Date (Phoenix dactylifera L.) Fruits as a Potential Lipid-Lowering Therapy: Effect on High-Fat Diet and Triton-WR-1339-Induced Hyperlipidemic Rats
Abstract
:1. Introduction
2. Results
2.1. Analysis of Polyphenolic Profile
2.2. Lipid Peroxidation Inhibition Effect of Dates Extracts
2.3. Effect of Date Fruit Extracts on Serum Lipid Profile in in Triton-Induced Acute Hyperlipidemia
2.4. Effect of Date Fruit Extracts on Serum Lipid Profile in High-Fat Diet-Induced Hyperlipidemia
2.5. Effect of Date Fruit Extracts on Body Weight Gain of Rats under High-Fat Diet
3. Discussion
4. Materials and Methods
4.1. Polyphenol Extraction Method
4.2. Chromatographic Equipment and Analysis of Polyphenolic Profile
4.3. Lipid Peroxidation Inhibition Effect of Dates Extracts
4.4. Animals
4.5. Triton WR-1339 Induced Acute Hyperlipidemia Assay
4.6. High-Fat-Diet-Induced Hyperlipidemia in Rats
4.7. Determination of Serum Lipids Levels
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roman Junior, W.A.; Piato, A.L.; Conterato, G.M.; Wildner, S.M.; Marcon, M.; Mocelin, R.; Emanuelli, M.P.; Emanuelli, T.; Nepel, A.; Barison, A.; et al. Hypolipidemic effects of Solidago chilensis hydroalcoholic extract and its major isolated constituent quercetrin in cholesterol-fed rats. Pharm. Biol. 2015, 53, 1488–1495. [Google Scholar] [CrossRef] [PubMed]
- Amly, W.; Karaman, R. Lipid Lowering Medications-Uses, Side Effects, Pharmacokinetic Properties and Approaches to Improve Bioavailability. In Commonly Used Drugs-Uses, Side Effects, Bioavailability and Approaches to Improve It; Nova Science Pub Inc.: New York, NY, USA, 2015; p. 131. [Google Scholar]
- Alissa, E.M.; Ferns, G.A. Dietary fruits and vegetables and cardiovascular diseases risk. Crit. Rev. Food Sci. Nutr. 2017, 57, 1950–1962. [Google Scholar] [CrossRef] [PubMed]
- Maqsood, S.; Adiamo, O.; Ahmad, M.; Mudgil, P. Bioactive compounds from date fruit and seed as potential nutraceutical and functional food ingredients. Food Chem. 2020, 308, 125522. [Google Scholar] [CrossRef] [PubMed]
- Baliga, M.S.; Baliga, B.R.V.; Kandathil, S.M.; Bhat, H.P.; Vayalil, P.K. A review of the chemistry and pharmacology of the date fruits (Phoenix dactylifera L.). Food Res. Int. 2011, 44, 1812–1822. [Google Scholar] [CrossRef]
- Bouhlali, E.D.T.; Ramchoun, M.; Alem, C.; Ghafoor, K.; Ennassir, J.; Zegzouti, Y.F. Functional composition and antioxidant activities of eight Moroccan date fruit varieties (Phoenix dactylifera L.). J. Saudi Soc. Agric. Sci. 2017, 16, 257–264. [Google Scholar] [CrossRef]
- Bouhlali, E.D.T.; El Hilaly, J.; Ennassir, J.; Benlyas, M.; Alem, C.; Amarouch, M.Y.; Filali-Zegzouti, Y. Anti-inflammatory properties and phenolic profile of six Moroccan date fruit (Phoenix dactylifera L.) varieties. J. King Saud Univ.-Sci. 2018, 30, 519–526. [Google Scholar] [CrossRef]
- Paolini, E.; Longo, M.; Meroni, M.; Tria, G.; Cespiati, A.; Lombardi, R.; Badiali, S.; Maggioni, M.; Fracanzani, A.L.; Dongiovanni, P. The I148M PNPLA3 variant mitigates niacin beneficial effects: How the genetic screening in non-alcoholic fatty liver disease patients gains value. Front. Nutr. 2023, 10, 1101341. [Google Scholar] [CrossRef]
- Bouhlali, E.D.T.; Bammou, M.; Sellam, K.; Benlyas, M.; Alem, C.; Filali-Zegzouti, Y. Evaluation of antioxidant, antihemolytic and antibacterial potential of six Moroccan date fruit (Phoenix dactylifera L.) varieties. J. King Saud Univ.-Sci. 2016, 28, 136–142. [Google Scholar] [CrossRef]
- Boccellino, M.; D’Angelo, S. Anti-obesity effects of polyphenol intake: Current status and future possibilities. Int. J. Mol. Sci. 2020, 21, 5642. [Google Scholar] [CrossRef]
- Bouhlali, E.D.T.; Hmidani, A.; Bourkhis, B.; Khouya, T.; Harnafi, H.; Filali-Zegzouti, Y.; Alem, C. Effect of Phoenix dactylifera seeds (dates) extract in triton WR-1339 and high fat diet induced hyperlipidaemia in rats: A comparison with simvastatin. J. Ethnopharmacol. 2020, 259, 112961. [Google Scholar] [CrossRef]
- Devi, S.; Singh, R. Assessment of lipid lowering effect of Nepeta hindostana herb extract in experimentally induced dyslipidemia. J. Nutr. Intermed. Metab. 2017, 9, 17–23. [Google Scholar] [CrossRef]
- Millar, J.S.; Cromley, D.A.; McCoy, M.G.; Rader, D.J.; Billheimer, J.T. Determining hepatic triglyceride production in mice: Comparison of poloxamer 407 with Triton WR-1339. J. Lipid Res. 2005, 46, 2023–2028. [Google Scholar] [CrossRef] [PubMed]
- Cheung, M.C.; Sibley, S.D.; Palmer, J.P.; Oram, J.F.; Brunzell, J.D. Lipoprotein lipase and hepatic lipase: Their relationship with HDL subspecies Lp (AI) and Lp (AI, A-II). J. Lipid Res. 2003, 44, 1552–1558. [Google Scholar] [CrossRef]
- Ama Moor, V.J.; Nya Biapa, P.C.; Nono Njinkio, B.L.; Moukette Moukette, B.; Sando, Z.; Kenfack, C.; Ateba, B.; Matip, M.E.N.; Pieme, C.A.; Ngogang, J. Hypolipidemic effect and activation of Lecithin Cholesterol Acyl Transferase (LCAT) by aqueous extract of Spirulina platensis during toxicological investigation. BMC Nutr. 2017, 3, 25. [Google Scholar] [CrossRef]
- Ibrahim, A.Y.; Hendawy, S.F.; Elsayed, A.A.; Omer, E.A. Evaluation of hypolipidemic Marrubium vulgare effect in Triton WR-1339-induced hyperlipidemia in mice. Asian Pac. J. Trop. Med. 2016, 9, 453–459. [Google Scholar] [CrossRef] [PubMed]
- De Almeida Jackix, E.; Monteiro, E.B.; Raposo, H.F.; Amaya-Farfán, J. Cholesterol reducing and bile-acid binding properties of taioba (Xanthosoma sagittifolium) leaf in rats fed a high-fat diet. Food Res. Int. 2013, 51, 886–891. [Google Scholar] [CrossRef]
- Kamanna, V.S.; Kashyap, M.L. Mechanism of action of niacin. Am. J. Cardiol. 2008, 101, S20–S26. [Google Scholar] [CrossRef]
- Alam, M.A.; Subhan, N.; Hossain, H.; Hossain, M.; Reza, H.M.; Rahman, M.M.; Ullah, M.O. Hydroxycinnamic acid derivatives: A potential class of natural compounds for the management of lipid metabolism and obesity. Nutr. Metab. 2016, 13, 27. [Google Scholar] [CrossRef]
- Yeh, Y.H.; Lee, Y.T.; Hsieh, H.S.; Hwang, D.F. Dietary caffeic acid, ferulic acid and coumaric acid supplements on cholesterol metabolism and antioxidant activity in rats. J. Food Drug Anal. 2009, 17, 123–132. [Google Scholar] [CrossRef]
- Martinez-Gonzalez, A.I.; Alvarez-Parrilla, E.; Díaz-Sánchez, Á.G.; de la Rosa, L.A.; Núñez-Gastélum, J.A.; Vazquez-Flores, A.A.; Gonzalez-Aguilar, G.A. In vitro inhibition of pancreatic lipase by polyphenols: A kinetic, fluorescence spectroscopy and molecular docking study. Food Technol. Biotechnol. 2017, 55, 519–530. [Google Scholar] [CrossRef]
- Dileep, K.V.; Remya, C.; Cerezo, J.; Fassihi, A.; Pérez-Sánchez, H.; Sadasivan, C. Comparative studies on the inhibitory activities of selected benzoic acid derivatives against secretory phospholipase A 2, a key enzyme involved in the inflammatory pathway. Mol. BioSystems 2015, 11, 1973–1979. [Google Scholar] [CrossRef]
- Wang, S.; Noh, S.K.; Koo, S.I. Green tea catechins inhibit pancreatic phospholipase A2 and intestinal absorption of lipids in ovariectomized rats. J. Nutr. Biochem. 2006, 17, 492–498. [Google Scholar] [CrossRef]
- Prince, P.S.M.; Kannan, N.K. Protective effect of rutin on lipids, lipoproteins, lipid metabolizing enzymes and glycoproteins in streptozotocin-induced diabetic rats. J. Pharm. Pharmacol. 2006, 58, 1373–1383. [Google Scholar] [CrossRef] [PubMed]
- Gnoni, G.V.; Paglialonga, G.; Siculella, L. Quercetin inhibits fatty acid and triacylglycerol synthesis in rat-liver cells. Eur. J. Clin. Investig. 2009, 39, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Nekohashi, M.; Ogawa, M.; Ogihara, T.; Nakazawa, K.; Kato, H.; Misaka, T.; Abe, K.; Kobayashi, S. Luteolin and quercetin affect the cholesterol absorption mediated by epithelial cholesterol transporter Niemann–Pick C1-Like 1 in caco-2 cells and rats. PLoS ONE 2014, 9, e97901. [Google Scholar] [CrossRef] [PubMed]
- Jabri, M.A.; Rtibi, K.; Sebai, H. Chamomile decoction mitigates high fat diet-induced anxiety-like behavior, neuroinflammation and cerebral ROS overload. Nutr. Neurosci. 2022, 25, 1350–1361. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, R.; Chaurasia, J.K.; Tiwari, K.N.; Singh, K. Antioxidant property of aerial parts and root of Phyllanthus fraternus Webster, an important medicinal plant. Sci. World J. 2014, 2014, 692392. [Google Scholar] [CrossRef]
- Harnafi, H.; Ramchoun, M.; Tits, M.; Wauters, J.N.; Frederich, M.; Angenot, L.; Aziz, M.; Alem, C.; Amrani, S. Phenolic acid-rich extract of sweet basil restores cholesterol and triglycerides metabolism in high fat diet-fed mice: A comparison with fenofibrate. Biomed. Prev. Nutr. 2013, 3, 393–397. [Google Scholar] [CrossRef]
Bousrdoun | Majhoul | ||
---|---|---|---|
Phenolic acid | Caffeic acid | 2.72 ± 0.13 a | 1.82 ± 0.10 b |
Chlorogenic acid | 0.83 ± 0.05 b | 1.32 ±0.07 a | |
p-Coumaric acid | 1.92 ± 0.09 a | 1.43 ± 0.08 b | |
Ferulic acid | 3.17 ± 0.12 b | 3.86 ± 0.15 a | |
Gallic acid | 10.38± 0.21 a | 8.53 ± 0.23 b | |
Syringic acid | 1.47± 0.10 b | 1.73 ± 0.07 a | |
Vanillic acid | 0.41 ± 0.05 | Nd | |
Flavonoids | Luteolin | 0.43 ± 0.03 b | 0.28 ± 0.04 a |
Quercetin | 0.73 ± 0.05 b | 1.09 ± 0.06 a | |
Rutin | 3.11 ± 0.12 a | 1.84 ± 0.13 b |
Majhoul | Bousrdoun | Ascorbic Acid | |
---|---|---|---|
TBARS IC50 (µg/mL) | 492.81 ± 4.07 a | 371.38 ± 4.82 b | 101.62 ± 2.97 c |
TC (mg/dL) | TG (mg/dL) | LDL-C (mg/dL) | HDL-C (mg/dL) | AI | |
---|---|---|---|---|---|
Normal control | 77.90 ± 5.94 f | 92.85 ± 7.37 f | 33.68 ± 4.79 f | 26.43 ± 2.77 b,c | 1.87 ± 0.53 e |
Triton control | 362.34 ± 18.39 a | 775.03 ± 29.20 a | 233.59 ± 23.29 a | 10.09 ± 0.61 e | 34.37 ± 3.81 a |
Triton + BDFE (600 mg/Kg BW) | 165.15 ± 11.25 c | 232.19 ± 17.94 d | 114.21 ± 9.72 c | 28.07 ± 2.27 a,b | 4.93 ± 1.17 c,d |
Triton + BDFE (1200 mg/Kg BW) | 125.31 ± 10.91 d | 170.80 ± 14.12 e | 82.71 ± 9.45 d | 30.85 ± 2.16 a,b | 3.15 ± 0.92 d,e |
Triton + MDFE (600 mg/Kg BW) | 228.75 ± 15.63 b | 354.51 ± 17.08 b | 168.22 ± 10.73 b | 18.83 ± 2.16 d | 12.21 ± 1.09 b |
Triton + MDFE (1200 mg/Kg BW) | 187.85 ± 12.27 c | 308.91 ± 17.11 c | 145.01 ± 10.28 b | 23.45 ± 2.32 c | 7.37 ± 1.32 c |
Triton + Sim (15 mg/Kg BW) | 102.28 ± 9.79 e | 217.26 ± 19.94 d | 62.27 ± 6.79 e | 31.10 ± 2.18 a | 2.42 ± 0.42 e |
TC (mg/dL) | TG (mg/dL) | LDL-C (mg/dL) | HDL-C (mg/dL) | AI | |
---|---|---|---|---|---|
Normal control | 80.20 ± 5.74 d | 84.51 ± 5.97 f | 32.38 ± 3.69 e | 32.84 ± 3.25 a,b | 1.48 ± 0.59 d |
HFD control | 276.50 ± 17.90 a | 355.78 ± 16.79 a | 152.45 ± 11.92 a | 16.97 ±1.90 c | 15.30 ± 1.01 a |
HFD + BDFE (600 mg/Kg BW) | 115.16 ± 11.63 c | 106.71 ± 12.63 e | 75.38 ± 7.89 c | 30.89 ± 3.34 a,b | 2.59 ± 0.81 c |
HFD + BDFE (1200 mg/Kg BW) | 92.23 ± 7.95 d | 109.92 ± 13.87 e | 51.67 ± 5.19 d | 36.19 ± 2.48 a | 1.51 ± 0.72 d |
HFD + MDFE (600 mg/Kg BW) | 141.19 ± 11.39 b | 259.01 ± 16.07 b | 108.45 ± 10.11 b | 21.95 ± 1.94 c | 5.58 ± 0.67 b |
HFD + MDFE (1200 mg/Kg BW) | 127.53 ± 12.19 b,c | 214.93 ± 17.85 c | 92.77 ± 10.48 b,c | 28.57 ± 2.31 b | 3.59 ± 0.82 c |
HFD + Sim (15 mg/Kg BW) | 86.40 ± 8.54 d | 164.37 ± 14.09 d | 40.73 ± 4.71 e | 27.31 ± 2.24 b | 2.21 ± 0.78 c |
Body Weight Gain (g) | |
---|---|
Normal control | 26.13 ± 2.40 d |
HFD control | 71.57 ± 2.38 a |
HFD + BDFE (600 mg/Kg BW) | 39.36 ± 3.41 b,c |
HFD + BDFE (1200 mg/Kg BW) | 26.43 ± 2.47 d |
HFD + MDFE (600 mg/Kg BW) | 46.67 ± 4.22 b |
HFD + MDFE (1200 mg/Kg BW) | 34.25 ± 4.64 c |
HFD + Sim (15 mg/Kg BW) | 33.43 ± 3.54 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouhlali, E.D.T.; Hmidani, A.; Bourkhis, B.; Moussafir, Z.; Filali-Zegzouti, Y.; Alem, C. Date (Phoenix dactylifera L.) Fruits as a Potential Lipid-Lowering Therapy: Effect on High-Fat Diet and Triton-WR-1339-Induced Hyperlipidemic Rats. Drugs Drug Candidates 2023, 2, 422-432. https://doi.org/10.3390/ddc2020021
Bouhlali EDT, Hmidani A, Bourkhis B, Moussafir Z, Filali-Zegzouti Y, Alem C. Date (Phoenix dactylifera L.) Fruits as a Potential Lipid-Lowering Therapy: Effect on High-Fat Diet and Triton-WR-1339-Induced Hyperlipidemic Rats. Drugs and Drug Candidates. 2023; 2(2):422-432. https://doi.org/10.3390/ddc2020021
Chicago/Turabian StyleBouhlali, Eimad Dine Tariq, Abdelbassat Hmidani, Bouchra Bourkhis, Zineb Moussafir, Younes Filali-Zegzouti, and Chakib Alem. 2023. "Date (Phoenix dactylifera L.) Fruits as a Potential Lipid-Lowering Therapy: Effect on High-Fat Diet and Triton-WR-1339-Induced Hyperlipidemic Rats" Drugs and Drug Candidates 2, no. 2: 422-432. https://doi.org/10.3390/ddc2020021
APA StyleBouhlali, E. D. T., Hmidani, A., Bourkhis, B., Moussafir, Z., Filali-Zegzouti, Y., & Alem, C. (2023). Date (Phoenix dactylifera L.) Fruits as a Potential Lipid-Lowering Therapy: Effect on High-Fat Diet and Triton-WR-1339-Induced Hyperlipidemic Rats. Drugs and Drug Candidates, 2(2), 422-432. https://doi.org/10.3390/ddc2020021