Biomarkers in Systemic Sclerosis
Abstract
:1. Introduction
2. Biomarkers in Systemic Sclerosis
2.1. IL-6
2.2. MCP-1
2.3. KL-6
2.4. TGF-β
2.5. Serum Amyloid A
2.6. Soluble CD146
2.7. CXCL4
2.8. sST2
2.9. Endotelin-1
3. Other Biomarkers in Systemic Sclerosis
3.1. Extracellular Matrix Biomarkers in Systemic Sclerosis
3.2. Gene Activity Modifiers in Systemic Sclerosis
3.3. Cytokines and Chemokines in Systemic Sclerosis
3.4. Vascular Modulators in Systemic Sclerosis
3.5. Oxidative Stress in Systemic Sclerosis
3.6. Hormones in Systemic Sclerosis
3.7. Other Modulators in Systemic Sclerosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cardoneanu, A.; Burlui, A.M.; Macovei, L.A.; Bratoiu, I.; Richter, P.; Rezus, E. Targeting Systemic Sclerosis from Pathogenic Mechanisms to Clinical Manifestations: Why IL-6? Biomedicines 2022, 10, 318. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, J.; Yin, Y.; Li, K.; Zhang, C.; Zheng, Y. The Role of IL-6 in Fibrotic Diseases: Molecular and Cellular Mechanisms. Int. J. Biol. Sci. 2022, 18, 5405–5414. [Google Scholar] [PubMed]
- Muangchan, C.; Pope, J. Interleukin 6 in Systemic Sclerosis and Potential Implications for Targeted Therapy. J. Rheumatol. 2012, 39, 1120–1124. [Google Scholar] [PubMed]
- Grunwald, C.; Krętowska-Grunwald, A.; Adamska-Patruno, E.; Kochanowicz, J.; Kułakowska, A.; Chorąży, M. The Role of Selected Interleukins in the Development and Progression of Multiple Sclerosis—A Systematic Review. Int. J. Mol. Sci. 2024, 25, 2589. [Google Scholar] [CrossRef] [PubMed]
- Kitaba, S.; Murota, H.; Terao, M.; Azukizawa, H.; Terabe, F.; Shima, Y.; Fujimoto, M.; Tanaka, T.; Naka, T.; Kishimoto, T.; et al. Blockade of Interleukin-6 Receptor Alleviates Disease in Mouse Model of Scleroderma. Am. J. Pathol. 2012, 180, 165–176. [Google Scholar]
- Shima, Y.; Kuwahara, Y.; Murota, H.; Kitaba, S.; Kawai, M.; Hirano, T.; Arimitsu, J.; Narazaki, M.; Hagihara, K.; Ogata, A.; et al. The Skin of Patients with Systemic Sclerosis Softened During the Treatment with Anti-Il-6 Receptor Antibody Tocilizumab. Rheumatology 2010, 49, 2408–2412. [Google Scholar]
- Ventéjou, S.; Schwieger-Briel, A.; Nicolai, R.; Christen-Zaech, S.; Schnider, C.; Hofer, M.; Bogiatzi, S.; Hohl, D.; De Benedetti, F.; Morren, M.-A. Case Report: Pansclerotic Morphea-Clinical Features, Differential Diagnoses and Modern Treatment Concepts. Front. Immunol. 2021, 12, 656407. [Google Scholar]
- Denton, C.P.; Ong, V.H.; Xu, S.; Chen-Harris, H.; Modrusan, Z.; Lafyatis, R.; Khanna, D.; Jahreis, A.; Siegel, J.; Sornasse, T. Therapeutic interleukin-6 blockade reverses transforming growth factor-beta pathway activation in dermal fibroblasts: Insights from the faSScinate clinical trial in systemic sclerosis. Ann. Rheum. Dis. 2018, 77, 1362–1371. [Google Scholar]
- Kirichenko, T.V.; Bogatyreva, A.I.; Gerasimova, E.V.; Popkova, T.V.; Markina, Y.V.; Markin, A.M.; Gerasimova, D.A.; Orekhov, A.N. Inflammatory Response of Monocytes/Macrophages in Patients with Systemic Sclerosis. Front. Biosci.-Landmark 2024, 29, 259. [Google Scholar]
- Yalçinkaya, Y.; Çinar, S.; Artim-Esen, B.; Kamali, S.; Öcal, L.; Deniz, G.; Inanç, M. The relationship between vascular biomarkers and disease characteristics in systemic sclerosis: Elevated MCP-1 is predominantly associated with fibrotic manifestations. Clin. Exp. Rheumatol. 2016, 34 (Suppl. S100), 110–114. [Google Scholar]
- Hasegawa, M.; Sato, S.; Takehara, K. Augmented production of chemokines (monocyte chemotactic protein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α) and MIP-1β) in patients with systemic sclerosis: MCP-1 and MIP-1α may be involved in the development of pulmonary fibrosis. Clin. Exp. Immunol. 2001, 117, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, D.; Pirchl, M.; Humpel, C. Effects of Long-Term Moderate Ethanol and Cholesterol on Cognition, Cholinergic Neurons, Inflammation, and Vascular Impairment in Rats. Neuroscience 2012, 205, 154–166. [Google Scholar] [CrossRef]
- Abdullah, H.; Mahdi Al-Mussawi, K.A.H. Relationship Between Monocyte Chemoattractant Protein-1 (MCP-1) and Pathogenicity of Trichomonas Vaginalis. J. Pharm. Negat. Results. 2022, 13, 575–579. [Google Scholar] [CrossRef]
- Arai, M.; Ikawa, Y.; Chujo, S.; Hamaguchi, Y.; Ishida, W.; Shirasaki, F.; Hasegawa, M.; Mukaida, N.; Fujimoto, M.; Takehara, K. Chemokine Receptors CCR2 and CX3CR1 Regulate Skin Fibrosis in the Mouse Model of Cytokine-Induced Systemic Sclerosis. J. Dermatol. Sci. 2013, 69, 250–258. [Google Scholar] [CrossRef]
- Zhang, J.; Li, G.; Gao, S.; Yao, Y.; Pang, L.; Li, Y.; Wang, W.; Zhao, Q.; Kong, D.; Li, C. Monocyte Chemoattractant Protein-1 Released From Polycaprolactone/Chitosan Hybrid Membrane to Promote Angiogenesis in Vivo. J. Bioact. Compat. Polym. 2014, 29, 572–588. [Google Scholar] [CrossRef]
- Le Pavec, J.; Humbert, M.; Mouthon, L.; Hassoun, P.M. Systemic Sclerosis-associated Pulmonary Arterial Hypertension. Am. J. Respir. Crit. Care Med. 2010, 181, 1285–1293. [Google Scholar] [CrossRef]
- Minsaas, L.; Planagumà, J.; Madziva, M.T.; Krakstad, B.F.; Masià-Balagué, M.; Katz, A.A.; Aragay, A.M. Filamin a Binds to CCR2B and Regulates Its Internalization. PLoS ONE 2010, 5, e12212. [Google Scholar] [CrossRef]
- Haub, J.; Roehrig, N.; Uhrin, P.; Schabbauer, G.; Eulberg, D.; Melchior, F.; Shahneh, F.; Probst, H.C.; Becker, C.; Steinbrink, K.; et al. Intervention of Inflammatory Monocyte Activity Limits Dermal Fibrosis. J. Investig. Dermatol. 2019, 139, 2144–2153. [Google Scholar] [CrossRef]
- Jiang, Y.; Luo, Q.; Han, Q.; Huang, J.; Ou, Y.; Chen, M.; Wen, Y.; Mosha, S.S.; Deng, K.; Chen, R. Sequential changes of serum KL-6 predict the progression of interstitial lung disease. J. Thorac. Dis. 2018, 10, 4705–4714. [Google Scholar] [CrossRef]
- Sieiro Santos, C.; Antolín, S.C.; Lorenzo, J.D.C.; Garay, C.L.; Morales, C.M.; de Miguel, E.B.; Guerrero, M.R.; Herránz, L.S.; Álvarez, E.D. KL6 and IL-18 levels are negatively correlated with respiratory function tests and ILD extent assessed on HRCT in patients with systemic sclerosis-related interstitial lung disease (SSc-ILD). Semin. Arthritis Rheum. 2024, 65, 152366. [Google Scholar] [CrossRef]
- Cho, E.J.; Park, K.J.; Ko, D.H.; Koo, H.J.; Lee, S.M.; Song, J.W.; Lee, W.; Lee, H.K.; Do, K.-H.; Chun, S.; et al. Analytical and Clinical Performance of the Nanopia Krebs Von Den Lungen 6 Assay in Korean Patients with Interstitial Lung Diseases. Ann. Lab. Med. 2019, 39, 245–251. [Google Scholar] [PubMed]
- Fields, A.; Potel, K.N.; Cabuhal, R.; Aziri, B.; Stewart, I.; Schock, B. Mediators of Systemic Sclerosis-Associated Interstitial Lung Disease (SSc-ILD): Systematic Review and Meta-Analyses. Thorax 2022, 78, 799–807. [Google Scholar] [PubMed]
- Xu, L.; Yan, D.R.; Zhu, S.L.; Gu, J.; Bian, W.; Rong, Z.H.; Shen, C. KL-6 regulated the expression of HGF, collagen and myofibroblast differentiation. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 3073–3077. [Google Scholar]
- Kuwana, M.; Shirai, Y.; Takeuchi, T. Elevated serum krebs von den lungen-6 in early disease predicts subsequent deterioration of pulmonary function in patients with systemic sclerosis and interstitial lung disease. J. Rheumatol. 2016, 43, 1825–1831. [Google Scholar] [PubMed]
- Stock, C.J.W.; Hoyles, R.K.; Daccord, C.; Kokosi, M.; Visca, D.; De Lauretis, A.; Alfieri, V.; Kouranos, V.; Margaritopoulos, G.; George, P.M.; et al. Serum markers of pulmonary epithelial damage in systemic sclerosis-associated interstitial lung disease and disease progression. Respirology 2021, 26, 461–468. [Google Scholar]
- Wang, Y.; Chen, S.; Lin, J.; Xie, X.; Hu, S.; Lin, Q.; Zheng, K.; Du, G.; Huang, X.; Zhang, G.; et al. Lung Ultrasound B-Lines and Serum KL-6 Correlate with the Severity of Idiopathic Inflammatory Myositis-Associated Interstitial Lung Disease. Rheumatology 2019, 59, 2024–2029. [Google Scholar]
- Salazar, G.A.; Kuwana, M.; Wu, M.; Estrada-Y-Martin, R.M.; Jin, Y.; Charles, J.; Mayes, M.D.; Assassi, S. KL-6 but Not CCL-18 Is a Predictor of Early Progression in Systemic Sclerosis-Related Interstitial Lung Disease. J. Rheumatol. 2018, 45, 1153–1158. [Google Scholar] [PubMed]
- Zou, W. Elevated Serum KL-6 Concentration as an Early Detection Biomarker of Rituximab-Related Interstitial Lung Disease. 2023. [Google Scholar]
- Soccio, P.; Moriondo, G.; D’alessandro, M.; Scioscia, G.; Bergantini, L.; Gangi, S.; Tondo, P.; Barbaro, M.P.F.; Cameli, P.; Bargagli, E.; et al. Role of BAL and Serum Krebs Von Den Lungen-6 (KL-6) in Patients with Pulmonary Fibrosis. Biomedicines 2024, 12, 269. [Google Scholar] [CrossRef]
- Lafyatis, R. Transforming growth factor β—At the centre of systemic sclerosis. Nat. Rev. Rheumatol. 2014, 10, 706–719. [Google Scholar]
- Frangogiannis, N.G. Transforming growth factor–β in tissue fibrosis. J. Exp. Med. 2020, 217, e20190103. [Google Scholar]
- Zhang, Y.E. Non-Smad pathways in TGF-β signaling. Cell Res. 2009, 19, 128–139. [Google Scholar] [CrossRef]
- Clayton, S.W.; Ban, G.I.; Liu, C.; Serra, R. Canonical and noncanonical TGF-β signaling regulate fibrous tissue differentiation in the axial skeleton. Sci. Rep. 2020, 10, 21364. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Liu, Q.; Wang, L.; Tu, W.; Chu, H.; Ding, W.; Jiang, S.; Ma, Y.; Shi, X.; Pu, W.; et al. Increased expression of latent TGF-β-binding protein 4 affects the fibrotic process in scleroderma by TGF-β/SMAD signaling. Lab. Investig. 2017, 97, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Utsunomiya, A.; Chino, T.; Kasamatsu, H.; Hasegawa, T.; Utsunomiya, N.; Luong, V.H.; Matsushita, T.; Sasaki, Y.; Ogura, D.; Niwa, S.-I.; et al. The Compound LG283 Inhibits Bleomycin-Induced Skin Fibrosis via Antagonizing TGF-β Signaling. Arthritis Res. Ther. 2022, 24, 94. [Google Scholar] [PubMed]
- Roh, J.S.; Jeong, H.; Lee, B.; Song, B.W.; Han, S.J.; Lee, S.G. Mirodenafil Ameliorates Skin Fibrosis in Bleomycin-Induced Mouse Model of Systemic Sclerosis. Anim. Cells Syst. 2021, 25, 387–395. [Google Scholar] [CrossRef]
- Wermuth, P.J.; Li, Z.; Mendoza, F.A.; Jimenez, S.A. Stimulation of Transforming Growth Factor-Β1-Induced Endothelial-to-Mesenchymal Transition and Tissue Fibrosis by Endothelin-1 (ET-1): A Novel Profibrotic Effect of ET-1. PLoS ONE 2016, 11, e0161988. [Google Scholar] [CrossRef]
- Cipriani, P.; Di Benedetto, P.; Ruscitti, P.; Capece, D.; Zazzeroni, F.; Liakouli, V.; Pantano, I.; Berardicurti, O.; Carubbi, F.; Pecetti, G.; et al. The Endothelial-mesenchymal Transition in Systemic Sclerosis Is Induced by Endothelin-1 and Transforming Growth Factor-β and May Be Blocked by Macitentan, a Dual Endothelin-1 Receptor Antagonist. J. Rheumatol. 2015, 42, 1808–1816. [Google Scholar] [CrossRef]
- Beyer, C.; Reichert, H.; Akan, H.; Mallano, T.; Schramm, A.; Dees, C.; Palumbo-Zerr, K.; Lin, N.Y.; Distler, A.; Gelse, K.; et al. Blockade of Canonical WNT Signalling Ameliorates Experimental Dermal Fibrosis. Ann. Rheum. Dis. 2013, 72, 1255–1258. [Google Scholar] [CrossRef]
- Liu, R.M.; Desai, L.P. Reciprocal Regulation of TGF-β and Reactive Oxygen Species: A Perverse Cycle for Fibrosis. Redox Biol. 2015, 6, 565–577. [Google Scholar] [CrossRef]
- Wermuth, P.J.; Mendoza, F.A.; Jimenez, S.A. Abrogation of Transforming Growth Factor-Β-Induced Tissue Fibrosis in Mice with a Global Genetic Deletion of Nox4. Lab. Investig. 2019, 99, 470–482. [Google Scholar] [CrossRef]
- Tomčík, M.; Zerr, P.; Pitkowski, J.; Palumbo-Zerr, K.; Avouac, J.; Distler, O.; Becvar, R.; Senolt, L.; Schett, G.; Distler, J.H. Heat Shock Protein 90 (Hsp90) Inhibition Targets Canonical TGF-β Signalling to Prevent Fibrosis. Ann. Rheum. Dis. 2013, 73, 1215–1222. [Google Scholar] [CrossRef]
- Lis-Święty, A.; Widuchowska, M.; Brzezińska-Wcisło, L.; Kucharz, E. High acute phase protein levels correlate with pulmonary and skin involvement in patients with diffuse systemic sclerosis. J. Int. Med. Res. 2018, 46, 1634–1639. [Google Scholar] [CrossRef] [PubMed]
- Clarke, D.L.; Carruthers, A.M.; Mustelin, T.; Murray, L.A. Matrix regulation of idiopathic pulmonary fibrosis: The role of enzymes. Fibrogenesis Tissue Repair. 2013, 6, 20. [Google Scholar]
- Vietri, L.; Fui, A.; Bergantini, L.; d’Alessandro, M.; Cameli, P.; Sestini, P.; Rottoli, P.; Bargagli, E. Serum amyloid A: A potential biomarker of lung disorders. Respir. Investig. 2020, 58, 21–27. [Google Scholar]
- Lakota, K.; Carns, M.; Podlusky, S.; Mrak-Poljsak, K.; Hinchcliff, M.; Lee, J.; Tomsic, M.; Sodin-Semrl, S.; Varga, J. Serum amyloid a is a marker for pulmonary involvement in systemic sclerosis. PLoS ONE 2015, 10, e0110820. [Google Scholar]
- Ogata, A.; Tanaka, T. Tocilizumab for the treatment of rheumatoid arthritis and other systemic autoimmune diseases: Current perspectives and future directions. Int. J. Rheumatol. 2012, 2012, 946048. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Tamura, N.; Okuda, S.; Tada, K.; Matsushita, M.; Yamaji, K.; Kato, K.; Takasaki, Y. Elevated serum levels of soluble CD146 in patients with systemic sclerosis. Clin. Rheumatol. 2017, 36, 119–124. [Google Scholar] [CrossRef]
- Heim, X.; Joshkon, A.; Bermudez, J.; Bachelier, R.; Dubrou, C.; Boucraut, J.; Foucault-Bertaud, A.; Leroyer, A.S.; Dignat-George, F.; Blot-Chabaud, M.; et al. CD146/sCD146 in the Pathogenesis and Monitoring of Angiogenic and Inflammatory Diseases. Biomedicines 2020, 8, 592. [Google Scholar] [CrossRef] [PubMed]
- Nollet, M.; Bachelier, R.; Joshkon, A.; Traboulsi, W.; Mahieux, A.; Moyon, A.; Muller, A.; Somasundaram, I.; Simoncini, S.; Peiretti, F.; et al. Involvement of Multiple Variants of Soluble CD146 in Systemic Sclerosis: Identification of a Novel Profibrotic Factor. Arthritis Rheumatol. 2022, 74, 1027–1038. [Google Scholar] [CrossRef]
- Heim, X.; Bermudez, J.; Joshkon, A.; Kaspi, E.; Bachelier, R.; Nollet, M.; Vélier, M.; Dou, L.; Brodovitch, A.; Foucault-Bertaud, A.; et al. CD146 at the Interface between Oxidative Stress and the Wnt Signaling Pathway in Systemic Sclerosis. J. Investig. Dermatol. 2022, 142, 3200–3210.e5. [Google Scholar] [CrossRef]
- Zhang, L.; Luo, Y.; Teng, X.; Wu, Z.; Li, M.; Xu, D.; Wang, Q.; Wang, F.; Feng, J.; Zeng, X.; et al. CD146: A potential therapeutic target for systemic sclerosis. Protein Cell. 2018, 9, 1050–1054. [Google Scholar] [CrossRef] [PubMed]
- Le Tallec, E.; Bellamri, N.; Lelong, M.; Morzadec, C.; Frenger, Q.; Ballerie, A.; Cazalets, C.; Lescoat, A.; Gros, F.; Lecureur, V.; et al. Efferocytosis dysfunction in CXCL4-induced M4 macrophages: Phenotypic insights in systemic sclerosis in vitro and in vivo. Front. Immunol. 2024, 15, 1468821. [Google Scholar] [CrossRef] [PubMed]
- Parker, M.J.S.; Jee, A.S.; Hansen, D.; Proudman, S.; Youssef, P.; Kenna, T.J.; Stevens, W.; Nikpour, M.; Sahhar, J.; Corte, T.J. Multiple serum biomarkers associate with mortality and interstitial lung disease progression in systemic sclerosis. Rheumatology 2024, 63, 2981–2988. [Google Scholar] [CrossRef]
- Volkmann, E.R.; Tashkin, D.P.; Roth, M.D.; Clements, P.J.; Khanna, D.; Fürst, D.E.; Mayes, M.; Charles, J.; Tseng, C.-H.; Elashoff, R.M.; et al. Changes in Plasma CXCL4 Levels Are Associated with Improvements in Lung Function in Patients Receiving Immunosuppressive Therapy for Systemic Sclerosis-Related Interstitial Lung Disease. Arthritis Res. Ther. 2016, 18, 305. [Google Scholar] [CrossRef]
- Affandi, A.J.; Carvalheiro, T.; Ottria, A.; de Haan, J.J.; Brans, M.A.D.; Brandt, M.M.; Tieland, R.G.; Lopes, A.P.; Fernández, B.M.; Bekker, C.P.; et al. CXCL4 Drives Fibrosis by Promoting Several Key Cellular and Molecular Processes. Cell Rep. 2022, 38, 110189. [Google Scholar] [CrossRef]
- van der Kroef, M.; Carvalheiro, T.; Rossato, M.; de Wit, F.; Cossu, M.; Chouri, E.; Wichers, C.G.; Bekker, C.P.; Beretta, L.; Vazirpanah, N.; et al. CXCL4 Triggers Monocytes and Macrophages to Produce PDGF-BB, Culminating in Fibroblast Activation: Implications for Systemic Sclerosis. J. Autoimmun. 2020, 111, 102444. [Google Scholar] [CrossRef] [PubMed]
- Lande, R.; Mennella, A.; Palazzo, R.; Pietraforte, I.; Stefanantoni, K.; Iannace, N.; Butera, A.; Boirivant, M.; Pica, R.; Conrad, C.; et al. Anti-Cxcl4 Antibody Reactivity Is Present in Systemic Sclerosis (SSc) and Correlates with the SSc Type I Interferon Signature. Int. J. Mol. Sci. 2020, 21, 5102. [Google Scholar] [CrossRef]
- Nihtyanova, S.I.; Schreiber, B.E.; Ong, V.H.; Rosenberg, D.; Moinzadeh, P.; Coghlan, J.G.; Wells, A.U.; Denton, C.P. Prediction of Pulmonary Complications and Long-Term Survival in Systemic Sclerosis. Arthritis Rheumatol. 2014, 66, 1625–1635. [Google Scholar] [CrossRef]
- Iannazzo, F.; Pellicano, C.; Colalillo, A.; Ramaccini, C.; Romaniello, A.; Gigante, A.; Rosato, E. Interleukin-33 and Soluble Suppression of Tumorigenicity 2 in Scleroderma Cardiac Involvement. Clin. Exp. Med. 2022, 23, 897–903. [Google Scholar] [CrossRef]
- Wagner, A.; Köhm, M.; Nordin, A.; Svenungsson, E.; Pfeilschifter, J.; Radeke, H.H. Increased Serum Levels of the IL-33 Neutralizing sST2 in Limited Cutaneous Systemic Sclerosis. Scand. J. Immunol. 2015, 82, 269–274. [Google Scholar] [CrossRef]
- Chen, D.; Untaru, R.; Stavropoulou, G.; Assadi-Khansari, B.; Kelly, C.; Croft, A.J.; Sugito, S.; Collins, N.J.; Sverdlov, A.L.; Ngo, D.T.M. Elevated Soluble Suppressor of Tumorigenicity 2 Predict Hospital Admissions Due to Major Adverse Cardiovascular Events (MACE). J. Clin. Med. 2023, 12, 2790. [Google Scholar] [CrossRef] [PubMed]
- Manzano-Fernández, S.; Mueller, T.; Pascual-Figal, D.A.; Truong, Q.A.; Januzzi, J.L. Usefulness of Soluble Concentrations of Interleukin Family Member ST2 as Predictor of Mortality in Patients with Acutely Decompensated Heart Failure Relative to Left Ventricular Ejection Fraction. Am. J. Cardiol. 2011, 107, 259–267. [Google Scholar]
- Banaszkiewicz, M.; Pietrasik, A.; Darocha, S.; Piłka, M.; Florczyk, M.; Dobosiewicz, A.; Kędzierski, P.; Pędzich-Placha, E.; Kochman, J.; Opolski, G.; et al. Soluble ST2 Protein as a New Biomarker in Patientswith Precapillary Pulmonary Hypertension. Arch. Med. Sci. 2020, 16, 1442–1451. [Google Scholar]
- Aghaei, M.; Gharibdost, F.; Zayeni, H.; Akhlaghi, M.; Sedighi, S.; Rostamian, A.; Aghdami, N.; Shojaa, M. Endothelin-1 in systemic sclerosis. Indian Dermatol Online J. 2012, 3, 14. [Google Scholar] [PubMed]
- Kawaguchi, Y.; Suzuki, K.; Hara, M.; Hidaka, T.; Ishizuka, T.; Kawagoe, M.; Nakamura, H. Increased endothelin-1 production in fibroblasts derived from patients with systemic sclerosis. Ann. Rheum. Dis. 1994, 53, 506–510. [Google Scholar] [CrossRef]
- Duangrat, R.; Parichatikanond, W.; Likitnukul, S.; Mangmool, S. Endothelin-1 Induces Cell Proliferation and Myofibroblast Differentiation through the ETAR/Gαq/ERK Signaling Pathway in Human Cardiac Fibroblasts. Int. J. Mol. Sci. 2023, 24, 4475. [Google Scholar] [CrossRef]
- Jing, J.; Dou, T.; Yang, J.L.; Chen, X.B.; Cao, H.L.; Min, M.; Cai, S.; Zheng, M.; Man, X. Role of Endothelin-1 in the Skin Fibrosis of Systemic Sclerosis. Eur. Cytokine Netw. 2015, 26, 10–14. [Google Scholar]
- Ture, H.Y.; Lee, N.Y.; Kim, N.R.; Nam, E.J. Raynaud’s Phenomenon: A Current Update on Pathogenesis, Diagnostic Workup, and Treatment. Vasc. Spec. Int. 2024, 40, 26. [Google Scholar]
- ya Kawashiri, S.; Ueki, Y.; Terada, K.; Yamasaki, S.; Aoyagi, K.; Kawakami, A. Improvement of plasma endothelin-1 and nitric oxide in patients with systemic sclerosis by bosentan therapy. Rheumatol. Int. 2014, 34, 221–225. [Google Scholar] [CrossRef]
- Jordan, S.; Distler, J.H.; Maurer, B.; Walker, U.A.; Huscher, D.; Allanore, Y.; Riemekasten, G.; Distler, O. Effect of Endothelin-1 Receptor Antagonists on Skin Fibrosis in Scleroderma Patients From the EUSTAR Database. J. Scleroderma Relat. Disord. 2016, 1, 220–225. [Google Scholar]
- Lagares, D.; García-Fernández, R.A.; Jiménez, C.L.; Magán-Marchal, N.; Busnadiego, Ó.; Lamas, S.; Rodríguez-Pascual, F. Endothelin 1 Contributes to the Effect of Transforming Growth Factor Β1 on Wound Repair and Skin Fibrosis. Arthritis Rheum. 2010, 62, 878–889. [Google Scholar]
- Tinazzi, E.; Puccetti, A.; Patuzzo, G.; Barbieri, A.; Argentino, G.; Federico, C.; Marzia, D.; Ruggero, B.; Giacomo, M.; Andrea, O.; et al. Endothelin Receptors Expressed by Immune Cells Are Involved in Modulation of Inflammation and in Fibrosis: Relevance to the Pathogenesis of Systemic Sclerosis. J. Immunol. Res. 2015, 2015, 147616. [Google Scholar]
- Odler, B.; Foris, V.; Gungl, A.; Müller, V.; Hassoun, P.M.; Kwapiszewska, G.; Olschewski, H.; Kovacs, G. Biomarkers for Pulmonary Vascular Remodeling in Systemic Sclerosis: A Pathophysiological Approach. Front. Physiol. 2018, 9, 587. [Google Scholar] [CrossRef] [PubMed]
- Iijima, H.; Fukutani, N.; Aoyama, T.; Fukumoto, T.; Uritani, D.; Kaneda, E.; Ota, K.; Kuroki, H.; Matsuda, S. Clinical Phenotype Classifications Based on Static Varus Alignment and Varus Thrust in Japanese Patients with Medial Knee Osteoarthritis. Arthritis Rheumatol. 2015, 67, 2354–2362. [Google Scholar] [PubMed]
- Pincha, N.; Hajam, E.Y.; Badarinath, K.; Batta, S.P.R.; Masudi, T.; Dey, R.; Andreasen, P.; Kawakami, T.; Samuel, R.; George, R.; et al. PAI1 mediates fibroblast–mast cell interactions in skin fibrosis. J. Clin. Investig. 2018, 128, 1807–1819. [Google Scholar] [CrossRef] [PubMed]
- Ham, S.M.; Song, M.J.; Yoon, H.S.; Lee, D.H.; Chung, J.H.; Lee, S.T. SPARC Is Highly Expressed in Young Skin and Promotes Extracellular Matrix Integrity in Fibroblasts via the TGF-β Signaling Pathway. Int. J. Mol. Sci. 2023, 24, 12179. [Google Scholar] [CrossRef]
- Bradshaw, A.D. The role of secreted protein acidic and rich in cysteine (SPARC) in cardiac repair and fibrosis: Does expression of SPARC by macrophages influence outcomes? J. Mol. Cell. Cardiol. 2016, 93, 156–161. [Google Scholar]
- Rudnik, M.; Hukara, A.; Kocherova, I.; Jordan, S.; Schniering, J.; Milleret, V.; Ehrbar, M.; Klingel, K.; Feghali-Bostwick, C.; Distler, O.; et al. Elevated Fibronectin Levels in Profibrotic CD14+ Monocytes and CD14+ Macrophages in Systemic Sclerosis. Front. Immunol. 2021, 12, 642891. [Google Scholar] [CrossRef]
- Roblin, E.; Clark, K.E.N.; Beesley, C.; Ong, V.H.; Denton, C.P. Testing a candidate composite serum protein marker of skin severity in systemic sclerosis. Rheumatol. Adv. Pract. 2024, 8, rkae039. [Google Scholar] [CrossRef]
- Bălănescu, P.; Balanescu, A.; Bălănescu, E.; Băicuș, C. Candidate Proteomic Biomarkers in Systemic Sclerosis Discovered Using Mass-Spectrometry: An Update of a Systematic Review (2014–2020). Rom. J. Intern. Med. 2021, 59, 101–111. [Google Scholar]
- Ren, L.; Chang, Y.F.; Jiang, S.H.; Li, X.H.; Cheng, H.P. DNA methylation modification in Idiopathic pulmonary fibrosis. Front. Cell Dev. Biol. 2024, 12, 1416325. [Google Scholar] [CrossRef]
- Torii, T.; Ohno, N.; Miyamoto, Y.; Kawahara, K.; Saitoh, Y.; Nakamura, K.; Takashima, S.; Sakagami, H.; Tanoue, A.; Yamauchi, J. Arf6 Guanine-Nucleotide Exchange Factor Cytohesin-2 Regulates Myelination in Nerves. Biochem. Biophys. Res. Commun. 2015, 460, 819–825. [Google Scholar] [CrossRef]
- Wang, Y.; Çil, Ç.; Harnett, M.M.; Pineda, M.A. Cytohesin-2/ARNO: A Novel Bridge Between Cell Migration and Immunoregulation in Synovial Fibroblasts. Front. Immunol. 2022, 12, 809896. [Google Scholar] [CrossRef] [PubMed]
- van den Bosch, M.; Poole, A.W.; Hers, I. Cytohesin-2 Phosphorylation by Protein Kinase C Relieves the Constitutive Suppression of Platelet Dense Granule Secretion by ADP-ribosylation Factor 6. J. Thromb. Haemost. 2014, 12, 726–735. [Google Scholar] [CrossRef] [PubMed]
- Nikpour, M.; Hissaria, P.; Byron, J.; Sahhar, J.; Micallef, M.; Paspaliaris, W.; Roddy, J.; Nash, P.; Sturgess, A.; Proudman, S.; et al. Prevalence, Correlates and Clinical Usefulness of Antibodies to RNA Polymerase III in Systemic Sclerosis: A Cross-Sectional Analysis of Data From an Australian Cohort. Arthritis Res. Ther. 2011, 13, R211. [Google Scholar] [CrossRef] [PubMed]
- Roderburg, C.; Urban, G.W.; Bettermann, K.; Vucur, M.; Zimmermann, H.W.; Schmidt, S.; Janssen, J.; Koppe, C.; Knolle, P.; Castoldi, M.; et al. Micro-Rna Profiling Reveals a Role for miR-29 in Human and Murine Liver Fibrosis. Hepatology 2011, 53, 209–218. [Google Scholar] [CrossRef]
- Lauer, D.; Magnin, C.Y.; Kolly, L.R.; Wang, H.; Brunner, M.; Chabria, M.; Cereghetti, G.M.; Gabryś, H.S.; Tanadini-Lang, S.; Uldry, A.-C.; et al. Radioproteomics stratifies molecular response to antifibrotic treatment in pulmonary fibrosis. JCI Insight. 2024, 9, e181757. [Google Scholar] [CrossRef]
- Hansen, A.L.; Buchan, G.; Rühl, M.; Mukai, K.; Salvatore, S.R.; Ogawa, E.; Andersen, S.D.; Iversen, M.B.; Thielke, A.L.; Gunderstofte, C.; et al. Nitro-Fatty Acids Are Formed in Response to Virus Infection and Are Potent Inhibitors of STING Palmitoylation and Signaling. Proc. Natl. Acad. Sci. USA 2018, 115, E7768–E7775. [Google Scholar] [CrossRef]
- Gremmels, H.; Teraa, M.; de Jager, S.C.A.; Pasterkamp, G.; de Borst, G.J.; Verhaar, M.C. A Pro-Inflammatory Biomarker-Profile Predicts Amputation-Free Survival in Patients with Severe Limb Ischemia. Sci. Rep. 2019, 9, 10740. [Google Scholar] [CrossRef]
- Magee, K.; Kelsey, C.; Kurzinski, K.L.; Ho, J.; Mlakar, L.; Feghali-Bostwick, C.; Torok, K.S. Interferon-Gamma Inducible Protein-10 as a Potential Biomarker in Localized Scleroderma. Arthritis Res. Ther. 2013, 15, R188. [Google Scholar] [CrossRef]
- Oatis, D.; Herman, H.; Balta, C.; Ciceu, A.; Simon-Repolski, E.; Mihu, A.G.; Lepre, C.C.; Russo, M.; Trotta, M.C.; Gravina, A.G.; et al. Dynamic Shifts in Lung Cytokine Patterns in Post-Covid-19 Interstitial Lung Disease Patients: A Pilot Study. Ther. Adv. Chronic Dis. 2024, 15, 20406223241236257. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Esquerre, M.; Aliagas, E.; López-Sánchez, M.; Escobar, I.; Huertas, D.; Penín, R.M.; Dorca, J.; Santos, S. Vascular Disease in COPD: Systemic and Pulmonary Expression of PARC (Pulmonary and Activation-Regulated Chemokine). PLoS ONE 2017, 12, e0177218. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, T.; Inokuchi, S.; Brenner, D.A.; Seki, E. CX3CL1-CX3CR1 Interaction Prevents Carbon Tetrachloride-Induced Liver Inflammation and Fibrosis in Mice. Hepatology 2010, 52, 1390–1400. [Google Scholar] [CrossRef]
- Pezeshkian, F.; Shahriarirad, R.; Mahram, H. An overview of the role of chemokine CX3CL1 (Fractalkine) and CX3C chemokine receptor 1 in systemic sclerosis. Immun. Inflamm. Dis. 2024, 12, e70034. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.; Wu, T.; Wu, W.; Tu, W.; Jiang, S.; Chen, S.; Ma, Y.; Liu, Q.; Zhou, X.; Jin, L.; et al. Involvement of Collagen-Binding Heat Shock Protein 47 in Scleroderma-Associated Fibrosis. Protein Cell. 2015, 6, 589–598. [Google Scholar] [CrossRef]
- Artlett, C.M.; Connolly, L.M. TANGO1 Dances to Export of Procollagen from the Endoplasmic Reticulum. Fibrosis 2023, 1, 10008. [Google Scholar] [CrossRef]
- Pehlıvan, Y.; Onat, A.M.; Ceylan, N.; Turkbeyler, I.H.; Buyukhatipoglu, H.; Comez, G.; Babacan, T.; Tarakcioglu, M. Serum Leptin, Resistin and TNF-α Levels in Patients with Systemic Sclerosis: The Role of Adipokines in Scleroderma. Int. J. Rheum. Dis. 2012, 15, 374–379. [Google Scholar] [CrossRef]
- Didriksen, H.; Molberg, Ø.; Fretheim, H.; Gude, E.; Jordan, S.; Brunborg, C.; Palchevskiy, V.; Garen, T.; Midtvedt, Ø.; Andreassen, A.K.; et al. Association of Lymphangiogenic Factors with Pulmonary Arterial Hypertension in Systemic Sclerosis. Arthritis Rheumatol. 2021, 73, 1277–1287. [Google Scholar] [CrossRef]
- Tsai, Y.; Lee, C.S.; Chiu, Y.; Kuo, H.C.; Lee, S.C.; Hwang, S.L.; Kuo, M.-C.; Chen, H.-C. Angiopoietin-2 as a Prognostic Biomarker of Major Adverse Cardiovascular Events and All-Cause Mortality in Chronic Kidney Disease. PLoS ONE 2015, 10, e0135181. [Google Scholar] [CrossRef]
- Michalska-Jakubus, M.; Cutolo, M.; Smith, V.; Krasowska, D. Imbalanced serum levels of Ang1, Ang2 and VEGF in systemic sclerosis: Integrated effects on microvascular reactivity. Microvasc. Res. 2019, 125, 103881. [Google Scholar] [CrossRef]
- Barile, R.; Rotondo, C.; Rella, V.; Trotta, A.; Cantatore, F.P.; Corrado, A. Fibrosis mechanisms in systemic sclerosis and new potential therapies. Postgrad Med. J. 2024, 2024, qgae169. [Google Scholar]
- Papaioannou, A.Ι.; Zakynthinos, E.; Κostikas, Κ.; Kiropoulos, T.; Koutsokera, A.; Ziogas, A.; Koutroumpas, A.; Sakkas, L.; I Gourgoulianis, K.; Daniil, Z.D. Serum VEGF Levels Are Related to the Presence of Pulmonary Arterial Hypertension in Systemic Sclerosis. BMC Pulm. Med. 2009, 9, 18. [Google Scholar]
- Apti Sengun, O.; Ergun, T.; Guctekin, T.; Alibaz Oner, F. Endothelial dysfunction, thrombophilia, and nailfold capillaroscopic features in livedoid vasculopathy. Microvasc. Res. 2023, 150, 104591. [Google Scholar]
- Doridot, L.; Jeljeli, M.; Chêne, C.; Batteux, F. Implication of Oxidative Stress in the Pathogenesis of Systemic Sclerosis via Inflammation, Autoimmunity and Fibrosis. Redox Biol. 2019, 25, 101122. [Google Scholar] [CrossRef]
- Piera-Velazquez, S.; Jimenez, S.A. Oxidative Stress Induced by Reactive Oxygen Species (ROS) and NADPH Oxidase 4 (NOX4) in the Pathogenesis of the Fibrotic Process in Systemic Sclerosis: A Promising Therapeutic Target. J. Clin. Med. 2021, 10, 4791. [Google Scholar] [CrossRef]
- Chung, C.P.; Avalos, I.; Stein, C.M. Oxidative stress, microvascular dysfunction, and scleroderma: An association with potential therapeutic implications, a commentary on “Postocclusive reactive hyperemia inversely correlates with urinary 15-F2t-isoprostane levels in systemic sclerosis. ” Free. Radic. Biol. Med. 2006, 40, 1698–1699. [Google Scholar] [PubMed]
- Zanin-Silva, D.C.; Santana-Gonçalves, M.; Kawashima-Vasconcelos, M.Y.; Oliveira, M.C. Management of Endothelial Dysfunction in Systemic Sclerosis: Current and Developing Strategies. Front. Med. 2021, 8, 788250. [Google Scholar]
- de Andrade, J.A.; Thannickal, V.J. Innovative approaches to the therapy of fibrosis. Curr. Opin. Rheumatol. 2009, 21, 649–655. [Google Scholar]
- Lakota, K.; Wei, J.; Carns, M.; Hinchcliff, M.; Lee, J.H.; Whitfield, M.L.; Sodin-Semrl, S.; Varga, J. Levels of Adiponectin, a Marker for PPAR-gamma Activity, Correlate with Skin Fibrosis in Systemic Sclerosis: Potential Utility as Biomarker? Arthritis Res Ther. 2012, 14, R102. [Google Scholar]
- Sebestyén, V.; Ujvárosy, D.; Ratku, B.; Lőrincz, H.; Csiha, S.; Tari, D.; Majai, G.; Somodi, S.; Szűcs, G.; Harangi, M.; et al. Inflammatory Biomarkers and Lipid Parameters May Predict an Increased Risk for Atrial Arrhythmias in Patients with Systemic Sclerosis. Biomedicines 2025, 13, 220. [Google Scholar] [CrossRef]
- Lee, Y.H.; Song, G.G. Association of Circulating Resistin, Leptin, Adiponectin and Visfatin Levels with Behçet Disease: A Meta-Analysis. Clin. Exp. Dermatol. 2018, 43, 536–545. [Google Scholar] [PubMed]
- Górska-Ciebiada, M.; Saryusz-Wolska, M.; Borkowska, A.; Ciebiada, M.; Loba, J. Adiponectin, Leptin and IL-1 Β in Elderly Diabetic Patients with Mild Cognitive Impairment. Metab. Brain Dis. 2015, 31, 257–266. [Google Scholar]
- Chatterjee, M.; Behrendt, A.; Schmid, M.; Beck, S.; Schneider, M.; Mack, A.F.; Müller, I.; Geisler, T.; Gawaz, M. Platelets as a Novel Source of Gremlin-1: Implications for Thromboinflammation. Thromb. Haemost. 2017, 117, 311–324. [Google Scholar] [PubMed]
- Lofaro, F.D.; Giuggioli, D.; Bonacorsi, S.; Orlandi, M.; Spinella, A.; De Pinto, M.; Secchi, O.; Ferri, C.; Boraldi, F. BMP-4 and fetuin A in systemic sclerosis patients with or without calcinosis. Front. Immunol. 2024, 15, 1502324. [Google Scholar]
- Torres, G.; Lancaster, A.C.; Yang, J.; Griffiths, M.; Brandal, S.; Damico, R.; Vaidya, D.; Simpson, C.E.; Martin, L.J.; Pauciulo, M.W.; et al. Low-affinity Insulin-like Growth Factor Binding Protein 7 and Its Association with Pulmonary Arterial Hypertension Severity and Survival. Pulm. Circ. 2023, 13, e12284. [Google Scholar]
- Yan, Y.M.; Zheng, J.N.; Li, Y.; Yang, Q.; Shao, W.; Wang, Q. Insulin-Like Growth Factor Binding Protein 7 as a Candidate Biomarker for Systemic Sclerosis. Clin. Exp. Rheumatol. 2021, 39, 66–76. [Google Scholar] [PubMed]
- Costales, J.L.; Kolevzon, A. The Therapeutic Potential of Insulin-Like Growth Factor-1 in Central Nervous System Disorders. Neurosci. Biobehav. Rev. 2016, 63, 207–222. [Google Scholar]
- Agachi, S.; Groppa, L.; Rotaru, L.; Deseatnicova, E.; Chișlari, L.; Russu, E. Novel Biomarkers in Systemic Sclerosis. Mold. J. Health Sci. 2022, 28, 57–67. [Google Scholar]
- Vértes, V.; Porpáczy, A.; Nógrádi, Á.; Tökés-Füzesi, M.; Hajdu, M.; Czirják, L.; Komócsi, A.; Faludi, R. Galectin-3 and sST2: Associations to the Echocardiographic Markers of the Myocardial Mechanics in Systemic Sclerosis—A Pilot Study. Cardiovasc. Ultrasound 2022, 20, 1–10. [Google Scholar]
- Zhao, C.N.; Mao, Y.M.; Liu, L.; Wu, Q.; Dan, Y.L.; Pan, H. Plasma Galectin-3 Levels Do Not Differ in Systemic Lupus Erythematosus Patients. Int. J. Rheum. Dis. 2019, 22, 1820–1824. [Google Scholar]
- Bellan, M.; Piccinino, C.; Tonello, S.; Minisini, R.; Giubertoni, A.; Sola, D.; Pedrazzoli, R.; Gagliardi, I.; Zecca, E.; Calzaducca, E.; et al. Role of Osteopontin as a Potential Biomarker of Pulmonary Arterial Hypertension in Patients with Systemic Sclerosis and Other Connective Tissue Diseases (CTDs). Pharmaceuticals 2021, 14, 394. [Google Scholar] [CrossRef] [PubMed]
- Bălănescu, P.; Bălănescu, E.; Băicuș, C.; Balanescu, A. S100A6, Calumenin and Cytohesin 2 as Biomarkers for Cutaneous Involvement in Systemic Sclerosis Patients: A Case Control Study. J. Pers. Med. 2021, 11, 368. [Google Scholar] [CrossRef]
- Prieto-Echagüe, V.; Lodh, S.; Colman, L.; Bobba, N.; Santos, L.; Katsanis, N.; Escande, C.; Zaghloul, N.A.; Badano, J.L. BBS4 Regulates the Expression and Secretion of FSTL1, a Protein That Participates in Ciliogenesis and the Differentiation of 3t3-L1. Sci Rep. 2017, 7, 9765. [Google Scholar]
- Kortam, N.; Liang, W.; Shiple, C.; Huang, S.; Gedert, R.; Clair, J.S.; Sarosh, C.; Foster, C.; Tsou, P.-S.; Varga, J.; et al. Elevated neutrophil extracellular traps in systemic sclerosis-associated vasculopathy and suppression by a synthetic prostacyclin analog. Arthritis Res. Ther. 2024, 26, 139. [Google Scholar] [PubMed]
- Otake, S.; Saito, K.; Chiba, Y.; Yamada, A.; Fukumoto, S. S100a6 Knockdown Promotes the Differentiation of Dental Epithelial Cells Toward the Epidermal Lineage Instead of the Odontogenic Lineage. FASEB J. 2024, 38, e23608. [Google Scholar]
- Yanagimachi, M.; Fukuda, S.; Tanaka, F.; Iwamoto, M.; Takao, C.; Oba, K.; Suzuki, N.; Kiyohara, K.; Kuranobu, D.; Tada, N.; et al. Leucine-Rich Alpha-2-Glycoprotein 1 and Angiotensinogen as Diagnostic Biomarkers for Kawasaki Disease. PLoS ONE 2021, 16, e0257138. [Google Scholar]
- Wang, J.; Wang, J.; Zhong, J.; Liu, H.; Li, W.; Chen, M.; Xu, L.; Zhang, W.; Zhang, Z.; Wei, Z.; et al. LRG1 promotes atherosclerosis by inducing macrophage M1-like polarization. Proc. Natl. Acad. Sci. USA 2024, 121, e2405845121. [Google Scholar]
- Jaeger, V.K.; Tikly, M.; Xu, D.; Siegert, E.; Hachulla, E.; Airò, P.; Valentini, G.; Cerinic, M.M.; Distler, O.; Cozzi, F.; et al. Racial differences in systemic sclerosis disease presentation: A European Scleroderma Trials and Research group study. Rheumatology 2020, 59, 1684–1694. [Google Scholar]
- Murdaca, G.; Spanò, F.; Contatore, M.; Guastalla, A.; Puppo, F. Potential use of TNF-α inhibitors in systemic sclerosis. Immunotherapy 2014, 6, 283–289. [Google Scholar] [CrossRef]
Biomarker | Protein Type | Biological Function | Possible Role in SSc |
---|---|---|---|
MCP-1 (CCL2) | Chemokine | Monocyte and macrophage recruitment | Inflammation and fibrosis in skin and lung |
KL-6 | Glycoprotein | Alveolar injury marker | Indicator of interstitial lung disease in SSc |
TGF-β | Cytokine | Induces fibroblast differentiation | Key mediator of fibrosis in SSc |
Serum amyloid A (SAA) | Acute-phase protein | Inflammatory response | Associated with ILD and PAH in SSc |
Soluble CD146 | Glycoprotein | Endothelial function and angiogenesis | Indicator of ILD and endothelial dysfunction |
CXCL4 | Chemokine | Inflammation and fibrosis | Associated with ILD and PAH in SSc |
sST2 | Soluble receptor | Modulates IL-33 | Predicts progressive vascular fibrosis in SSc |
Endothelin-1 | Peptide | Vasoconstriction and fibrosis | Contributes to PAH and vascular dysfunction |
PAI-1 | Serine protease inhibitor | Inhibits fibrinolysis | Promotes fibrosis in skin and lung |
SPARC | Matricellular protein | ECM remodeling | Activates TGF-β and promotes fibrosis |
Fibronectin | Glycoprotein | Cell adhesion and ECM | Altered in SSc fibroblasts |
Periostin | Matricellular protein | Collagen interaction | Indicator of fibrosis |
Tenascin-C | Glycoprotein | ECM maintenance | Contributes to pulmonary fibrosis |
TET2 | Epigenetic regulator | DNA demethylation | Downregulated in SSc fibroblasts |
Cytohesin-2 | Nucleotide exchange factor | Fibroblast migration | Enhances focal adhesion in SSc |
miR-21 | MicroRNA | Post-transcriptional regulation | Activates TGF-β and promotes fibrosis |
miR-29 | MicroRNA | Collagen regulation | Downregulated in SSc, promoting fibrosis |
STING | Adaptor protein | Innate immune response | Excessive activation in SSc |
(94)IP-10 (CXCL10) | Chemokine | Th1 lymphocyte attraction | Associated with pulmonary fibrosis |
CCL18 | Chemokine | Fibroblast activation | Associated with ILD severity and mortality |
CX3CL1 | Chemokine | Monocyte recruitment | Promotes fibroblast activation |
HSP47 | Chaperone | Collagen maturation | Promotes ECM accumulation |
TWEAK | Cytokine | Fibroblast proliferation | Enhances vascular damage |
Angiopoietin-2 | Growth factor | Vascular destabilization | Biomarker of PAH in SSc |
VEGF | Growth factor | Angiogenesis | Elevated in SSc but ineffective |
NOX4 | Enzyme | ROS production | Drives fibrosis |
8-Isoprostane | Oxidative stress marker | Lipid peroxidation | Elevated in SSc |
Leptin | Hormone | Energy regulation | Promotes inflammatory activation |
Adiponectin | Hormone | Anti-inflammatory effect | Elevated in severe fibrosis |
Gremlin-1 | Protein | BMP regulation | Enhances TGF-β-mediated fibrosis |
IGFBP7 | Protein | IGF modulation | Associated with pulmonary fibrosis |
IGF-1 | Growth factor | Fibroblast differentiation | Promotes fibrosis |
Galectin-3 | Lectin | Immune activation and fibrosis | Indicator of cardiac involvement |
Osteopontin | Glycoprotein | Cell adhesion | Linked to PAH and fibrosis |
S100A6 | Protein | Cell migration | Associated with fibroblast proliferation |
FSTL1 | Glycoprotein | TGF-β enhancer | Promotes fibrosis |
NETosis | Cellular process | Neutrophil extracellular traps release | Promotes endothelial damage |
LRG1 | Protein | Endothelial dysfunction modulator | Associated with vascular fibrosis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karsulovic, C.; Hojman, L. Biomarkers in Systemic Sclerosis. Sclerosis 2025, 3, 11. https://doi.org/10.3390/sclerosis3020011
Karsulovic C, Hojman L. Biomarkers in Systemic Sclerosis. Sclerosis. 2025; 3(2):11. https://doi.org/10.3390/sclerosis3020011
Chicago/Turabian StyleKarsulovic, Claudio, and Lia Hojman. 2025. "Biomarkers in Systemic Sclerosis" Sclerosis 3, no. 2: 11. https://doi.org/10.3390/sclerosis3020011
APA StyleKarsulovic, C., & Hojman, L. (2025). Biomarkers in Systemic Sclerosis. Sclerosis, 3(2), 11. https://doi.org/10.3390/sclerosis3020011