Kinesiotherapeutic Possibilities and Molecular Parameters in Multiple Sclerosis
Abstract
:1. Introduction
2. Clinical Features and Pharmacotherapeutic Possibilities of Multiple Sclerosis
2.1. Clinical Forms of Multiple Sclerosis
2.2. Clinical Symptoms of Multiple Sclerosis
2.3. Diagnosis of Multiple Sclerosis
2.4. Pharmacotherapeutic Possibilities of Multiple Sclerosis
3. Molecular Factors Important for Pathogenesis of Multiple Sclerosis
4. Genetic Factors in Multiple Sclerosis
5. Kinesiotherapy in Multiple Sclerosis
6. Kinesiotherapy and Diagnostic, and Prognostic Factors in Multiple Sclerosis
6.1. Diagnostic Factors
6.2. Prognostic Factors
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2015 Neurological Disorders Collaborator Group. Global, regional, and national burden of neurological disorders during 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol. 2017, 16, 877–897. [Google Scholar]
- Kamm, C.P.; Uitdehaag, B.M.; Polman, C.H. Multiple sclerosis: Current knowledge and future outlook. Eur. Neurol. 2014, 72, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Benito-León, J. Are the prevalence and incidence of multiple sclerosis changing? Neuroepidemiology 2011, 36, 148–149. [Google Scholar] [CrossRef] [PubMed]
- Katz Sand, I. Classification, diagnosis, and differential diagnosis of multiple sclerosis. Curr. Opin. Neurol. 2015, 28, 193–205. [Google Scholar]
- Klocke, S.; Hahn, N. Multiple sclerosis. Ment. Health Clin. 2019, 9, 349–358. [Google Scholar]
- University of California, San Francisco MS-EPIC Team; Cree, B.A.; Gourraud, P.A.; Oksenberg, J.R.; Bevan, C.; Crabtree-Hartman, E.; Gelfand, J.M.; Goodin, D.S.; Graves, J.; Green, A.J.; et al. Long-term evolution of multiple sclerosis disability in the treatment era. Ann. Neurol. 2016, 80, 499–510. [Google Scholar]
- Mulero, P.; Midaglia, L.; Montalban, X. Ocrelizumab: A new milestone in multiple sclerosis therapy. Ther. Adv. Neurol. Disord. 2018, 11, 1756286418773025. [Google Scholar]
- Dorszewska, J.; Kozubski, W.; Waleszczyk, W.; Zabel, M.; Ong, K. Neuroplasticity in the pathology of neurodegenerative diseases. Neural. Plast. 2020, 2020, 4245821. [Google Scholar]
- Kozubski, W.; Ong, K.; Waleszczyk, W.; Zabel, M.; Dorszewska, J. Molecular factors mediating neural cell plasticity changes in dementia brain diseases. Neural. Plast. 2021, 2021, 8834645. [Google Scholar] [CrossRef]
- Warutkar, V.; Gulrandhe, P.; Morghade, S.; Krishna Kovela, R.; Qureshi, M.I. Physiotherapy for multiple sclerosis patients from early to transition phase: A scoping review. Cureus 2022, 14, e30779. [Google Scholar] [CrossRef]
- Riemenschneider, M.; Hvid, L.G.; Stenager, E.; Dalgas, U. Is there an overlooked “window of opportunity” in MS exercise therapy? Perspectives for early MS rehabilitation. Mult. Scler. 2018, 24, 886–894. [Google Scholar] [PubMed]
- López-Gómez, J.; Sacristán Enciso, B.; Caro Miró, M.A.; Querol Pascual, M.R. Clinically isolated syndrome: Diagnosis and risk of developing clinically definite multiple sclerosis. Neurologia (Engl. Ed.) 2023, 38, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Oertel, F.C.; Krämer, J.; Motamedi, S.; Keihani, A.; Zimmermann, H.G.; Dimitriou, N.G.; Condor-Montes, S.; Bereuter, C.; Cordano, C.; Abdelhak, A.; et al. Visually evoked potential as prognostic biomarker for neuroaxonal damage in multiple sclerosis from a multicenter longitudinal cohort. Neurol. Neuroimmunol. Neuroinflamm. 2023, 10, e200092. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, Y.; Özakbaş, S.; Bülbül, N.G.; Kösehasanoğulları, G.; Seçil, Y.; Bulut, O.; İncesu, T.K.; Tokuçoğlu, F.; Ertekin, C. Reassessment of Lhermitte’s sign in multiple sclerosis. Acta Neurol. Belg. 2015, 115, 605–608. [Google Scholar] [CrossRef]
- Kurtzke, J.F. On the origin of EDSS. Mult. Scler. Relat. Disord. 2015, 4, 95–103. [Google Scholar]
- Garg, N.; Smith, T.W. An update on immunopathogenesis, diagnosis, and treatment of multiple sclerosis. Brain Behav. 2015, 5, e00362. [Google Scholar]
- Krajnc, N.; Bsteh, G.; Berger, T.; Mares, J.; Hartung, H.P. Monoclonal antibodies in the treatment of relapsing multiple sclerosis: An Overview with emphasis on pregnancy, vaccination, and risk management. Neurotherapeutics 2022, 19, 753–773. [Google Scholar]
- Tariq, K.; Luikart, B.W. Striking a balance: PIP2 and PIP3 signaling in neuronal health and disease. Explor. Neuroprot. Ther. 2021, 1, 86–100. [Google Scholar] [CrossRef]
- Milewska-Jędrzejczak, M.; Detmer, A.; Damiza, I.; Glabinski, A. Biomarkers of brain plasticity in multiple sclerosis. Aktual. Neurol. 2019, 19, 13–18. (In Polish) [Google Scholar]
- Nociti, V.; Romozzi, M. The role of BDNF in multiple sclerosis neuroinflammation. Int. J. Mol. Sci. 2023, 24, 8447. [Google Scholar] [CrossRef]
- Karimi, N.; Ashourizadeh, H.; Akbarzadeh Pasha, B.; Haghshomar, M.; Jouzdani, T.; Shobeiri, P.; Teixeira, A.L.; Rezaei, N. Blood levels of brain-derived neurotrophic factor (BDNF) in people with multiple sclerosis (MS): A systematic review and meta-analysis. Mult. Scler. Relat. Disord. 2022, 65, 103984. [Google Scholar]
- Grunwald, C.; Krętowska-Grunwald, A.; Adamska-Patruno, E.; Kochanowicz, J.; Kułakowska, A.; Chorąży, M. The role of selected interleukins in the development and progression of multiple sclerosis-A systematic review. Int. J. Mol. Sci. 2024, 25, 2589. [Google Scholar] [CrossRef] [PubMed]
- Yap, N.Y.; Toh, Y.L.; Tan, C.J.; Acharya, M.M.; Chan, A. Relationship between cytokines and brain-derived neurotrophic factor (BDNF) in trajectories of cancer-related cognitive impairment. Cytokine 2021, 144, 155556. [Google Scholar] [PubMed]
- Lin, S.; Zhou, Z.; Zhao, H.; Xu, C.; Guo, Y.; Gao, S.; Mei, X.; Tian, H. TNF promotes M1 polarization through mitochondrial metabolism in injured spinal cord. Free Radic. Biol. Med. 2021, 172, 622–632. [Google Scholar] [CrossRef]
- Porro, C.; Cianciulli, A.; Panaro, M.A. The regulatory role of IL-10 in neurodegenerative diseases. Biomolecules 2020, 10, 1017. [Google Scholar] [CrossRef] [PubMed]
- Wan, M.; Ding, L.; Wang, D.; Han, J.; Gao, P. Serotonin: A potent immune cell modulator in autoimmune diseases. Front. Immunol. 2020, 11, 186. [Google Scholar]
- San Hernandez, A.M.; Singh, C.; Valero, D.J.; Nisar, J.; Trujillo Ramirez, J.I.; Kothari, K.K.; Isola, S.; Gordon, D.K. Multiple sclerosis and serotonin: Potential therapeutic applications. Cureus 2020, 12, e11293. [Google Scholar]
- Ghasemi, N.; Razavi, S.; Nikzad, E. Multiple Sclerosis: Pathogenesis, Symptoms, Diagnoses and Cell-Based Therapy. Cell J. 2017, 19, 1–10. [Google Scholar]
- Mosca, L.; Mantero, V.; Penco, S.; La Mantia, L.; De Benedetti, S.; Marazzi, M.R.; Spreafico, C.; Erminio, C.; Grassi, L.; Lando, G.; et al. HLA-DRB1*15 association with multiple sclerosis is confirmed in a multigenerational Italian family. Funct. Neurol. 2017, 32, 83–88. [Google Scholar] [CrossRef]
- Scholz, E.M.; Marcilla, M.; Daura, X.; Arribas-Layton, D.; James, E.A.; Alvarez, I. Human Leukocyte Antigen (HLA)-DRB1*15:01 and HLA-DRB5*01:01 Present Complementary Peptide Repertoires. Front. Immunol. 2017, 8, 984. [Google Scholar]
- Hollenbach, J.A.; Oksenberg, J.R. The immunogenetics of multiple sclerosis: A comprehensive review. J. Autoimmun. 2015, 64, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Mazzucchelli, R.I.; Riva, A.; Durum, S.K. The human IL-7 receptor gene: Deletions, polymorphisms and mutations. Semin. Immunol. 2012, 24, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Tizaoui, K. Multiple sclerosis genetics: Results from meta-analyses of candidate-gene association studies. Cytokine 2018, 106, 154–164. [Google Scholar] [CrossRef]
- Couturier, N.; Bucciarelli, F.; Nurtdinov, R.N.; Debouverie, M.; Lebrun-Frenay, C.; Defer, G.; Moreau, T.; Confavreux, C.; Vukusic, S.; Cournu-Rebeix, I.; et al. Tyrosine kinase 2 variant influences T lymphocyte polarization and multiple sclerosis susceptibility. Brain 2011, 134, 693–703. [Google Scholar] [CrossRef]
- Shahijanian, F.; Parnell, G.P.; Mckay, F.C.; Gatt, P.N.; Shojoei, M.; O’Connor, K.S.; Schibeci, S.D.; Brilot, F.; Liddle, C.; Batten, M.; et al. The CYP27B1 variant associated with an increased risk of autoimmune disease is underexpressed in tolerizing dendritic cells. Hum. Mol. Genet. 2014, 23, 1425–1434. [Google Scholar] [CrossRef]
- Cayrol, R.; Wosik, K.; Berard, J.L.; Dodelet-Devillers, A.; Ifergan, I.; Kebir, H.; Haqqani, A.S.; Kreymborg, K.; Krug, S.; Moumdjian, R.; et al. Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nat. Immunol. 2008, 9, 137–145. [Google Scholar] [CrossRef]
- Muchowski, P.J.; Wacker, J.L. Modulation of neurodegeneration by molecular chaperones. Nat. Rev. Neurosci. 2005, 6, 11–22. [Google Scholar] [CrossRef]
- Cohen-Cory, S.; Kidane, A.H.; Shirkey, N.J.; Marshak, S. Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev. Neurobiol. 2010, 70, 271–288. [Google Scholar] [CrossRef] [PubMed]
- Zorumski, C.F.; Izumi, Y. NMDA receptors and metaplasticity: Mechanisms and possible roles in neuropsychiatric disorders. Neurosci. Biobehav. Rev. 2012, 36, 989–1000. [Google Scholar] [CrossRef]
- Chater, T.E.; Goda, Y. The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity. Front. Cell. Neurosci. 2014, 8, 401. [Google Scholar] [CrossRef]
- Paulsen, O.; Sejnowski, T.J. Natural patterns of activity and long-term synaptic plasticity. Curr. Opin. Neurobiol. 2000, 10, 172–179. [Google Scholar]
- Ota, Y.; Zanetti, A.T.; Hallock, R.M. The role of astrocytes in the regulation of synaptic plasticity and memory formation. Neural Plast. 2013, 185463. [Google Scholar]
- Egan, M.F.; Kojima, M.; Callicott, J.H.; Goldberg, T.E.; Kolachana, B.S.; Bertolino, A.; Zaitsev, E.; Gold, B.; Goldman, D.; Dean, M.; et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 2003, 112, 257–269. [Google Scholar] [PubMed]
- Wang, W.Y.; Tan, M.S.; Yu, J.T.; Tan, L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann. Transl. Med. 2015, 3, 136. [Google Scholar] [PubMed]
- Dalgas, U.; Langeskov-Christensen, M.; Stenager, E.; Riemenschneider, M.; Hvid, L.G. Exercise as medicine in multiple sclerosis-time for a paradigm shift: Preventive, symptomatic, and disease-modifying aspects and perspectives. Curr. Neurol. Neurosci. Rep. 2019, 19, 88. [Google Scholar] [PubMed]
- Klaren, R.E.; Hubbard, E.A.; Motl, R.W.; Pilutti, L.A.; Wetter, N.C.; Sutton, B.P. Objectively measured physical activity is associated with brain volumetric measurements in multiple sclerosis. Behav. Neurol. 2015, 2015, 482536. [Google Scholar] [CrossRef]
- Pearson, M.; Dieberg, G.; Smart, N. Exercise as a therapy for improvement of walking ability in adults with multiple sclerosis: A meta-analysis. Arch. Phys. Med. Rehabil. 2015, 96, 1339–1348.e7. [Google Scholar] [CrossRef]
- Paltamaa, J.; Sjögren, T.; Peurala, S.H.; Heinonen, A. Effects of physiotherapy interventions on balance in multiple sclerosis: A systematic review and meta-analysis of randomized controlled trials. J. Rehabil. Med. 2012, 44, 811–823. [Google Scholar]
- Klaren, R.E.; Motl, R.W.; Dlugonski, D.; Sandroff, B.M.; Pilutti, L.A. Objectively quantified physical activity in persons with multiple sclerosis. Arch. Phys. Med. Rehabil. 2013, 94, 2342–2348. [Google Scholar]
- Sandroff, B.M.; Johnson, C.L.; Motl, R.W. Exercise training effects on memory and hippocampal viscoelasticity in multiple sclerosis: A novel application of magnetic resonance elastography. Neuroradiology 2017, 59, 61–67. [Google Scholar]
- Shobeiri, P.; Seyedmirzaei, H.; Karimi, N.; Rashidi, F.; Teixeira, A.L.; Brand, S.; Sadeghi-Bahmani, D.; Rezaei, N. IL-6 and TNF-α responses to acute and regular exercise in adult individuals with multiple sclerosis (MS): A systematic review and meta-analysis. Eur. J. Med. Res. 2022, 27, 185. [Google Scholar] [PubMed]
- Patanella, A.K.; Zinno, M.; Quaranta, D.; Nociti, V.; Frisullo, G.; Gainotti, G.; Tonali, P.A.; Batocchi, A.P.; Marra, C. Correlations between peripheral blood mononuclear cell production of BDNF, TNF-alpha, IL-6, IL-10 and cognitive performances in multiple sclerosis patients. J. Neurosci. Res. 2010, 88, 1106–1112. [Google Scholar]
- Amin, N.S.; El Tayebi, H.M. More gain, less pain: How resistance training affects immune system functioning in multiple sclerosis patients: A review. Mult. Scler. Relat. Disord. 2023, 69, 104401. [Google Scholar]
- Pilutti, L.A.; Platta, M.E.; Motl, R.W.; Latimer-Cheung, A.E. The safety of exercise training in multiple sclerosis: A systematic review. J. Neurol. Sci. 2014, 343, 3–7. [Google Scholar]
- Motl, R.W.; Barstow, E.A.; Blaylock, S.; Richardson, E.; Learmonth, Y.C.; Fifolt, M. Promotion of exercise in multiple sclerosis through health care providers. Exerc. Sport Sci. Rev. 2018, 46, 105–111. [Google Scholar] [PubMed]
- Sladeckova, M.; Kocica, J.; Vlckova, E.; Dosbaba, F.; Pepera, G.; Su, J.J.; Batalik, L. Exercise-based telerehabilitation for patients with multiple sclerosis using physical activity: A systematic review. J. Rehabil. Med. 2024, 56, jrm40641. [Google Scholar] [PubMed]
- Kalb, R.; Brown, T.R.; Coote, S.; Costello, K.; Dalgas, U.; Garmon, E.; Giesser, B.; Halper, J.; Karpatkin, H.; Keller, J.; et al. Exercise and lifestyle physical activity recommendations for people with multiple sclerosis throughout the disease course. Mult. Scler. 2020, 26, 1459–1469. [Google Scholar]
- Kinnett-Hopkins, D.; Adamson, B.; Rougeau, K.; Motl, R.W. People with MS are less physically active than healthy controls but as active as those with other chronic diseases: An updated meta-analysis. Mult. Scler. Relat. Disord. 2017, 13, 38–43. [Google Scholar]
- Antoniou, V.; Davos, C.H.; Kapreli, E.; Batalik, L.; Panagiotakos, D.B.; Pepera, G. Effectiveness of home-based cardiac rehabilitation, using wearable sensors, as a multicomponent, cutting-edge intervention: A systematic review and meta-analysis. J. Clin. Med. 2022, 11, 3772. [Google Scholar] [CrossRef]
- Laver, K.E.; Adey-Wakeling, Z.; Crotty, M.; Lannin, N.A.; George, S.; Sherrington, C. Telerehabilitation services for stroke. Cochrane Database Syst. Rev. 2020, 1, CD010255. [Google Scholar]
- Thomas, R.J.; Beatty, A.L.; Beckie, T.M.; Brewer, L.C.; Brown, T.M.; Forman, D.E.; Franklin, B.A.; Keteyian, S.J.; Kitzman, D.W.; Regensteiner, J.G.; et al. Home-based cardiac rehabilitation: A Scientific Statement from the American Association of Cardiovascular and Pulmonary Rehabilitation, the American Heart Association, and the American College of Cardiology. J. Cardiopulm. Rehabil. Prev. 2019, 39, 208–225. [Google Scholar] [CrossRef] [PubMed]
- Piotrowicz, E.; Pencina, M.J.; Opolski, G.; Zareba, W.; Banach, M.; Kowalik, I.; Orzechowski, P.; Szalewska, D.; Pluta, S.; Glówczynska, R.; et al. Effects of a 9-Week hybrid comprehensive telerehabilitation program on long-term outcomes in patients with heart failure: The telerehabilitation in heart failure patients (TELEREH-HF) randomized clinical trial. JAMA Cardiol. 2020, 5, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Yeroushalmi, S.; Maloni, H.; Costello, K.; Wallin, M.T. Telemedicine and multiple sclerosis: A comprehensive literature review. J. Telemed. Telecare. 2020, 26, 400–413. [Google Scholar] [CrossRef]
- Batalik, L.; Filakova, K.; Sladeckova, M.; Dosbaba, F.; Su, J.; Pepera, G. The cost-effectiveness of exercise-based cardiac telerehabilitation intervention: A systematic review. Eur. J. Phys. Rehabil. Med. 2023, 59, 248–258. [Google Scholar] [CrossRef]
- Petajan, J.H.; Gappmaier, E.; White, A.T.; Spencer, M.K.; Mino, L.; Hicks, R.W. Impact of aerobic training on fitness and quality of life in multiple sclerosis. Ann. Neurol. 1996, 39, 432–441. [Google Scholar] [CrossRef]
- Petajan, J.H.; White, A.T. Recommendations for physical activity in patients with multiple sclerosis. Sports Med. 1999, 27, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Motl, R.W.; Goldman, M.D.; Benedict, R.H. Walking impairment in patients with multiple sclerosis: Exercise training as a treatment option. Neuropsychiatr. Dis. Treat. 2010, 6, 767–774. [Google Scholar] [CrossRef]
- Kraus, W.E.; Powell, K.E.; Haskell, W.L.; Janz, K.F.; Campbell, W.W.; Jakicic, J.M.; Troiano, R.P.; Sprow, K.; Torres, A.; Piercy, K.L.; et al. Physical activity, all-cause and cardiovascular mortality, and cardiovascular disease. Med. Sci. Sports Exerc. 2019, 51, 1270–1281. [Google Scholar] [CrossRef]
- Jakicic, J.M.; Kraus, W.E.; Powell, K.E.; Campbell, W.W.; Janz, K.F.; Troiano, R.P.; Sprow, K.; Torres, A.; Piercy, K.L.; 2018 Physical Activity Guidelines Advisory Committee. Association between bout duration of physical activity and health: Systematic review. Med. Sci. Sports Exerc. 2019, 51, 1213–1219. [Google Scholar] [CrossRef]
- Rehabilitation. Available online: https://www.nationalmssociety.org/For-Professionals/Clinical-Care/Managing-MS/Rehabilitation (accessed on 19 January 2020).
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Du, L.; Xi, H.; Zhang, S.; Zhou, Y.; Tao, X.; Lv, Y.; Hou, X.; Yu, L. Effects of exercise in people with multiple sclerosis: A systematic review and meta-analysis. Front. Public Health 2024, 12, 1387658. [Google Scholar] [CrossRef]
- Feys, P.; Moumdjian, L.; Van Halewyck, F.; Wens, I.; Eijnde, B.O.; Van Wijmeersch, B.; Popescu, V.; Van Asch, P. Effects of an individual 12-week community-located “start-to-run” program on physical capacity, walking, fatigue, cognitive function, brain volumes, and structures in persons with multiple sclerosis. Mult. Scler. 2019, 25, 92–103. [Google Scholar] [PubMed]
- Andreu-Caravaca, L.; Ramos-Campo, D.J.; Chung, L.H.; Manonelles, P.; Abellán-Aynés, O.; Rubio-Arias, J.Á. Effects of fast-velocity concentric resistance training in people with multiple sclerosis: A randomized controlled trial. Acta Neurol. Scand. 2022, 146, 652–661. [Google Scholar]
- Latimer-Cheung, A.E.; Pilutti, L.A.; Hicks, A.L.; Martin Ginis, K.A.; Fenuta, A.M.; MacKibbon, K.A.; Motl, R.W. Effects of exercise training on fitness, mobility, fatigue, and health-related quality of life among adults with multiple sclerosis: A systematic review to inform guideline development. Arch. Phys. Med. Rehabil. 2013, 94, 1800–1828.e3. [Google Scholar]
- Andreu-Caravaca, L.; Ramos-Campo, D.J.; Chung, L.H.; Manonelles, P.; Boas, J.P.V.; Rubio-Arias, J.Á. Fast-velocity resistance training improves force development and mobility in multiple sclerosis. Int. J. Sports Med. 2022, 43, 593–599. [Google Scholar]
- Collett, J.; Dawes, H.; Meaney, A.; Sackley, C.; Barker, K.; Wade, D.; Izardi, H.; Bateman, J.; Duda, J.; Buckingham, E. Exercise for multiple sclerosis: A single-blind randomized trial comparing three exercise intensities. Mult. Scler. 2011, 17, 594–603. [Google Scholar] [PubMed]
- Campbell, E.; Coulter, E.H.; Paul, L. High intensity interval training for people with multiple sclerosis: A systematic review. Mult. Scler. Relat. Disord. 2018, 24, 55–63. [Google Scholar] [PubMed]
- McGrath, R.P.; Kraemer, W.J.; Snih, S.A.; Peterson, M.D. Handgrip strength and health in aging adults. Sports Med. 2018, 48, 1993–2000. [Google Scholar]
- Gervasoni, E.; Cattaneo, D.; Jonsdottir, J. Effect of treadmill training on fatigue in multiple sclerosis: A pilot study. Int. J. Rehabil. Res. 2014, 37, 54–60. [Google Scholar]
- Riemenschneider, M.; Hvid, L.G.; Petersen, T.; Stenager, E.; Dalgas, U. Exercise therapy in early multiple sclerosis improves physical function but not cognition: Secondary analyses from a randomized controlled trial. Neurorehabil. Neural. Repair. 2023, 37, 288–297. [Google Scholar]
- Fakolade, A.; Cameron, J.; McKenna, O.; Finlayson, M.L.; Freedman, M.S.; Latimer-Cheung, A.E.; Pilutti, L.A. Physical activity together for people with multiple sclerosis and their care partners: Protocol for a feasibility randomized controlled trial of a dyadic intervention. JMIR Res. Protoc. 2021, 10, e18410. [Google Scholar]
- Kim, Y.; Lai, B.; Mehta, T.; Thirumalai, M.; Padalabalanarayanan, S.; Rimmer, J.H.; Motl, R.W. Exercise training guidelines for multiple sclerosis, stroke, and Parkinson disease: Rapid review and synthesis. Am. J. Phys. Med. Rehabil. 2019, 98, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Goldman, M.D.; Marrie, R.A.; Cohen, J.A. Evaluation of the six-minute walk in multiple sclerosis subjects and healthy controls. Mult. Scler. 2008, 14, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, E.A.; Motl, R.W.; Fernhall, B.O. Acute high-intensity interval exercise in multiple sclerosis with mobility disability. Med. Sci. Sports Exerc. 2019, 51, 858–867. [Google Scholar] [CrossRef] [PubMed]
- Pau, M.; Corona, F.; Coghe, G.; Marongiu, E.; Loi, A.; Crisafulli, A.; Concu, A.; Galli, M.; Marrosu, M.G.; Cocco, E. Quantitative assessment of the effects of 6 months of adapted physical activity on gait in people with multiple sclerosis: A randomized controlled trial. Disabil. Rehabil. 2018, 40, 144–151. [Google Scholar] [CrossRef]
- Cakt, B.D.; Nacir, B.; Genç, H.; Saraçoğlu, M.; Karagöz, A.; Erdem, H.R.; Ergün, U. Cycling progressive resistance training for people with multiple sclerosis: A randomized controlled study. Am. J. Phys. Med. Rehabil. 2010, 89, 446–457. [Google Scholar] [CrossRef]
- Johansson, L.; Litsne, H.; Axelsson, K.F.; Lorentzon, M. High physical activity is associated with greater cortical bone size, better physical function, and with lower risk of incident fractures independently of clinical risk factors in older women from the SUPERB study. J. Bone Miner. Res. 2024, 39, 1284–1295. [Google Scholar] [CrossRef]
- Broekmans, T.; Roelants, M.; Feys, P.; Alders, G.; Gijbels, D.; Hanssen, I.; Stinissen, P.; Eijnde, B.O. Effects of long-term resistance training and simultaneous electro-stimulation on muscle strength and functional mobility in multiple sclerosis. Mult. Scler. 2011, 17, 468–477. [Google Scholar] [CrossRef]
- Freeman, J.; Hendrie, W.; Jarrett, L.; Hawton, A.; Barton, A.; Dennett, R.; Jones, B.; Zajicek, J.; Creanor, S. Assessment of a home-based standing frame programme in people with progressive multiple sclerosis (SUMS): A pragmatic, multi-centre, randomised, controlled trial and cost-effectiveness analysis. Lancet Neurol. 2019, 18, 736–747. [Google Scholar] [CrossRef]
- Motl, R.W.; Suh, Y.; Dlugonski, D.; Weikert, M.; Agiovlasitis, S.; Fernhall, B.; Goldman, M. Oxygen cost of treadmill and over-ground walking in mildly disabled persons with multiple sclerosis. Neurol. Sci. 2011, 32, 255–262. [Google Scholar] [CrossRef]
- Bennett, S.E.; Bromley, L.E.; Fisher, N.M.; Tomita, M.R.; Niewczyk, P. Validity and reliability of four clinical gait measures in patients with multiple sclerosis. Int. J. MS Care 2017, 19, 247–252. [Google Scholar] [CrossRef]
- Ponichtera, J.A.; Rodgers, M.M.; Glaser, R.M.; Mathews, T.A.; Camaione, D.N. Concentric and eccentric isokinetic lower extremity strength in persons with multiple sclerosis. J. Orthop. Sports Phys. Ther. 1992, 16, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Chai, S.; Zhao, D.; Gao, T.; Wang, X.; Wang, X.; Luo, J.; Li, J.; Zhou, C. The relationship between handgrip strength and cognitive function among older adults in China: Functional limitation plays a mediating role. J. Affect Disord. 2024, 347, 144–149. [Google Scholar] [PubMed]
- Newsome, S.D.; von Geldern, G.; Shou, H.; Baynes, M.; Marasigan, R.E.R.; Calabresi, P.A.; Zackowski, K.M. Longitudinal assessment of hand function in individuals with multiple sclerosis. Mult. Scler. Relat. Disord. 2019, 32, 107–113. [Google Scholar]
- European Multiple Sclerosis Platform, 04. 2012. [Online]. Available online: https://www.emsp.org/wp-content/uploads/2015/11/12-0431_Henze-30-04-12.pdf (accessed on 1 January 2025).
- Kalron, A.; Menascu, S.; Frid, L.; Aloni, R.; Achiron, A. Physical activity in mild multiple sclerosis: Contribution of perceived fatigue, energy cost, and speed of walking. Disabil. Rehabil. 2020, 42, 1240–1246. [Google Scholar]
- McIsaac, T.L. Multiple Sclerosis. In Physical Rehabilitation, 7th ed.; Davis Company: Philadelphia, PA, USA, 2019; pp. 662–711. [Google Scholar]
- Walczak, A.; Arkuszewski, M.; Adamczyk-Sowa, M. Rozszerzona Skala Niepełnosprawności (EDSS, Expanded Disability Status Scale)—Według J. Kurtzkego. Pol. Przegl. Neurol. 2017, 13, 32–35. (In Polish) [Google Scholar]
- Briken, S.; Rosenkranz, S.C.; Keminer, O.; Patra, S.; Ketels, G.; Heesen, C.; Hellweg, R.; Pless, O.; Schulz, K.H.; Gold, S.M. Effects of exercise on Irisin, BDNF and IL-6 serum levels in patients with progressive multiple sclerosis. J. Neuroimmunol. 2016, 299, 53–58. [Google Scholar] [CrossRef]
- Kerling, A.; Keweloh, K.; Tegtbur, U.; Kück, M.; Grams, L.; Horstmann, H.; Windhagen, A. Effects of a Short Physical Exercise Intervention on Patients with Multiple Sclerosis (MS). Int. J. Mol. Sci. 2015, 16, 15761–15775. [Google Scholar] [CrossRef]
- Schulz, K.H.; Gold, S.M.; Witte, J.; Bartsch, K.; Lang, U.E.; Hellweg, R.; Reer, R.; Braumann, K.M.; Heesen, C. Impact of aerobic training on immune-endocrine parameters, neurotrophic factors, quality of life and coordinative function in multiple sclerosis. J. Neurol. Sci. 2004, 225, 11–18. [Google Scholar]
- Kotlęga, D.; Peda, B.; Zembroń-Łacny, A.; Gołąb-Janowska, M.; Nowacki, P. The role of brain-derived neurotrophic factor and its single nucleotide polymorphisms in stroke patients. Neurol. Neurochir. Pol. 2017, 51, 240–246. [Google Scholar]
- Negaresh, R.; Motl, R.W.; Zimmer, P.; Mokhtarzade, M.; Baker, J.S. Effects of exercise training on multiple sclerosis biomarkers of central nervous system and disease status: A systematic review of intervention studies. Eur. J. Neurol. 2019, 26, 711–721. [Google Scholar]
- Cabrera-Gomez, J.A. Rehabilitation in Multiple Sclerosis. In Multiple Sclerosis for the Practicing Neurologist; Demos Medical Publishing: New York, NY, USA, 2007; pp. 75–83. [Google Scholar]
- Adamczyk-Sowa, M.; Kalinowska, A.; Siger, M.; Kułakowska, A.; Rejdak, K.; Potemkowski, A.; Losy, J.; Mirowska-Guzel, D.; Zakrzewska-Pniewska, B.; Stępień, A.; et al. Diagnostyka stwardnienia rozsianego. Rekomendacje Sekcji Stwardnienia Rozsianego i Neuroimmunologii Polskiego Towarzystwa Neurologicznego. Pol. Przegl. Neurol. 2021, 17, 149–164. (In Polish) [Google Scholar]
- Bartosik-Psujek, H. Stwardnienie rozsiane. Neurologia, II Red; Medical Tribune Polska: Warszawa, Poland, 2019; pp. 83–110. (In Polish) [Google Scholar]
- Lublin, F.D.; Reingold, S.C.; Cohen, J.A.; Cutter, G.R.; Sørensen, P.S.; Thompson, A.J.; Wolinsky, J.S.; Balcer, L.J.; Banwell, B.; Barkhof, F.; et al. Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology 2014, 83, 278–286. [Google Scholar] [PubMed]
- Oh, J.; Vidal-Jordana, A.; Montalban, X. Multiple sclerosis: Clinical aspects. Curr. Opin. Neurol. 2018, 31, 752–759. [Google Scholar] [PubMed]
- Travers, B.S.; Tsang, B.K.; Barton, J.L. Multiple sclerosis: Diagnosis, disease-modifying therapy and prognosis. Aust. J. Gen Pract. 2022, 51, 199–206. [Google Scholar]
- Bonek, R.; Betscher, E.; Krzystanek, E.; Mycko, M.; Rejdak, K. Stwardnienie Rozsiane od Chemokin do Przeciwciał Monoklonalnych; PZWL: Warszawa, Poland, 2020; pp. 345–346. (In Polish) [Google Scholar]
- Gómez, C.A.; Kleinman, D.V.; Pronk, N.; Wrenn Gordon, G.L.; Ochiai, E.; Blakey, C.; Johnson, A.; Brewer, K.H. Addressing Health Equity and Social Determinants of Health Through Healthy People 2030. J. Public Health Manag. Pract. 2021, 27 (Suppl. S6), S249–S257. [Google Scholar]
- Amezcua, L.; Rivera, V.M.; Vazquez, T.C.; Baezconde-Garbanati, L.; Langer-Gould, A. Health Disparities, Inequities, and Social Determinants of Health in Multiple Sclerosis and related disorders in the US: A Review. JAMA Neurol. 2021, 78, 1515–1524. [Google Scholar]
EDSS | Aerobic Exercise | |||
0–4.5 | Frequency and duration | Intensity | Type of activity | Evaluation of effects |
2–3 times/week 10–30 min | From 40 to 60% (VO2 peak) or (HRpeak), Max 11–13 RPE [56,67,75,82,83] | Arm cycling, leg cycling, treadmill or overground walking, rowing, running, aquatic activities | 6MWT, TUG (static and dynamic balance) [56,67,73,75,77,84] | |
Advanced, aerobic exercise prescription | ||||
Frequency and duration | Intensity | Type of activity | Evaluation of effects | |
5 times/week up to 40 min., extend the time gradually, 1 time/week | 70% VO2 peak, or 80% HRpeak [45,76] can approach a 15 on the 20 RPE scale, increase the intensity gradually five 30–90 s intervals at 90–100% maximum HR effort (e.g., 80–95% maximal HR) recovery (e.g., 40–50% maximal HR), RPE, 14 [85] | The same as the general guidelines but may be extended to running, road cycling, and Nordic walking, HIIT, cycle ergometer | 6MWT, TUG (static and dynamic balance), [56,67,73,75,77,84] RPE, assessed every minute after warm-up until completion during CPET and all HIIT, VO2 peak | |
Resistance training | ||||
Frequency and duration | Intensity | Type of activity | Evaluation of effects | |
2–3 times/week, 2–4 sets for each exercise, 8–15 repetitions/set, rest for 1–2 min between each set and exercise, from 4 to 16 weeks | Intensity from 40% to 80% 1-RM [76,79] | FVCRT, fast-velocity concentric resistance training, free weights, elastic resistance bands, or bodyweight exercises [74,75] | Lower limb—the maximum isometric voluntary contraction (MVIC) during knee extension; upper limb, hand grip strength, isometric handgrip strength measure for d 5; gait speed, 10 MTW, 10 m walk test; walking Endurance, 6-MWT; Fatigue (FSS) [75,77] | |
Flexibility | ||||
daily, 2–3 sets of each stretch, hold 30–60 s/stretch; exercises 10 min warm-up 20 min 10 min cool-down [56,86] | 30–50% of maximum CPT cardiopulmonary test 15–30 1RM, 12 repetitions at a load equivalent to 30% of 1-RM, rest 2–3 min between sets [45,76] | Aerobic-gait training which included forward, sideways, and backward walking, integrated with 90 and 180 turning and tandem gaitstrength training, stretching exercises for upper and lower limbs and trunk muscles relaxation, postural control, and spine mobility exercises followed by post-stretching, including yoga [56,86] | GPS, GVS, ROM, hip, knee, and ankle joints [56,86] | |
Balance training | ||||
Frequency and duration | Intensity | Type of activity | Evaluation of effects | |
8 week period plus [48,86] | 2 min of high resistance pedaling, 40% of the tolerated maximum workload, 15 sets ofrepetitions each session, 30–35 min training (warmup walking, balance exercises and stretching) [48,86] | ACSM-based resistance training periods in combination with simultaneous electrostimulation [86,87], cycling, progressive resistance training, home-based exercise program to improve lower limb muscle strength and balance [48,86] | Timed get up and go, timed 25 foot walk, two-minute walk test, functional reach and Rivermead Mobility Index, FES, DGI [86,87] TUG, FR (cm), DGI (0–24), FES [81,83] | |
5–6.5 | Same as above.
| |||
7–7.5 | Frequency and duration | Intensity | Type of activity | Evaluation of effects |
Up to 20 min/day, 3–7 days/week Every second day, 1 time/day 3 times/week, 3 sets, 10 repetitions/set or 10 sets, 3 repetitions/set 3–5 times/week 30 min 3 times/week, 30 min, 2–5 times/week, 30–60 min 2 times/day, 4–5 3–5 min/day [1,42] Every 1–2 h | 3 sets, 10 repetitions ≥30–60 s, Six 3-min intervals at 70% target HR | Breathing exercises with resistance training equipment, flexibility, hold/stretch, upper extremities, lower extremities, power assist cycling standing [53], walking on the treadmill, core, repetitions of seated isometric abdominal muscle per 10–15 s, moving or stationary seated balance posture exercises, hold for 10–15 s | AMCA, Amended Motor Club Assessment) [56,89] |
Factors Favoring a Better Prognosis | Factors Indicating a Worse Prognosis |
---|---|
Caucasian Race | Non-Caucasian Race |
Female | Male |
Younger Age at Onset | Older Age at Onset |
Monofocal Onset (single symptom onset) | Multifocal Onset (multiple symptom onset) |
First Symptom: Optic Neuritis or Isolated Sensory Disturbances | First Symptoms: Motor, Cerebellar, or Sphincter Disturbances |
Long Remission After First Relapse | Short Remissions Between Relapses |
Minimal Cortical Plaque Involvement | Early Cortical Plaque Involvement |
Low Relapse Frequency in the First 2–5 Years | High Relapse Frequency in the First 2–5 Years |
Mild Relapse | Severe Relapse |
No or Minimal Disability After 5 Years | Disability After 2 or 5 Years |
Low Number of Demyelination Lesions on MRI | High Number of Demyelination Lesions on MRI |
Early Treatment Initiation | Delayed Treatment Initiation |
Absence of Oligoclonal Bands of IgG and IgM | Presence of Oligoclonal Bands of IgG and IgM |
Higher Income and Education, Higher Health Literacy, and Positive Disease Perception | Lower Income and Education, Lower Health Literacy, and Negative Disease Perception |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiszniewska, K.; Wilk, M.; Wiszniewska, M.; Poszwa, J.; Szymanowicz, O.; Kozubski, W.; Dorszewska, J. Kinesiotherapeutic Possibilities and Molecular Parameters in Multiple Sclerosis. Sclerosis 2025, 3, 13. https://doi.org/10.3390/sclerosis3020013
Wiszniewska K, Wilk M, Wiszniewska M, Poszwa J, Szymanowicz O, Kozubski W, Dorszewska J. Kinesiotherapeutic Possibilities and Molecular Parameters in Multiple Sclerosis. Sclerosis. 2025; 3(2):13. https://doi.org/10.3390/sclerosis3020013
Chicago/Turabian StyleWiszniewska, Katarzyna, Małgorzata Wilk, Małgorzata Wiszniewska, Joanna Poszwa, Oliwia Szymanowicz, Wojciech Kozubski, and Jolanta Dorszewska. 2025. "Kinesiotherapeutic Possibilities and Molecular Parameters in Multiple Sclerosis" Sclerosis 3, no. 2: 13. https://doi.org/10.3390/sclerosis3020013
APA StyleWiszniewska, K., Wilk, M., Wiszniewska, M., Poszwa, J., Szymanowicz, O., Kozubski, W., & Dorszewska, J. (2025). Kinesiotherapeutic Possibilities and Molecular Parameters in Multiple Sclerosis. Sclerosis, 3(2), 13. https://doi.org/10.3390/sclerosis3020013