; Suadicani, P.; Gyntelberg, F. Triglyceride concentration and ischemic heart disease. Circulation 1998, 97, 1029–1036. [Google Scholar] [CrossRef] [PubMed]
- Tikhonoff, V.; Casiglia, E.; Virdis, A.; Grassi, G.; Angeli, F.; Arca, M.; Barbagallo, C.M.; Bombelli, M.; Cappelli, F.; Cianci, R.; et al. Prognostic value and relative cutoffs of triglycerides predicting cardiovascular outcome in a large regional-based italian database. J. Am. Heart Assoc. 2024, 13, e030319. [Google Scholar] [CrossRef]
- Klempfner, R.; Erez, A.; Sagit, B.-Z.; Goldenberg, I.; Fisman, E.; Kopel, E.; Shlomo, N.; Israel, A.; Tenenbaum, A. Elevated triglyceride level is independently associated with increased all-cause mortality in patients with established coronary heart disease. Circ. Cardiovasc. Qual. Outcomes 2016, 9, 100–108. [Google Scholar] [CrossRef]
- MacMahon, S.; Peto, R.; Cutler, J.; Collins, R.; Sorlie, P.; Neaton, J.; Abbott, R.; Godwin, J.; Dyer, A.; Stamler, J. Blood pressure, stroke, and coronary heart disease. Part 1, Prolonged differences in blood pressure: Prospective observational studies corrected for the regression dilution bias. Lancet 1990, 335, 765–774. [Google Scholar] [CrossRef] [PubMed]
- National Center for Health Statistics; Office of Analysis and Epidemiology. The Linkage of National Center for Health Statistics Survey Data to the National Death Index—2015 Linked Mortality File (LMF): Methodology Overview and Analytic Considerations. 2019. Available online: https://www.cdc.gov/nchs/data-linkage/mortality-methods.htm (accessed on 9 July 2021).
- Menke, A.; Muntner, P.; Batuman, V.; Silbergeld, E.K.; Guallar, E. Blood lead below 0.48 micromol/L (10 microg/dL) and mortality among US adults. Circulation 2006, 114, 1388–1394. [Google Scholar] [CrossRef]
All | Without Diabetes | With Diabetes | p Value | |
---|---|---|---|---|
Participant number | 7312 | 6132 | 1180 | NA |
Non-fasting triglycerides, mg/dL, mean (SD) | 159 (126) | 147 (108) | 220 (180) | <0.001 |
Age, y, mean (SD) | 50 (19) | 48 (19) | 62 (14) | <0.001 |
PG, mg/dL, mean (SD) | 107 (49) | 94 (13) | 176 (93) | <0.001 |
HbA1c, %, mean (SD) | 5.7 (1.3) | 5.3 (0.5) | 7.8 (1.9) | <0.001 |
Insulin, µU/mL, mean (SD) | 17.5 (39.6) | 13.4 (15.3) | 39.2 (89.1) | |
Gender (male), % | 46.7 | 46.9 | 46.0 | 0.58 |
Ethnicity, % | ||||
Hispanic | 27.5 | 27.2 | 29.6 | <0.001 |
Non-Hispanic white | 44.3 | 45.7 | 36.9 | |
Non-Hispanic black | 25.9 | 24.9 | 31.2 | |
Other | 2.3 | 2.3 | 2.3 | |
Obesity, % | ||||
Underweight | 2.2 | 2.5 | 0.6 | <0.001 |
Normal | 35.3 | 38.6 | 17.8 | |
Overweight | 35.0 | 34.7 | 36.4 | |
Obese | 26.7 | 23.5 | 43.4 | |
Unknown | 0.8 | 0.7 | 1.8 | |
Poverty–income ratio, % | ||||
<130% | 29.9 | 28.7 | 35.7 | <0.001 |
130%–349% | 38.5 | 38.7 | 37.4 | |
≥350% | 22.3 | 23.6 | 15.3 | |
Unknown | 9.4 | 8.9 | 11.7 | |
Education status, % | ||||
<High School | 40.7 | 37.6 | 56.9 | <0.001 |
High School | 29.0 | 30.0 | 24.0 | |
>High School | 30.2 | 32.4 | 19.1 | |
Physical activity, % | ||||
Inactive | 32.3 | 34.1 | 23.3 | <0.001 |
Insufficiently active | 38.9 | 39.5 | 35.6 | |
Active | 28.8 | 26.5 | 41.1 | |
Alcohol consumption, % | <0.001 | |||
0 drink/week | 18.7 | 16.5 | 30.2 | |
<1 drink/week | 12.2 | 12.9 | 8.3 | |
1–6 drinks/week | 17.7 | 19.6 | 7.8 | |
≥7 drinks/week | 12.1 | 13.3 | 5.9 | |
Unknown | 39.4 | 37.8 | 47.8 | |
Cigarette smoker, % | 51.4 | 51.1 | 53.5 | 0.13 |
Hypercholesterolemia, % | 33.5 | 30.7 | 48.2 | <0.001 |
Hypertension, % | 41.6 | 36.3 | 69.6 | <0.001 |
Diabetes, % | 16.1 | 0 | 100 | <0.001 |
Family diabetes history, % | 44.0 | 40.3 | 63.3 | <0.001 |
All Participants (n = 7312) | Without Diabetes (n = 6132) | With Diabetes (n = 1180) | ||||
---|---|---|---|---|---|---|
β | p Value | β | p Value | β | p Value | |
Unadjusted | ||||||
Plasma glucose | 0.258 | <0.001 | 0.170 | <0.001 | 0.191 | <0.001 |
Hemoglobin A1c | 0.257 | <0.001 | 0.145 | <0.001 | 0.151 | <0.001 |
Serum insulin | 0.396 | <0.001 | 0.362 | <0.001 | 0.267 | <0.001 |
Adjusted 2 | ||||||
Plasma glucose | 0.106 | <0.001 | 0.087 | <0.001 | 0.235 | <0.001 |
Hemoglobin A1c | 0.067 | <0.001 | 0.051 | <0.001 | 0.163 | <0.001 |
Serum insulin | 0.286 | <0.001 | 0.318 | <0.001 | 0.247 | <0.001 |
All (n = 7312) | Without Diabetes (n = 6132) | With Diabetes (n = 1180) | |||||||
---|---|---|---|---|---|---|---|---|---|
HR | 95% CI | p Value | HR | 95% CI | p Value | HR | 95% CI | p Value | |
Model 1 | 2.50 | 2.17–2.87 | <0.001 | 2.29 | 1.69–3.11 | <0.001 | 1.20 | 1.01–1.42 | 0.038 |
Model 2 | 2.32 | 1.98–2.72 | <0.001 | 1.87 | 1.32–2.65 | <0.001 | 1.31 | 1.08–1.57 | 0.005 |
Model 3 | 2.21 | 1.87–2.61 | <0.001 | 1.68 | 1.17–2.43 | 0.006 | 1.37 | 1.13–1.65 | 0.001 |
Model 4 | 2.14 | 1.81–2.53 | <0.001 | 1.65 | 1.15–2.39 | 0.007 | 1.35 | 1.12–1.64 | 0.002 |
Model 5 | 1.41 | 1.19–1.67 | <0.001 | 1.62 | 1.10–2.38 | 0.014 | 1.33 | 1.10–1.61 | 0.004 |
All (n = 7312) | Without Diabetes (n = 6132) | With Diabetes (n = 1180) | |||||||
---|---|---|---|---|---|---|---|---|---|
HR | 95% CI | p Value | HR | 95% CI | p Value | HR | 95% CI | p Value | |
Model 1 | 3.07 | 2.50–3.78 | <0.001 | 3.24 | 1.94–5.43 | <0.001 | 1.33 | 1.05–1.70 | 0.020 |
Model 2 | 2.26 | 1.83–2.79 | <0.001 | 2.18 | 1.28–3.69 | 0.004 | 1.31 | 1.02–1.68 | 0.035 |
Model 3 | 2.04 | 1.64–2.54 | <0.001 | 1.93 | 1.12–3.33 | 0.017 | 1.39 | 1.07–1.80 | 0.014 |
Model 4 | 2.00 | 1.61–2.48 | <0.001 | 1.93 | 1.12–3.32 | 0.018 | 1.40 | 1.08–1.82 | 0.011 |
Model 5 | 1.37 | 1.10–1.72 | 0.006 | 1.86 | 1.07–3.23 | 0.028 | 1.38 | 1.06–1.79 | 0.017 |
Model 1 | Model 1 with Further Adjustment for Total Cholesterol 2 | Model 1 with Further Adjustment for Total Cholesterol + HDL 2 | |||||||
---|---|---|---|---|---|---|---|---|---|
HR | 95% CI | p Value | HR | 95% CI | p Value | HR | 95% CI | p Value | |
Q1 | HR = 1 (reference) | HR = 1 (reference) | HR = 1 (reference) | ||||||
Q2 | 1.72 | 1.03–2.87 | 0.040 | 1.72 | 1.02–2.88 | 0.040 | 1.72 | 1.02–2.89 | 0.041 |
Q3 | 1.90 | 1.13–3.19 | 0.016 | 1.90 | 1.13–3.19 | 0.016 | 1.90 | 1.12–3.22 | 0.017 |
Q4 | 1.92 | 1.16–3.18 | 0.011 | 1.92 | 1.16–3.19 | 0.011 | 1.93 | 1.14–3.24 | 0.014 |
Q5 | 2.41 | 1.46–3.97 | <0.001 | 2.41 | 1.45–4.01 | <0.001 | 2.42 | 1.40–4.17 | 0.001 |
Model 1 | Model 1 with Further Adjustment for Total Cholesterol 2 | Model 1 with Further Adjustment for Total Cholesterol + HDL 2 | |||||||
---|---|---|---|---|---|---|---|---|---|
HR | 95% CI | p Value | HR | 95% CI | p Value | HR | 95% CI | p Value | |
Q1 | HR = 1 (reference) | HR = 1 (reference) | HR = 1 (reference) | ||||||
Q2 | 2.96 | 0.84–10.39 | 0.090 | 2.87 | 0.82–10.08 | 0.100 | 1.33 | 0.89–1.97 | 0.160 |
Q3 | 4.14 | 1.22–14.06 | 0.023 | 3.90 | 1.15–13.29 | 0.030 | 1.25 | 0.84–1.88 | 0.275 |
Q4 | 3.22 | 0.92–11.23 | 0.067 | 2.97 | 0.85–10.40 | 0.089 | 1.59 | 1.05–2.42 | 0.030 |
Q5 | 4.84 | 1.42–16.54 | 0.012 | 4.26 | 1.23–14.78 | 0.022 | 1.82 | 1.16–2.85 | 0.009 |
Model 1 | Model 1 with Further Adjustment for Total Cholesterol 2 | Model 1 with Further Adjustment for Total Cholesterol + HDL 2 | |||||||
---|---|---|---|---|---|---|---|---|---|
HR | 95% CI | p Value | HR | 95% CI | p Value | HR | 95% CI | p Value | |
Q1 | HR = 1 (reference) | HR = 1 (reference) | HR = 1 (reference) | ||||||
Q2 | 1.32 | 0.89–1.94 | 0.164 | 1.32 | 0.89–1.94 | 0.167 | 1.33 | 0.89–1.97 | 0.160 |
Q3 | 1.23 | 0.83–1.81 | 0.299 | 1.24 | 0.84–1.82 | 0.287 | 1.25 | 0.84–1.88 | 0.275 |
Q4 | 1.54 | 1.05–2.26 | 0.029 | 1.56 | 1.06–2.30 | 0.026 | 1.59 | 1.05–2.42 | 0.030 |
Q5 | 1.74 | 1.18–2.55 | 0.005 | 1.77 | 1.19–2.62 | 0.005 | 1.82 | 1.16–2.85 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Fang, Y.; Zhang, X.; Wu, N.-Q. Non-Fasting Plasma Triglycerides Are Positively Associated with Diabetes Mortality in a Representative US Adult Population. Targets 2024, 2, 93-103. https://doi.org/10.3390/targets2020006
Wang Y, Fang Y, Zhang X, Wu N-Q. Non-Fasting Plasma Triglycerides Are Positively Associated with Diabetes Mortality in a Representative US Adult Population. Targets. 2024; 2(2):93-103. https://doi.org/10.3390/targets2020006
Chicago/Turabian StyleWang, Yutang, Yan Fang, Xiulin Zhang, and Na-Qiong Wu. 2024. "Non-Fasting Plasma Triglycerides Are Positively Associated with Diabetes Mortality in a Representative US Adult Population" Targets 2, no. 2: 93-103. https://doi.org/10.3390/targets2020006
APA StyleWang, Y., Fang, Y., Zhang, X., & Wu, N.-Q. (2024). Non-Fasting Plasma Triglycerides Are Positively Associated with Diabetes Mortality in a Representative US Adult Population. Targets, 2(2), 93-103. https://doi.org/10.3390/targets2020006