Design, Synthesis, and In Vitro Antimalarial Evaluation of New 1,3,5-Tris[(4-(Substituted-Aminomethyl)Phenoxy)Methyl]Benzenes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Evaluation
2.2.1. In Vitro Antimalarial Activity
2.2.2. Cytotoxicity and Selectivity Index
2.3. FRET Melting Experiments
3. Materials and Methods
3.1. Chemistry
3.1.1. General
3.1.2. Synthesis of the 1,3,5-Tris[(4-Formylphenoxy)Methyl]Benzene 2
3.1.3. General Procedure for the Synthesis of 1,3,5-Tris[(4-(Substituted-Iminomethyl)Phenoxy)Methyl]Benzenes 3a–r
3.1.4. General Procedure for the Synthesis of 1,3,5-Tris[(4-(Substituted-Aminomethyl)Phenoxy)Methyl]Benzenes 4a–r
3.2. Biological Evaluation
3.2.1. In Vitro Antiplasmodial Activity
3.2.2. Cytotoxicity Evaluation
3.3. FRET Melting Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. World Malaria Report 2023; World Health Organization: Geneva, Switzerland, 2023; Licence: CC BY-NC-SA 3.0 IGO; Available online: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023 (accessed on 9 July 2024).
- WHO Malaria. 4 December 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/malaria (accessed on 9 July 2024).
- World Health Organization. WHO Guidelines for Malaria, 16 October 2023; World Health Organization: Geneva, Switzerland, 2023; (WHO/UCN/GMP/ 2023.01 Rev.1). License: CC BY-NC-SA 3.0 IGO; Available online: https://app.magicapp.org/#/guideline/LwRMXj (accessed on 9 July 2024).
- WHO Initiative to Stop the Spread of Anopheles stephensi in Africa, 2023 Update. Licence; CC BY-NC-SA 3.0 IGO. Available online: https://www.who.int/publications/i/item/WHO-UCN-GMP-2022.06 (accessed on 9 July 2024).
- WHO Vector-Borne Diseases. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases (accessed on 9 July 2024).
- Tisnerat, C.; Dassonville-Klimpt, A.; Gosselet, F.; Sonnet, P. Antimalaria Drug Discovery: From Quinine to the Most Recent Promising Clinical Drug Candidates. Curr. Med. Chem. 2022, 29, 3326–3365. [Google Scholar] [CrossRef] [PubMed]
- WHO Ending the Neglect to Attain the Sustainable Development Goals: A Rationale for Continued Investment in Tackling Neglected Tropical Diseases 2021–2030. Available online: https://www.who.int/publications/i/item/9789240052932 (accessed on 3 May 2023).
- Dola, V.R.; Soni, A.; Agarwal, P.; Ahmad, H.; Raju, K.S.R.; Rashid, M.; Wahajuddin, M.; Srivastava, K.; Haq, W.; Dwivedi, A.K.; et al. Synthesis and Evaluation of Chirally Defined Side Chain Variants of 7-Chloro-4-Aminoquinoline to Overcome Drug Resistance in Malaria Chemotherapy. Antimicrob. Agents Chemother. 2017, 61, e01152-16. [Google Scholar] [CrossRef] [PubMed]
- Rathod, G.K.; Jain, M.; Sharma, K.K.; Das, S.; Basak, A. New structural classes of antimalarials. Eur. J. Med. Chem. 2022, 242, 114653. [Google Scholar] [CrossRef]
- Dhameliya, T.M.; Patel, D.S.; Kathuria, D.; Shah, M.B.; Dabhabe, A.S.; Dave, H.S.; Lad, N.C.; Chaudhari, A.Z.; Alom, S.; Vyas, V.K.; et al. Biannual account of anti-malarial agents reported in 2021 and 2022: A comprehensive coverage. ChemistrySelect 2024, 9, e202303982. [Google Scholar] [CrossRef]
- Abd-Rahman, A.; Zaloumis, S.; McCarthy, J.; Simpson, J.; Commons, R. Scoping Review of Antimalarial Drug Candidates in Phase I and II Drug Development. Antimicrob. Agent. Chemother. 2022, 26, e01659-21. [Google Scholar] [CrossRef]
- Perko, N.; Kebede, T.; Mousa, S. Current and future directions in the prevention and treatment of Malaria. J. Pharm. Pharmacol. Res. 2022, 6, 131–138. [Google Scholar] [CrossRef]
- Van de Walle, T.; Cools, L.; Mangelinckx, S.; D’hooghe, M. Recent contributions of quinolines to antimalarial and anticancer drug discovery research. Eur. J. Med. Chem. 2021, 226, 113865. [Google Scholar] [CrossRef]
- Goyal, A.; Kharkwal, H.; Piplani, M.; Singh, Y.; Murugesan, S.; Aggarwal, A.; Kumar, P.; Chander, S. Spotlight on 4-substituted quinolines as potential anti-infective agents: Journey beyond chloroquine. Arch. Pharm. 2023, 356, e2200361. [Google Scholar] [CrossRef]
- Guillon, J.; Grellier, P.; Labaied, M.; Sonnet, P.; Léger, J.-M.; Déprez-Poulain, R.; Forfar-Bares, I.; Dallemagne, P.; Lemaître, N.; Péhourcq, F.; et al. Synthesis, antimalarial activity, and molecular modeling of new pyrrolo[1,2-a]quinoxalines, bispyrrolo[1,2-a]quinoxalines, bispyrido[3,2-e]pyrrolo[1,2-a]pyrazines, and bispyrrolo[1,2-a]thieno[3,2-e]pyrazines. J. Med. Chem. 2004, 47, 1997–2009. [Google Scholar] [CrossRef]
- Dassonville-Klimpt, A.; Cézard, C.; Mullié, C.; Agnamey, P.; Jonet, A.; Da Nascimento, S.; Marchivie, M.; Guillon, J.; Sonnet, P. Absolute Configuration and Antimalarial Activity of erythro-Mefloquine Enantiomers. ChemPlusChem 2013, 78, 642–646. [Google Scholar] [CrossRef]
- Guillon, J.; Cohen, A.; Gueddouda, N.M.; Das, R.N.; Moreau, S.; Ronga, L.; Savrimoutou, S.; Basmaciyan, L.; Monnier, A.; Monget, M.; et al. Design, synthesis and antimalarial activity of novel bis{N-[(pyrrolo[1,2-a]quinoxalin-4-yl)benzyl]-3-aminopropyl}amine derivatives. J. Enzym. Inhib. Med. Chem. 2017, 32, 547–563. [Google Scholar] [CrossRef] [PubMed]
- Jonet, A.; Guillon, J.; Mullie, C.; Cohen, A.; Bentzinger, G.; Schneider, J.; Taudon, N.; Hutter, S.; Azas, N.; Moreau, S.; et al. Synthesis and Antimalarial Activity of New Enantiopure Aminoalcoholpyrrolo[ 1,2-a]quinoxalines. Med. Chem. 2018, 14, 293–303. [Google Scholar] [CrossRef]
- Dassonville-Klimpt, A.; Schneider, J.; Damiani, C.; Tisnerat, C.; Cohen, A.; Azas, N.; Marchivie, M.; Guillon, J.; Mullié, C.; Agnamey, P.; et al. Design, synthesis, and characterization of novel aminoalcohol quinolines with strong in vitro antimalarial activity. Eur. J. Med. Chem. 2022, 228, 113981. [Google Scholar] [CrossRef] [PubMed]
- Guillon, J.; Cohen, A.; Nath Das, R.; Boudot, C.; Meriem Gueddouda, N.; Moreau, S.; Ronga, L.; Savrimoutou, S.; Basmaciyan, L.; Tisnerat, C.; et al. Design, synthesis, and antiprotozoal evaluation of new 2,9-bis[(substituted-aminomethyl)phenyl]-1,10-phenanthroline derivatives. Chem. Biol. Drug Des. 2018, 91, 974–995. [Google Scholar] [CrossRef] [PubMed]
- Guillon, J.; Cohen, A.; Monic, S.; Boudot, C.; Savrimoutou, S.; Albenque-Rubio, S.; Moreau, S.; Dassonville-Klimpt, A.; Mergny, J.-L.; Ronga, L.; et al. Synthesis and antiprotozoal evaluation of new 2,9-bis[(pyridinylalkylaminomethyl)phenyl]-1,10-phenanthroline derivatives by targeting G-quadruplex, an interesting pharmacophore against drug efflux. Acta Sci. Pharm. Sci. 2023, 7, 50–65. [Google Scholar] [CrossRef]
- Guillon, J.; Cohen, A.; Boudot, C.; Monic, S.; Savrimoutou, S.; Moreau, S.; Albenque-Rubio, S.; Lafon-Schmaltz, C.; Dassonville-Klimpt, A.; Mergny, J.-L.; et al. Design, synthesis, biophysical and antiprotozoal evaluation of new promising 2,9-bis[(substituted-aminomethyl)]-4,7-phenyl-1,10-phenanthroline derivatives by targeting G-quadruplex, a potential alternative to drug efflux. Pathogens 2022, 11, 1339. [Google Scholar] [CrossRef]
- Albenque-Rubio, S.; Guillon, J.; Cohen, A.; Agnamey, P.; Savrimoutou, S.; Moreau, S.; Mergny, J.-L.; Ronga, L.; Kanavos, I.; Moukha, S.; et al. Synthesis and Antimalarial Evaluation of New 1,3,5-tris[(4-(Substitutedaminomethyl)phenyl)methyl]benzene Derivatives: A Novel Alternative Antiparasitic Scaffold. Drugs Drug Candidates 2023, 2, 653–672. [Google Scholar] [CrossRef]
- Antonijevic, M.; Rochais, C.; Dallemagne, P. C3-Symmetric Ligands in Drug Design: When the Target Controls the Aesthetics of the Drug. Molecules 2023, 28, 679. [Google Scholar] [CrossRef]
- Calvo, E.P.; Wasserman, M. G-Quadruplex ligands: Potent inhibitors of telomerase activity and cell proliferation in Plasmodium falciparum. Mol. Biochem. Parasitol. 2016, 207, 33–38. [Google Scholar] [CrossRef]
- Tidwell, R.R.; Boykin, D.W.; Ismail, M.A.; Wilson, W.D.; White, E.W.; Kumar, A.; Nanjunda, R. Dicationic compounds which selectively recognize G-quadruplex DNA. US Patent EP 1792613A2, 6 June 2007. [Google Scholar]
- Leeder, W.-M.; Hummel, N.F.C.; Göringer, H.U. Multiple G-quartet structures in pre-edited mRNAs suggest evolutionary driving force for RNA editing in trypanosomes. Sci. Rep. 2016, 6, 29810. [Google Scholar] [CrossRef]
- Lombrana, R.; Alvarez, A.; Fernandez-Justel, J.M.; Almeida, R.; Poza-Carrion, C.; Gomes, F.; Calzada, A.; Requena, J.M.; Gomez, M. Transcriptionally Driven DNA Replication Program of the Human Parasite Leishmania major. Cell Rep. 2016, 16, 1774–1786. [Google Scholar] [CrossRef] [PubMed]
- Bottius, E.; Bakhsis, N.; Scherf, A. Plasmodium falciparum Telomerase: De Novo Telomere Addition to Telomeric and Nontelomeric Sequences and Role in Chromosome Healing. Mol. Cell. Biol. 1998, 18, 919–925. [Google Scholar] [CrossRef] [PubMed]
- Wakai, T.N.; Anzaku, D.O.; Afolabi, I.S. Telomeres and telomerase as promising targets for malaria therapy: A comprehensive review. Preprints, 2024; 2024041000. [Google Scholar] [CrossRef]
- Raj, D.K.; Das, D.R.; Dash, A.P.; Supakar, P.C. Identification of telomerase activity in gametocytes of Plasmodium falciparum. Biochem. Biophys. Res. Commun. 2003, 309, 685–688. [Google Scholar] [CrossRef]
- De Cian, A.; Grellier, P.; Mouray, E.; Depoix, D.; Bertrand, H.; Monchaud, D.; Telade-Fichou, M.-P.; Mergny, J.-L.; Alberti, P. Plasmodium Telomeric Sequences: Structure, Stability and Quadruplex Targeting by Small Compounds. ChemBioChem 2008, 9, 2730–2739. [Google Scholar] [CrossRef]
- Rajakumar, P.; Swaroop, M.; Jayavelu, S.; Murugesan, K. Synthesis, complexation studies and biological applications of some novel stilbenophanes, indolophanes and bisindolostilbenophanes via McMurry coupling. Tetrahedron 2006, 62, 12041–12060. [Google Scholar] [CrossRef]
- Diab, H.; Abdelhamid, I.; Elwahy, A. ZnO-Nanoparticles-Catalysed Synthesis of Poly(tetrahydrobenzimidazo[2,1-b]quinazolin-1(2H)-ones) as Novel Multi-armed Molecules. Synlett 2018, 29, 1627–1633. [Google Scholar]
- Full Crystallographic Results Were Deposited at the Cambridge Crystallographic Data Centre (CCDC-2358055). Supplementary X-ray Crystallographic Data: Cambridge Crystallographic Data Centre, University Chemical Lab, Lensfield Road, Cambridge, CB2 1EW, UK. Available online: https://www.ccdc.cam.ac.uk/ (accessed on 3 June 2024).
- Ramirez, T.; Strigun, A.; Verlohner, A.; Huener, H.A.; Peter, E.; Herold, M.; Bordag, N.; Mellert, W.; Walk, T.; Spitzer, M.; et al. Prediction of liver toxicity and mode of action using metabolomics in vitro in HepG2 cells. Arch. Toxicol. 2018, 92, 893–906. [Google Scholar] [CrossRef]
- Rodriguez-Antona, C.; Donato, M.T.; Boobis, A.; Edwards, R.J.; Watts, P.S.; Castell, J.V.; Gómez-Lechón, M.J. Cytochrome P450 expression in human hepatocytes and hepatoma cell lines: Molecular mechanisms that determine lower expression in cultured cells. Xenobiotica 2002, 32, 505–520. [Google Scholar] [CrossRef]
- Desjardins, R.E.; Canfield, C.J.; Haynes, J.D.; Chulay, J.D. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob. Agents Chemother. 1979, 16, 710–718. [Google Scholar] [CrossRef]
- Bennett, T.N.; Paguio, M.; Gligorijevic, B.; Seudieu, C.; Kosar, A.D.; Davidson, E.; Roepe, P.D. Novel, Rapid, and Inexpensive Cell-Based Quantification of Antimalarial Drug Efficacy. Antimicrob. Agents Chemother. 2004, 48, 1807–1810. [Google Scholar] [CrossRef] [PubMed]
- Bacon, D.J.; Latour, C.; Lucas, C.; Colina, O.; Ringwald, P.; Picot, S. Comparison of a SYBR Green I-Based Assay with a Histidine-Rich Protein II Enzyme-Linked Immunosorbent Assay for In Vitro Antimalarial Drug Efficacy Testing and Application to Clinical Isolates. Antimicrob. Agents Chemother. 2007, 51, 1172–1178. [Google Scholar] [CrossRef]
- Kaddouri, H.; Nakache, S.; Houzé, S.; Mentré, F.; Le Bras, J. Assessment of the Drug Susceptibility of Plasmodium falciparum Clinical Isolates from Africa by Using a Plasmodium Lactate Dehydrogenase Immunodetection Assay and an Inhibitory Maximum Effect Model for Precise Measurement of the 50-Percent Inhibitory Concentration. Antimicrob. Agents Chemother. 2006, 50, 3343–3349. [Google Scholar] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- De Cian, A.; Guittat, L.; Kaiser, M.; Saccà, B.; Amrane, S.; Bourdoncle, A.; Alberti, P.; Teulade-Fichou, M.-P.; Lacroix, L.; Mergny, J.-L. Fluorescence-based melting assays for studying quadruplex ligands. Methods 2007, 42, 183–195. [Google Scholar] [CrossRef]
Compound | Salt a | Melting Point (°C) b | % Yield c | |
---|---|---|---|---|
1a | Beige crystals | 6 (COOH)2 | 245–247 | 57.1 |
1b | Grey crystals | 6 (COOH)2 | 147–149 | 70.1 |
1c | White crystals | 6 (COOH)2 | 189–191 | 49.8 |
1d | White crystals | 9 (COOH)2 | 235–237 | 59.8 |
1e | White crystals | 9 (COOH)2 | 243–245 | 55.7 |
1f | White crystals | 6 (COOH)2 | 178–180 | 77.5 |
1g | Yellow crystals | 6 (COOH)2 | 225–227 | 72.1 |
1h | White crystals | 6 (COOH)2 | 193–195 | 79.3 |
1i | Yellow crystals | 3 (COOH)2 | 173–175 | 60.4 |
1j | Beige crystals | 3 (COOH)2 | 239–141 | 77.5 |
1k | Yellow crystals | 3 (COOH)2 | 173–175 | 77.1 |
1l | Yellow crystals | 3 (COOH)2 | 177–179 | 89.2 |
1m | White crystals | 3 (COOH)2 | 259–261 | 83.4 |
1n | Beige crystals | 3 (COOH)2 | 248–250 | 69.2 |
1o | Yellow crystals | 3 (COOH)2 | 185–187 | 86.6 |
1p | Grey crystals | 3 (COOH)2 | 227–229 | 45.8 |
1q | Beige crystals | 3 (COOH)2 | 191–193 | 78.5 |
1r | White crystals | 3 (COOH)2 | 151–153 | 89.3 |
Compound | P. falciparum Strains IC50 Values (μM) a | Cytotoxicity to HepG2 Cells CC50 Values (μM) b | Resistance Index | ||
---|---|---|---|---|---|
W2 | 3D7 | W2 e | 3D7 f | ||
CQ c | 0.40 ± 0.04 | 0.11 ± 0.01 | 30 | 3.64 | 0.28 |
MQ c | 0.016 ± 0.002 | 0.06 ± 0.003 | n.d. d | 0.27 | 3.75 |
1a | n.d. d | 0.35 ± 0.07 | 0.11 ± 1.50 | n.d. d | n.d. d |
1b | 14.88 ± 0.83 | 4.57 ± 0.65 | 66.25 ± 2.10 | 3.26 | 0.31 |
1c | >40 | 18.94 ± 1.32 | 26.21 ± 2.48 | >2.11 | 0.47> |
1d | >40 | >40 | 32.46 ± 0.45 | n.d. d | n.d. d |
1e | >40 | >40 | 58.53 ± 1.90 | n.d. d | n.d. d |
1f | >40 | >40 | 13.80 ± 0.74 | n.d. d | n.d. d |
1g | >40 | >40 | 8.16 ± 0.55 | n.d. d | n.d. d |
1h | >40 | 11.01 ± 0.96 | 49.50 ± 1.33 | >3.63 | 0.28> |
1i | >40 | >40 | >100 | n.d. d | n.d. d |
1j | 0.08 ± 0.04 | 0.09 ± 0.06 | 2.45 ± 0.60 | 0.89 | 1.13 |
1k | 0.74 ± 0.41 | 0.89 ± 0.15 | 3.75 ± 0.42 | 0.83 | 1.20 |
1l | 2.08 ± 0.52 | 0.62 ± 0.17 | 2.66 ± 0.31 | 3.35 | 0.30 |
1m | 0.07 ± 0.04 | 0.06 ± 0.10 | 62.11 ± 2.31 | 1.17 | 0.86 |
1n | 0.74 ± 0.20 | 0.19 ± 0.08 | 2.46 ± 0.36 | 3.89 | 0.26 |
1o | 0.41 ± 0.22 | 1.94 ± 0.77 | 0.16 ± 0.07 | 0.21 | 4.73 |
1p | 0.17 ± 0.31 | 0.08 ± 0.02 | 3.86 ± 0.78 | 2.13 | 0.47 |
1q | 0.29 ± 0.07 | 0.12 ± 0.06 | 0.72 ± 0.23 | 2.42 | 0.41 |
1r | 0.48 ± 0.09 | 0.35 ± 0.05 | 0.18 ± 0.12 | 1.37 | 0.73 |
Compound | HepG2/W2 | HepG2/3D7 |
---|---|---|
CQ | 75 | 272 |
1a | n.d. b | 0.32 |
1b | 4.45 | 14.50 |
1c | n.d. b | 1.38 |
1d | n.d. b | n.d. b |
1e | n.d. b | n.d. b |
1f | n.d. b | n.d. b |
1g | n.d. b | n.d. b |
1h | n.d. b | 4.50 |
1i | n.d. b | n.d. b |
1j | 30.63 | 27.22 |
1k | 5.07 | 4.21 |
1l | 1.28 | 4.29 |
1m | 887.29 | 1035.17 |
1n | 3.32 | 12.95 |
1o | 0.39 | 0.08 |
1p | 22.71 | 48.25 |
1q | 2.48 | 6.00 |
1r | 0.38 | 0.51 |
Compound | ΔTm (°C) a | ΔTm (°C) a | ΔTm (°C) a | ΔTm (°C) a | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FPf1T | FPf8T | F21T | FdxT | |||||||||
PhenDC3 | 21.92 | ± | 3.30 | 26.48 | ± | 1.66 | 22.28 | ± | 0.52 | 0.83 | ± | 0.04 |
CQ | 1.90 | ± | 0.10 | 2.40 | ± | 1.20 | 2.40 | ± | 1.10 | n.d. b | ||
MQ 1’d in series D | 3.10 23.1 | ± ± | 0.50 0.4 | 6.60 24.30 | ± ± | 2.30 1.50 | 2.60 22.40 | ± ± | 0.50 3.30 | n.d. b 3.10 ± 0.3 | ||
1a | 12.72 | ± | 0.14 | 15.70 | ± | 2.57 | 11.41 | ± | 0.02 | 0.71 | ± | 0.03 |
1b | 27.61 | ± | 0.40 | 26.16 | ± | 1.46 | 22.56 | ± | 1.19 | 5.06 | ± | 0.08 |
1c | 37.83 | ± | 0.40 | 40.39 | ± | 1.34 | 33.33 | ± | 0.21 | 12.61 | ± | 0.24 |
1d | 21.75 | ± | 1.15 | 24.97 | ± | 2.28 | 20.45 | ± | 0.29 | 3.00 | ± | 0.39 |
1e | 24.48 | ± | 0.93 | 25.53 | ± | 0.06 | 18.68 | ± | 3.52 | 3.42 | ± | 0.01 |
1f | 20.94 | ± | 10.20 | 18.90 | ± | 9.46 | 12.20 | ± | 0.10 | 0.69 | ± | 0.05 |
1g | 24.41 | ± | 2.32 | 24.61 | ± | 0.57 | 17.91 | ± | 1.76 | 3.46 | ± | 0.19 |
1h | 18.41 | ± | 3.04 | 15.71 | ± | 0.08 | 12.27 | ± | 0.99 | 0.93 | ± | 0.34 |
1i | −0.69 | ± | 0.08 | −0.20 | ± | 0.55 | −0.33 | ± | 0.19 | 0.09 | ± | 0.04 |
1j | 8.39 | ± | 0.56 | 5.05 | ± | 1.06 | 3.06 | ± | 0.03 | −0.05 | ± | 0.71 |
1k | 5.40 | ± | 0.44 | 9.31 | ± | 0.37 | 7.74 | ± | 0.16 | 0.29 | ± | 0.03 |
1l | 10.92 | ± | 1.00 | 16.80 | ± | 0.46 | 13.82 | ± | 0.83 | 0.53 | ± | 0.08 |
1m | 8.94 | ± | 1.01 | 12.23 | ± | 0.28 | 9.68 | ± | 0.34 | 0.31 | ± | 0.06 |
1n | 8.61 | ± | 1.22 | 12.15 | ± | 2.55 | 10.06 | ± | 2.32 | 0.16 | ± | 0.08 |
1o | 14.44 | ± | 2.78 | 20.24 | ± | 2.26 | 16.49 | ± | 0.48 | 1.18 | ± | 0.02 |
1p | 1.33 | ± | 0.20 | 1.50 | ± | 0.06 | 0.43 | ± | 0.25 | −0.03 | ± | 0.22 |
1q | 8.36 | ± | 0.66 | 12.18 | ± | 1.22 | 10.11 | ± | 1.26 | 0.29 | ± | 0.15 |
1r | 12.14 | ± | 0.98 | 15.78 | ± | 0.19 | 12.88 | ± | 0.78 | 0.57 | ± | 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albenque-Rubio, S.; Guillon, J.; Agnamey, P.; Damiani, C.; Savrimoutou, S.; Mustière, R.; Pinaud, N.; Moreau, S.; Mergny, J.-L.; Ronga, L.; et al. Design, Synthesis, and In Vitro Antimalarial Evaluation of New 1,3,5-Tris[(4-(Substituted-Aminomethyl)Phenoxy)Methyl]Benzenes. Drugs Drug Candidates 2024, 3, 615-637. https://doi.org/10.3390/ddc3030035
Albenque-Rubio S, Guillon J, Agnamey P, Damiani C, Savrimoutou S, Mustière R, Pinaud N, Moreau S, Mergny J-L, Ronga L, et al. Design, Synthesis, and In Vitro Antimalarial Evaluation of New 1,3,5-Tris[(4-(Substituted-Aminomethyl)Phenoxy)Methyl]Benzenes. Drugs and Drug Candidates. 2024; 3(3):615-637. https://doi.org/10.3390/ddc3030035
Chicago/Turabian StyleAlbenque-Rubio, Sandra, Jean Guillon, Patrice Agnamey, Céline Damiani, Solène Savrimoutou, Romain Mustière, Noël Pinaud, Stéphane Moreau, Jean-Louis Mergny, Luisa Ronga, and et al. 2024. "Design, Synthesis, and In Vitro Antimalarial Evaluation of New 1,3,5-Tris[(4-(Substituted-Aminomethyl)Phenoxy)Methyl]Benzenes" Drugs and Drug Candidates 3, no. 3: 615-637. https://doi.org/10.3390/ddc3030035
APA StyleAlbenque-Rubio, S., Guillon, J., Agnamey, P., Damiani, C., Savrimoutou, S., Mustière, R., Pinaud, N., Moreau, S., Mergny, J.-L., Ronga, L., Kanavos, I., Marchivie, M., Moukha, S., Dozolme, P., Sonnet, P., & Cohen, A. (2024). Design, Synthesis, and In Vitro Antimalarial Evaluation of New 1,3,5-Tris[(4-(Substituted-Aminomethyl)Phenoxy)Methyl]Benzenes. Drugs and Drug Candidates, 3(3), 615-637. https://doi.org/10.3390/ddc3030035