Dopamine D1–D5 Receptors in Brain Nuclei: Implications for Health and Disease
Abstract
:1. Introduction
2. Types, Characteristics, and Regulation of Dopamine Receptors
3. Genetic Variants in Dopamine Receptors and Their Impacts on Neuropsychiatric and Movement Disorders
4. Dopamine Receptor Imaging and Disease Implications in Humans
5. Physiological Functions of Striatum Dopamine Receptors and Pathogenic Implications
5.1. Impact of Dopamine Receptors in the Dorsal Striatum (Caudate Nucleus and Putamen)
5.2. Impact of Dopamine Receptors in the Ventral Striatum (Nucleus Accumbens and Olfactory Tubercle)
6. Impact of Dopamine Receptors in the Prefrontal Cortex
7. Impact of Dopamine Receptors in the Subthalamic Nucleus
8. Impact of Dopamine Receptors in the Limbic System
8.1. Impact of Dopamine Receptors in the Amygdala
8.2. Impact of Dopamine Receptors in the Hippocampus
Subtypes | Physiological Functions | Related Diseases | Ref. |
---|---|---|---|
D1 receptors | Modulation of synaptic plasticity, long-term potentiation (LTP), memory formation | Alzheimer’s disease, depression, drug abuse | [3,5,13,14,34,67,102,116,117,176] |
D2 receptors | Regulation of synaptic transmission, modulation of neuronal excitability | Alzheimer’s disease, depression, drug abuse | [14,34,67,116,176] |
D3 receptors | Modulation of synaptic transmission, potential roles in hippocampal function | Schizophrenia, depression, drug abuse | [34,45,67,162,177] |
D4 receptors | Modulates neurotransmitter release and receptor sensitivity related to neuronal development and plasticity | ADHD, schizophrenia, depression | [34,52,56,67,169] |
D5 receptors | Activates signaling pathways required for neuronal plasticity and learning | Alzheimer’s disease, depression, drug abuse | [20,21,34,67,176] |
9. Impact of Dopamine Receptors in the Midbrain
9.1. Impact of Dopamine Receptors in the Substantia Nigra
9.2. Impact of Dopamine Receptors in the Ventral Tegmental Area
10. Dopamine Receptors as Drug Targets
10.1. Dopamine D1-like Receptors as Therapeutic Targets
10.2. Dopamine D2-like Receptors as Therapeutic Targets
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jackson, D.M.; Westlind-Danielsson, A. Dopamine receptors: Molecular biology, biochemistry and behavioural aspects. Pharmacol. Ther. 1994, 64, 291–370. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Y.; Undie, A.S.; Friedman, E. Evidence for the coupling of Gq protein to D1-like dopamine sites in rat striatum: Possible role in dopamine-mediated inositol phosphate formation. Mol. Pharmacol. 1995, 48, 988–994. [Google Scholar] [PubMed]
- Jin, L.Q.; Wang, H.Y.; Friedman, E. Stimulated D1 dopamine receptors couple to multiple Gα proteins in different brain regions. J. Neurochem. 2001, 78, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, R.M.; Hefner, K.R.; Sibley, D.R.; Holmes, A. Comparison of dopamine D1 and D5 receptor knockout mice for cocaine locomotor sensitization. Psychopharmacology 2008, 200, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Bergson, C.; Mrzljak, L.; Smiley, J.F.; Pappy, M.; Levenson, R.; Goldman-Rakic, P.S. Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. J. Neurosci. 1995, 15, 7821–7836. [Google Scholar] [CrossRef] [PubMed]
- Boyson, S.J.; McGonigle, P.; Molinoff, P.B. Quantitative autoradiographic localization of the D1 and D2 subtypes of dopamine receptors in rat brain. J. Neurosci. 1986, 6, 3177–3188. [Google Scholar] [CrossRef] [PubMed]
- Bunzow, J.R.; Van Tol, H.H.; Grandy, D.K.; Albert, P.; Salon, J.; Christie, M.; Machida, C.A.; Neve, K.A.; Civelli, O. Cloning and expression of a rat D2 dopamine receptor cDNA. Nature 1988, 336, 783–787. [Google Scholar] [CrossRef] [PubMed]
- Weiner, D.M.; Brann, M.R. The distribution of a dopamine D2 receptor mRNA in rat brain. FEBS Lett. 1989, 253, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.I.; Hersch, S.M.; Rye, D.B.; Sunahara, R.K.; Niznik, H.B.; Kitt, C.A.; Price, D.L.; Maggio, R.; Brann, M.R.; Ciliax, B.J. Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc. Natl. Acad. Sci. USA 1993, 90, 8861–8865. [Google Scholar] [CrossRef]
- Cho, H.S.; Baek, D.J.; Baek, S.S. Effect of exercise on hyperactivity, impulsivity and dopamine D2 receptor expression in the substantia nigra and striatum of spontaneous hypertensive rats. J. Exerc. Nutr. Biochem. 2014, 18, 379–384. [Google Scholar] [CrossRef]
- Undieh, A.S. Pharmacology of signaling induced by dopamine D1-like receptor activation. Pharmacol. Ther. 2010, 128, 37–60. [Google Scholar] [CrossRef]
- Channer, B.; Matt, S.M.; Nickoloff-Bybel, E.A.; Pappa, V.; Agarwal, Y.; Wickman, J.; Gaskill, P.J. Dopamine, Immunity, and Disease. Pharmacol. Rev. 2023, 75, 62–158. [Google Scholar] [CrossRef]
- Savasta, M.; Dubois, A.; Scatton, B. Autoradiographic localization of D1 dopamine receptors in the rat brain with [3H]SCH 23390. Brain Res. 1986, 375, 291–301. [Google Scholar] [CrossRef]
- Wamsley, J.K.; Gehlert, D.R.; Filloux, F.M.; Dawson, T.M. Comparison of the distribution of D-1 and D-2 dopamine receptors in the rat brain. J. Chem. Neuroanat. 1989, 2, 119–137. [Google Scholar] [PubMed]
- Jones-Tabah, J.; Mohammad, H.; Paulus, E.G.; Clarke, P.B.S.; Hebert, T.E. The Signaling and Pharmacology of the Dopamine D1 Receptor. Front. Cell. Neurosci. 2021, 15, 806618. [Google Scholar] [CrossRef]
- Goutier, W.; O’Connor, J.J.; Lowry, J.P.; McCreary, A.C. The effect of nicotine induced behavioral sensitization on dopamine D1 receptor pharmacology: An in vivo and ex vivo study in the rat. Eur. Neuropsychopharmacol. 2015, 25, 933–943. [Google Scholar] [CrossRef] [PubMed]
- Bahi, A.; Dreyer, J.L. Involvement of nucleus accumbens dopamine D1 receptors in ethanol drinking, ethanol-induced conditioned place preference, and ethanol-induced psychomotor sensitization in mice. Psychopharmacology 2012, 222, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Stenkrona, P.; Matheson, G.J.; Cervenka, S.; Sigray, P.P.; Halldin, C.; Farde, L. [11C]SCH23390 binding to the D1-dopamine receptor in the human brain-a comparison of manual and automated methods for image analysis. EJNMMI Res. 2018, 8, 74. [Google Scholar] [CrossRef]
- Suhara, T.; Fukuda, H.; Inoue, O.; Itoh, T.; Suzuki, K.; Yamasaki, T.; Tateno, Y. Age-related changes in human D1 dopamine receptors measured by positron emission tomography. Psychopharmacology 1991, 103, 41–45. [Google Scholar] [CrossRef]
- Khan, Z.U.; Gutierrez, A.; Martin, R.; Penafiel, A.; Rivera, A.; de la Calle, A. Dopamine D5 receptors of rat and human brain. Neuroscience 2000, 100, 689–699. [Google Scholar] [CrossRef]
- Kramar, C.P.; Barbano, M.F.; Medina, J.H. Dopamine D1/D5 receptors in the dorsal hippocampus are required for the acquisition and expression of a single trial cocaine-associated memory. Neurobiol. Learn. Mem. 2014, 116, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Hansen, N.; Manahan-Vaughan, D. Dopamine D1/D5 receptors mediate informational saliency that promotes persistent hippocampal long-term plasticity. Cereb. Cortex 2014, 24, 845–858. [Google Scholar] [CrossRef] [PubMed]
- Castello, J.; Cortes, M.; Malave, L.; Kottmann, A.; Sibley, D.R.; Friedman, E.; Rebholz, H. The Dopamine D5 receptor contributes to activation of cholinergic interneurons during L-DOPA induced dyskinesia. Sci. Rep. 2020, 10, 2542. [Google Scholar] [CrossRef] [PubMed]
- Meador-Woodruff, J.H.; Mansour, A.A.E. Bennett Award paper. Expression of the dopamine D2 receptor gene in brain. Biol. Psychiatry 1991, 30, 985–1007. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, Y.; Fukunaga, K. Dopamine D2 receptor activates extracellular signal-regulated kinase through the specific region in the third cytoplasmic loop. J. Neurochem. 2004, 89, 1498–1507. [Google Scholar] [CrossRef] [PubMed]
- van der Weide, J.; Camps, M.; Horn, A.S.; Palacios, J.M. Autoradiographic localization of dopamine D2 receptors in the rat brain using the new agonist [3H]N-0437. Neurosci. Lett. 1987, 83, 259–263. [Google Scholar] [CrossRef]
- Charuchinda, C.; Supavilai, P.; Karobath, M.; Palacios, J.M. Dopamine D2 receptors in the rat brain: Autoradiographic visualization using a high-affinity selective agonist ligand. J. Neurosci. 1987, 7, 1352–1360. [Google Scholar] [CrossRef] [PubMed]
- De Keyser, J.; De Backer, J.P.; Ebinger, G.; Vauquelin, G. Regional distribution of the dopamine D2 receptors in the mesotelencephalic dopamine neuron system of human brain. J. Neurol. Sci. 1985, 71, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Luabeya, M.K.; Maloteaux, J.M.; Laduron, P.M. Regional and cortical laminar distributions of serotonin S2, benzodiazepine, muscarinic, and dopamine D2 receptors in human brain. J. Neurochem. 1984, 43, 1068–1071. [Google Scholar] [CrossRef] [PubMed]
- Kohler, C.; Radesater, A.C. Autoradiographic visualization of dopamine D-2 receptors in the monkey brain using the selective benzamide drug [3H]raclopride. Neurosci. Lett. 1986, 66, 85–90. [Google Scholar] [CrossRef]
- Missale, C.; Nash, S.R.; Robinson, S.W.; Jaber, M.; Caron, M.G. Dopamine receptors: From structure to function. Physiol. Rev. 1998, 78, 189–225. [Google Scholar] [CrossRef]
- Schmitz, Y.; Benoit-Marand, M.; Gonon, F.; Sulzer, D. Presynaptic regulation of dopaminergic neurotransmission. J. Neurochem. 2003, 87, 273–289. [Google Scholar] [CrossRef]
- De Mei, C.; Ramos, M.; Iitaka, C.; Borrelli, E. Getting specialized: Presynaptic and postsynaptic dopamine D2 receptors. Curr. Opin. Pharmacol. 2009, 9, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, J.M.; Gainetdinov, R.R. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev. 2011, 63, 182–217. [Google Scholar] [CrossRef]
- Le Coniat, M.; Sokoloff, P.; Hillion, J.; Martres, M.P.; Giros, B.; Pilon, C.; Schwartz, J.C.; Berger, R. Chromosomal localization of the human D3 dopamine receptor gene. Hum. Genet. 1991, 87, 618–620. [Google Scholar] [CrossRef] [PubMed]
- Meador-Woodruff, J.H.; Damask, S.P.; Wang, J.; Haroutunian, V.; Davis, K.L.; Watson, S.J. Dopamine receptor mRNA expression in human striatum and neocortex. Neuropsychopharmacology 1996, 15, 17–29. [Google Scholar] [CrossRef]
- Shafer, R.A.; Levant, B. The D3 dopamine receptor in cellular and organismal function. Psychopharmacology 1998, 135, 1–16. [Google Scholar] [CrossRef]
- Gurevich, E.V.; Joyce, J.N. Distribution of dopamine D3 receptor expressing neurons in the human forebrain: Comparison with D2 receptor expressing neurons. Neuropsychopharmacology 1999, 20, 60–80. [Google Scholar] [CrossRef] [PubMed]
- Black, K.J.; Hershey, T.; Koller, J.M.; Videen, T.O.; Mintun, M.A.; Price, J.L.; Perlmutter, J.S. A possible substrate for dopamine-related changes in mood and behavior: Prefrontal and limbic effects of a D3-preferring dopamine agonist. Proc. Natl. Acad. Sci. USA 2002, 99, 17113–17118. [Google Scholar] [CrossRef]
- Beninger, R.J.; Banasikowski, T.J. Dopaminergic mechanism of reward-related incentive learning: Focus on the dopamine D3 receptor. Neurotox. Res. 2008, 14, 57–70. [Google Scholar] [CrossRef]
- Khaled, M.A.; Pushparaj, A.; Di Ciano, P.; Diaz, J.; Le Foll, B. Dopamine D3 receptors in the basolateral amygdala and the lateral habenula modulate cue-induced reinstatement of nicotine seeking. Neuropsychopharmacology 2014, 39, 3049–3058. [Google Scholar] [CrossRef] [PubMed]
- Kiss, B.; Laszlovszky, I.; Krámos, B.; Visegrády, A.; Bobok, A.; Lévay, G.; Lendvai, B.; Román, V. Neuronal Dopamine D3 Receptors: Translational Implications for Preclinical Research and CNS Disorders. Biomolecules 2021, 11, 104. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.; Kuang, W.; Li, S.; Xu, M. Activation of dopamine D3 receptors inhibits reward-related learning induced by cocaine. Neuroscience 2011, 176, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lou, D.; Jiao, H.; Zhang, D.; Wang, X.; Xia, Y.; Zhang, J.; Xu, M. Cocaine-induced intracellular signaling and gene expression are oppositely regulated by the dopamine D1 and D3 receptors. J. Neurosci. 2004, 24, 3344–3354. [Google Scholar] [CrossRef] [PubMed]
- Xing, B.; Kong, H.; Meng, X.; Wei, S.G.; Xu, M.; Li, S.B. Dopamine D1 but not D3 receptor is critical for spatial learning and related signaling in the hippocampus. Neuroscience 2010, 169, 1511–1519. [Google Scholar] [CrossRef]
- Andreoli, M.; Tessari, M.; Pilla, M.; Valerio, E.; Hagan, J.J.; Heidbreder, C.A. Selective antagonism at dopamine D3 receptors prevents nicotine-triggered relapse to nicotine-seeking behavior. Neuropsychopharmacology 2003, 28, 1272–1280. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.M.; Valenzano, K.J.; Robinson, S.R.; Yao, W.D.; Barak, L.S.; Caron, M.G. Differential regulation of the dopamine D2 and D3 receptors by G protein-coupled receptor kinases and beta-arrestins. J. Biol. Chem. 2001, 276, 37409–37414. [Google Scholar] [CrossRef] [PubMed]
- Shioda, N.; Takeuchi, Y.; Fukunaga, K. Advanced research on dopamine signaling to develop drugs for the treatment of mental disorders: Proteins interacting with the third cytoplasmic loop of dopamine D2 and D3 receptors. J. Pharmacol. Sci. 2010, 114, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Du, F.; Li, R.; Huang, Y.; Li, X.; Le, W. Dopamine D3 receptor-preferring agonists induce neurotrophic effects on mesencephalic dopamine neurons. Eur. J. Neurosci. 2005, 22, 2422–2430. [Google Scholar] [CrossRef]
- Searle, G.; Beaver, J.D.; Comley, R.A.; Bani, M.; Tziortzi, A.; Slifstein, M.; Mugnaini, M.; Griffante, C.; Wilson, A.A.; Merlo-Pich, E.; et al. Imaging dopamine D3 receptors in the human brain with positron emission tomography, [11C]PHNO, and a selective D3 receptor antagonist. Biol. Psychiatry 2010, 68, 392–399. [Google Scholar] [CrossRef]
- Koohsari, S.; Yang, Y.; Matuskey, D. D3 Receptors and PET Imaging. In Therapeutic Applications of Dopamine D3 Receptor Function: New Insight after 30 Years of Research; Boileau, I., Collo, G., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 251–275. [Google Scholar]
- Defagot, M.C.; Malchiodi, E.L.; Villar, M.J.; Antonelli, M.C. Distribution of D4 dopamine receptor in rat brain with sequence-specific antibodies. Brain Res. Mol. Brain Res. 1997, 45, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wedzony, K.; Chocyk, A.; Maćkowiak, M.; Fijał, K.; Czyrak, A. Cortical localization of dopamine D4 receptors in the rat brain—Immunocytochemical study. J. Physiol. Pharmacol. 2000, 51, 205–221. [Google Scholar]
- Rivera, A.; Cuéllar, B.; Girón, F.J.; Grandy, D.K.; de la Calle, A.; Moratalla, R. Dopamine D4 receptors are heterogeneously distributed in the striosomes/matrix compartments of the striatum. J. Neurochem. 2002, 80, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Rondou, P.; Haegeman, G.; Van Craenenbroeck, K. The dopamine D4 receptor: Biochemical and signalling properties. Cell. Mol. Life Sci. 2010, 67, 1971–1986. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Zhao, J.; Zhao, D.; Wang, J.; Wang, X.; Feng, Z.; Vreugdenhil, M.; Lu, C. Dopamine D4 receptor activation restores CA1 LTP in hippocampal slices from aged mice. Aging Cell 2017, 16, 1323–1333. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Szebeni, K.; Szebeni, A.; Klimek, V.; Stockmeier, C.A.; Karolewicz, B.; Kalbfleisch, J.; Ordway, G.A. Dopamine receptor gene expression in human amygdaloid nuclei: Elevated D4 receptor mRNA in major depression. Brain Res. 2008, 1207, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Hyde, T.M.; Knable, M.B.; Murray, A.M. Distribution of dopamine D1-D4 receptor subtypes in human dorsal vagal complex. Synapse 1996, 24, 224–232. [Google Scholar] [CrossRef]
- Khan, Z.U.; Mrzljak, L.; Gutierrez, A.; de la Calle, A.; Goldman-Rakic, P.S. Prominence of the dopamine D2 short isoform in dopaminergic pathways. Proc. Natl. Acad. Sci. USA 1998, 95, 7731–7736. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, R.; Sasaoka, T.; Tonegawa, S.; Kung, M.P.; Sankoorikal, E.B. Dopamine D2 long receptor-deficient mice display alterations in striatum-dependent functions. J. Neurosci. 2000, 20, 8305–8314. [Google Scholar] [CrossRef]
- Weissenrieder, J.S.; Neighbors, J.D.; Mailman, R.B.; Hohl, R.J. Cancer and the Dopamine D2 Receptor: A Pharmacological Perspective. J. Pharmacol. Exp. Ther. 2019, 370, 111–126. [Google Scholar] [CrossRef]
- Kawahata, I.; Sekimori, T.; Wang, H.; Wang, Y.; Sasaoka, T.; Bousset, L.; Melki, R.; Mizobata, T.; Kawata, Y.; Fukunaga, K. Dopamine D2 Long Receptors Are Critical for Caveolae-Mediated α-Synuclein Uptake in Cultured Dopaminergic Neurons. Biomedicines 2021, 9, 49. [Google Scholar] [CrossRef]
- Ford, C.P. The role of D2-autoreceptors in regulating dopamine neuron activity and transmission. Neuroscience 2014, 282, 13–22. [Google Scholar] [CrossRef]
- Gantz, S.C.; Robinson, B.G.; Buck, D.C.; Bunzow, J.R.; Neve, R.L.; Williams, J.T.; Neve, K.A. Distinct regulation of dopamine D2S and D2L autoreceptor signaling by calcium. eLife 2015, 4, e09358. [Google Scholar] [CrossRef]
- Jomphe, C.; Tiberi, M.; Trudeau, L.E. Expression of D2 receptor isoforms in cultured neurons reveals equipotent autoreceptor function. Neuropharmacology 2006, 50, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, Y.; Fukunaga, K. Differential subcellular localization of two dopamine D2 receptor isoforms in transfected NG108-15 cells. J. Neurochem. 2003, 85, 1064–1074. [Google Scholar] [CrossRef] [PubMed]
- Martel, J.C.; Gatti McArthur, S. Dopamine Receptor Subtypes, Physiology and Pharmacology: New Ligands and Concepts in Schizophrenia. Front. Pharmacol. 2020, 11, 1003. [Google Scholar] [CrossRef]
- Andersson, E.R. The role of endocytosis in activating and regulating signal transduction. Cell. Mol. Life Sci. 2012, 69, 1755–1771. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, A.T.; Couvineau, P.; Schamiloglu, S.; Wojcik, S.; Da Fonte, D.; Mezni, A.; von Zastrow, M.; Bender, K.J.; Bouvier, M.; Kieffer, B.L. Visualization of real-time receptor endocytosis in dopamine neurons enabled by NTSR1-Venus knock-in mice. Front. Cell. Neurosci. 2022, 16, 1076599. [Google Scholar] [CrossRef] [PubMed]
- Kawahata, I.; Fukunaga, K. Endocytosis of dopamine receptor: Signaling in brain. Prog. Mol. Biol. Transl. Sci. 2023, 196, 99–111. [Google Scholar] [CrossRef]
- Magistrelli, L.; Ferrari, M.; Furgiuele, A.; Milner, A.V.; Contaldi, E.; Comi, C.; Cosentino, M.; Marino, F. Polymorphisms of Dopamine Receptor Genes and Parkinson’s Disease: Clinical Relevance and Future Perspectives. Int. J. Mol. Sci. 2021, 22, 3781. [Google Scholar] [CrossRef]
- Vaiman, E.E.; Shnayder, N.A.; Novitsky, M.A.; Dobrodeeva, V.S.; Goncharova, P.S.; Bochanova, E.N.; Sapronova, M.R.; Popova, T.E.; Tappakhov, A.A.; Nasyrova, R.F. Candidate Genes Encoding Dopamine Receptors as Predictors of the Risk of Antipsychotic-Induced Parkinsonism and Tardive Dyskinesia in Schizophrenic Patients. Biomedicines 2021, 9, 879. [Google Scholar] [CrossRef] [PubMed]
- Paudel, P.; Park, S.E.; Seong, S.H.; Jung, H.A.; Choi, J.S. Novel Diels-Alder Type Adducts from Morus alba Root Bark Targeting Human Monoamine Oxidase and Dopaminergic Receptors for the Management of Neurodegenerative Diseases. Int. J. Mol. Sci. 2019, 20, 6232. [Google Scholar] [CrossRef] [PubMed]
- Acharya, S.; Kim, K.M. Roles of the Functional Interaction between Brain Cholinergic and Dopaminergic Systems in the Pathogenesis and Treatment of Schizophrenia and Parkinson’s Disease. Int. J. Mol. Sci. 2021, 22, 4299. [Google Scholar] [CrossRef] [PubMed]
- Taheri, N.; Pirboveiri, R.; Sayyah, M.; Bijanzadeh, M.; Ghandil, P. Association of DRD2, DRD4 and COMT genes variants and their gene-gene interactions with antipsychotic treatment response in patients with schizophrenia. BMC Psychiatry 2023, 23, 781. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Xu, X.; Liu, X.; Zhang, T.; Li, Y.; Yan, P. DRD3 Ser9Gly polymorphism and treatment response to antipsychotics in schizophrenia: A meta-analysis. Neurosci. Lett. 2022, 786, 136788. [Google Scholar] [CrossRef]
- Hattori, E.; Nakajima, M.; Yamada, K.; Iwayama, Y.; Toyota, T.; Saitou, N.; Yoshikawa, T. Variable number of tandem repeat polymorphisms of DRD4: Re-evaluation of selection hypothesis and analysis of association with schizophrenia. Eur. J. Hum. Genet. 2009, 17, 793–801. [Google Scholar] [CrossRef]
- Michaelides, M.; Pascau, J.; Gispert, J.D.; Delis, F.; Grandy, D.K.; Wang, G.J.; Desco, M.; Rubinstein, M.; Volkow, N.D.; Thanos, P.K. Dopamine D4 receptors modulate brain metabolic activity in the prefrontal cortex and cerebellum at rest and in response to methylphenidate. Eur. J. Neurosci. 2010, 32, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Daly, G.; Hawi, Z.; Fitzgerald, M.; Gill, M. Mapping susceptibility loci in attention deficit hyperactivity disorder: Preferential transmission of parental alleles at DAT1, DBH and DRD5 to affected children. Mol. Psychiatry 1999, 4, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Huhtala, T.; Poutiainen, P.; Rytkönen, J.; Lehtimäki, K.; Parkkari, T.; Kasanen, I.; Airaksinen, A.J.; Koivula, T.; Sweeney, P.; Kontkanen, O.; et al. Improved synthesis of [18F] fallypride and characterization of a Huntington’s disease mouse model, zQ175DN KI, using longitudinal PET imaging of D2/D3 receptors. EJNMMI Radiopharm. Chem. 2019, 4, 20. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, J.; Christian, B.T.; Dunigan, K.A.; Shi, B.; Narayanan, T.K.; Satter, M.; Mantil, J. Brain imaging of 18F-fallypride in normal volunteers: Blood analysis, distribution, test-retest studies, and preliminary assessment of sensitivity to aging effects on dopamine D-2/D-3 receptors. Synapse 2002, 46, 170–188. [Google Scholar] [CrossRef]
- Svensson, J.E.; Schain, M.; Plavén-Sigray, P.; Cervenka, S.; Tiger, M.; Nord, M.; Halldin, C.; Farde, L.; Lundberg, J. Validity and reliability of extrastriatal [11C]raclopride binding quantification in the living human brain. Neuroimage 2019, 202, 116143. [Google Scholar] [CrossRef] [PubMed]
- Tziortzi, A.C.; Searle, G.E.; Tzimopoulou, S.; Salinas, C.; Beaver, J.D.; Jenkinson, M.; Laruelle, M.; Rabiner, E.A.; Gunn, R.N. Imaging dopamine receptors in humans with [11C]-(+)-PHNO: Dissection of D3 signal and anatomy. Neuroimage 2011, 54, 264–277. [Google Scholar] [CrossRef]
- Centonze, D.; Grande, C.; Saulle, E.; Martin, A.B.; Gubellini, P.; Pavon, N.; Pisani, A.; Bernardi, G.; Moratalla, R.; Calabresi, P. Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity. J. Neurosci. 2003, 23, 8506–8512. [Google Scholar] [CrossRef]
- Tepper, J.M.; Abercrombie, E.D.; Bolam, J.P. Basal ganglia macrocircuits. Prog. Brain Res. 2007, 160, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Leisman, G.; Braun-Benjamin, O.; Melillo, R. Cognitive-motor interactions of the basal ganglia in development. Front. Syst. Neurosci. 2014, 8, 16. [Google Scholar] [CrossRef]
- Schmitt, L. Caudate Nucleus. In Encyclopedia of Autism Spectrum Disorders; Volkmar, F.R., Ed.; Springer: New York, NY, USA, 2013; pp. 538–544. [Google Scholar]
- Frank, M.J.; Loughry, B.; O’Reilly, R.C. Interactions between frontal cortex and basal ganglia in working memory: A computational model. Cogn. Affect. Behav. Neurosci. 2001, 1, 137–160. [Google Scholar] [CrossRef] [PubMed]
- Graybiel, A.M.; Aosaki, T.; Flaherty, A.W.; Kimura, M. The basal ganglia and adaptive motor control. Science 1994, 265, 1826–1831. [Google Scholar] [CrossRef]
- Cazorla, M.; de Carvalho, F.D.; Chohan, M.O.; Shegda, M.; Chuhma, N.; Rayport, S.; Ahmari, S.E.; Moore, H.; Kellendonk, C. Dopamine D2 receptors regulate the anatomical and functional balance of basal ganglia circuitry. Neuron 2014, 81, 153–164. [Google Scholar] [CrossRef]
- Guttman, M.; Seeman, P. L-dopa reverses the elevated density of D2 dopamine receptors in Parkinson’s diseased striatum. J. Neural Transm. 1985, 64, 93–103. [Google Scholar] [CrossRef]
- Stoof, J.C.; De Boer, T.; Sminia, P.; Mulder, A.H. Stimulation of D2-dopamine receptors in rat neostriatum inhibits the release of acetylcholine and dopamine but does not affect the release of γ-aminobutyric acid, glutamate or serotonin. Eur. J. Pharmacol. 1982, 84, 211–214. [Google Scholar] [CrossRef]
- Seeman, P.; Bzowej, N.H.; Guan, H.C.; Bergeron, C.; Reynolds, G.P.; Bird, E.D.; Riederer, P.; Jellinger, K.; Tourtellotte, W.W. Human brain D1 and D2 dopamine receptors in schizophrenia, Alzheimer’s, Parkinson’s, and Huntington’s diseases. Neuropsychopharmacology 1987, 1, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cheng, Y.; Wang, X.; Roltsch Hellard, E.; Ma, T.; Gil, H.; Ben Hamida, S.; Ron, D. Alcohol Elicits Functional and Structural Plasticity Selectively in Dopamine D1 Receptor-Expressing Neurons of the Dorsomedial Striatum. J. Neurosci. 2015, 35, 11634–11643. [Google Scholar] [CrossRef] [PubMed]
- Bergonzoni, G.; Döring, J.; Biagioli, M. D1R- and D2R-Medium-Sized Spiny Neurons Diversity: Insights into Striatal Vulnerability to Huntington’s Disease Mutation. Front. Cell. Neurosci. 2021, 15, 628010. [Google Scholar] [CrossRef]
- Perreault, M.; Hasbi, A.; O’Dowd, B.; George, S. The Dopamine D1–D2 Receptor Heteromer in Striatal Medium Spiny Neurons: Evidence for a Third Distinct Neuronal Pathway in Basal Ganglia. Front. Neuroanat. 2011, 5, 31. [Google Scholar] [CrossRef] [PubMed]
- Goutier, W.; Lowry, J.P.; McCreary, A.C.; O’Connor, J.J. Frequency-Dependent Modulation of Dopamine Release by Nicotine and Dopamine D1 Receptor Ligands: An In Vitro Fast Cyclic Voltammetry Study in Rat Striatum. Neurochem. Res. 2016, 41, 945–950. [Google Scholar] [CrossRef] [PubMed]
- Spina, L.; Fenu, S.; Longoni, R.; Rivas, E.; Di Chiara, G. Nicotine-conditioned single-trial place preference: Selective role of nucleus accumbens shell dopamine D1 receptors in acquisition. Psychopharmacology 2006, 184, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Centonze, D.; Grande, C.; Usiello, A.; Gubellini, P.; Erbs, E.; Martin, A.B.; Pisani, A.; Tognazzi, N.; Bernardi, G.; Moratalla, R.; et al. Receptor subtypes involved in the presynaptic and postsynaptic actions of dopamine on striatal interneurons. J. Neurosci. 2003, 23, 6245–6254. [Google Scholar] [CrossRef] [PubMed]
- Stahl, S.M. Dazzled by the dominions of dopamine: Clinical roles of D3, D2, and D1 receptors. CNS Spectr. 2017, 22, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Singh, S.; Shukla, S. Physiological and Functional Basis of Dopamine Receptors and Their Role in Neurogenesis: Possible Implication for Parkinson’s disease. J. Exp. Neurosci. 2018, 12, 1179069518779829. [Google Scholar] [CrossRef]
- Dubois, A.; Savasta, M.; Curet, O.; Scatton, B. Autoradiographic distribution of the D1 agonist [3H]SKF 38393, in the rat brain and spinal cord. Comparison with the distribution of D2 dopamine receptors. Neuroscience 1986, 19, 125–137. [Google Scholar] [CrossRef]
- Sumiyoshi, T.; Kunugi, H.; Nakagome, K. Serotonin and dopamine receptors in motivational and cognitive disturbances of schizophrenia. Front. Neurosci. 2014, 8, 395. [Google Scholar] [CrossRef] [PubMed]
- Surmeier, D.J.; Song, W.J.; Yan, Z. Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J. Neurosci. 1996, 16, 6579–6591. [Google Scholar] [CrossRef] [PubMed]
- Seeman, P.; Nam, D.; Ulpian, C.; Liu, I.S.; Tallerico, T. New dopamine receptor, D2Longer, with unique TG splice site, in human brain. Brain Res. Mol. Brain Res. 2000, 76, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Richfield, E.K.; Young, A.B.; Penney, J.B. Properties of D2 dopamine receptor autoradiography: High percentage of high-affinity agonist sites and increased nucleotide sensitivity in tissue sections. Brain Res. 1986, 383, 121–128. [Google Scholar] [CrossRef]
- Suzuki, M.; Hurd, Y.L.; Sokoloff, P.; Schwartz, J.C.; Sedvall, G. D3 dopamine receptor mRNA is widely expressed in the human brain. Brain Res. 1998, 779, 58–74. [Google Scholar] [CrossRef] [PubMed]
- Corbit, L.H.; Nie, H.; Janak, P.H. Habitual responding for alcohol depends upon both AMPA and D2 receptor signaling in the dorsolateral striatum. Front. Behav. Neurosci. 2014, 8, 301. [Google Scholar] [CrossRef]
- Alcantara, A.A.; Chen, V.; Herring, B.E.; Mendenhall, J.M.; Berlanga, M.L. Localization of dopamine D2 receptors on cholinergic interneurons of the dorsal striatum and nucleus accumbens of the rat. Brain Res. 2003, 986, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Maurice, N.; Mercer, J.; Chan, C.S.; Hernandez-Lopez, S.; Held, J.; Tkatch, T.; Surmeier, D.J. D2 dopamine receptor-mediated modulation of voltage-dependent Na+ channels reduces autonomous activity in striatal cholinergic interneurons. J. Neurosci. 2004, 24, 10289–10301. [Google Scholar] [CrossRef]
- Gallo, E.F.; Greenwald, J.; Yeisley, J.; Teboul, E.; Martyniuk, K.M.; Villarin, J.M.; Li, Y.; Javitch, J.A.; Balsam, P.D.; Kellendonk, C. Dopamine D2 receptors modulate the cholinergic pause and inhibitory learning. Mol. Psychiatry 2022, 27, 1502–1514. [Google Scholar] [CrossRef]
- Cavallaro, J.; Yeisley, J.; Akdoǧan, B.; Salazar, R.E.; Floeder, J.R.; Balsam, P.D.; Gallo, E.F. Dopamine D2 receptors in nucleus accumbens cholinergic interneurons increase impulsive choice. Neuropsychopharmacology 2023, 48, 1309–1317. [Google Scholar] [CrossRef]
- Johnson, A.E.; Coirini, H.; Kallstrom, L.; Wiesel, F.A. Characterization of dopamine receptor binding sites in the subthalamic nucleus. Neuroreport 1994, 5, 1836–1838. [Google Scholar] [CrossRef]
- Roman, K.M.; Briscione, M.A.; Donsante, Y.; Ingram, J.; Fan, X.; Bernhard, D.; Campbell, S.A.; Downs, A.M.; Gutman, D.; Sardar, T.A.; et al. Striatal Subregion-selective Dysregulated Dopamine Receptor-mediated Intracellular Signaling in a Model of DOPA-responsive Dystonia. Neuroscience 2023, 517, 37–49. [Google Scholar] [CrossRef]
- Likhite, N.; Jackson, C.A.; Liang, M.S.; Krzyzanowski, M.C.; Lei, P.; Wood, J.F.; Birkaya, B.; Michaels, K.L.; Andreadis, S.T.; Clark, S.D.; et al. The protein arginine methyltransferase PRMT5 promotes D2-like dopamine receptor signaling. Sci. Signal. 2015, 8, ra115. [Google Scholar] [CrossRef]
- Esmaeili, M.H.; Kermani, M.; Parvishan, A.; Haghparast, A. Role of D1/D2 dopamine receptors in the CA1 region of the rat hippocampus in the rewarding effects of morphine administered into the ventral tegmental area. Behav. Brain Res. 2012, 231, 111–115. [Google Scholar] [CrossRef]
- Fremeau, R.T., Jr.; Duncan, G.E.; Fornaretto, M.G.; Dearry, A.; Gingrich, J.A.; Breese, G.R.; Caron, M.G. Localization of D1 dopamine receptor mRNA in brain supports a role in cognitive, affective, and neuroendocrine aspects of dopaminergic neurotransmission. Proc. Natl. Acad. Sci. USA 1991, 88, 3772–3776. [Google Scholar] [CrossRef]
- Groenewegen, H.J.; Wright, C.I.; Beijer, A.V.; Voorn, P. Convergence and segregation of ventral striatal inputs and outputs. Ann. N. Y. Acad. Sci. 1999, 877, 49–63. [Google Scholar] [CrossRef]
- Scofield, M.D.; Heinsbroek, J.A.; Gipson, C.D.; Kupchik, Y.M.; Spencer, S.; Smith, A.C.; Roberts-Wolfe, D.; Kalivas, P.W. The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis. Pharmacol. Rev. 2016, 68, 816–871. [Google Scholar] [CrossRef]
- Bhimani, R.V.; Yates, R.; Bass, C.E.; Park, J. Distinct limbic dopamine regulation across olfactory-tubercle subregions through integration of in vivo fast-scan cyclic voltammetry and optogenetics. J. Neurochem. 2022, 161, 53–68. [Google Scholar] [CrossRef]
- Muly, E.C.; Maddox, M.; Khan, Z.U. Distribution of D1 and D5 dopamine receptors in the primate nucleus accumbens. Neuroscience 2010, 169, 1557–1566. [Google Scholar] [CrossRef]
- De Keyser, J.; Claeys, A.; De Backer, J.P.; Ebinger, G.; Roels, F.; Vauquelin, G. Autoradiographic localization of D1 and D2 dopamine receptors in the human brain. Neurosci. Lett. 1988, 91, 142–147. [Google Scholar] [CrossRef]
- Nishi, A.; Kuroiwa, M.; Shuto, T. Mechanisms for the modulation of dopamine D1 receptor signaling in striatal neurons. Front. Neuroanat. 2011, 5, 43. [Google Scholar] [CrossRef]
- Wise, R.A.; Jordan, C.J. Dopamine, behavior, and addiction. J. Biomed. Sci. 2021, 28, 83. [Google Scholar] [CrossRef]
- Stahl, S.M. Drugs for psychosis and mood: Unique actions at D3, D2, and D1 dopamine receptor subtypes. CNS Spectr. 2017, 22, 375–384. [Google Scholar] [CrossRef]
- Hasbi, A.; Perreault, M.L.; Shen, M.Y.F.; Fan, T.; Nguyen, T.; Alijaniaram, M.; Banasikowski, T.J.; Grace, A.A.; O’Dowd, B.F.; Fletcher, P.J.; et al. Activation of Dopamine D1-D2 Receptor Complex Attenuates Cocaine Reward and Reinstatement of Cocaine-Seeking through Inhibition of DARPP-32, ERK, and DeltaFosB. Front. Pharmacol. 2017, 8, 924. [Google Scholar] [CrossRef]
- Jia, W.; Kawahata, I.; Cheng, A.; Sasaki, T.; Sasaoka, T.; Fukunaga, K. Amelioration of Nicotine-Induced Conditioned Place Preference Behaviors in Mice by an FABP3 Inhibitor. Int. J. Mol. Sci. 2023, 24, 6644. [Google Scholar] [CrossRef]
- Jia, W.; Kawahata, I.; Cheng, A.; Fukunaga, K. The Role of CaMKII and ERK Signaling in Addiction. Int. J. Mol. Sci. 2021, 22, 3189. [Google Scholar] [CrossRef]
- Jia, W.; Wilar, G.; Kawahata, I.; Cheng, A.; Fukunaga, K. Impaired Acquisition of Nicotine-Induced Conditioned Place Preference in Fatty Acid-Binding Protein 3 Null Mice. Mol. Neurobiol. 2021, 58, 2030–2045. [Google Scholar] [CrossRef]
- Bono, F.; Mutti, V.; Fiorentini, C.; Missale, C. Dopamine D3 Receptor Heteromerization: Implications for Neuroplasticity and Neuroprotection. Biomolecules 2020, 10, 1016. [Google Scholar] [CrossRef]
- Bono, F.; Mutti, V.; Tomasoni, Z.; Sbrini, G.; Missale, C.; Fiorentini, C. Recent Advances in Dopamine D3 Receptor Heterodimers: Focus on Dopamine D3 and D1 Receptor–Receptor Interaction and Striatal Function. In Therapeutic Applications of Dopamine D3 Receptor Function: New Insight after 30 Years of Research; Boileau, I., Collo, G., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 47–72. [Google Scholar]
- Welch, A.C.; Zhang, J.; Lyu, J.; McMurray, M.S.; Javitch, J.A.; Kellendonk, C.; Dulawa, S.C. Dopamine D2 receptor overexpression in the nucleus accumbens core induces robust weight loss during scheduled fasting selectively in female mice. Mol. Psychiatry 2021, 26, 3765–3777. [Google Scholar] [CrossRef]
- Perreault, M.L.; Hasbi, A.; O’Dowd, B.F.; George, S.R. Heteromeric dopamine receptor signaling complexes: Emerging neurobiology and disease relevance. Neuropsychopharmacology 2014, 39, 156–168. [Google Scholar] [CrossRef] [PubMed]
- Maggio, R.; Aloisi, G.; Silvano, E.; Rossi, M.; Millan, M.J. Heterodimerization of dopamine receptors: New insights into functional and therapeutic significance. Parkinsonism Relat. Disord. 2009, 15 (Suppl. S4), S2–S7. [Google Scholar] [CrossRef]
- Vekshina, N.L.; Anokhin, P.K.; Veretinskaya, A.G.; Shamakina, I.Y. Dopamine D1–D2 receptor heterodimers: A literature review. Biochem. (Mosc.) Suppl. Ser. B Biomed. Chem. 2017, 11, 111–119. [Google Scholar] [CrossRef]
- Tritsch, N.X.; Sabatini, B.L. Dopaminergic Modulation of Synaptic Transmission in Cortex and Striatum. Neuron 2012, 76, 33–50. [Google Scholar] [CrossRef]
- Paspalas, C.D.; Rakic, P.; Goldman-Rakic, P.S. Internalization of D2 dopamine receptors is clathrin-dependent and select to dendro-axonic appositions in primate prefrontal cortex. Eur. J. Neurosci. 2006, 24, 1395–1403. [Google Scholar] [CrossRef]
- Mladinov, M.; Mayer, D.; Brčić, L.; Wolstencroft, E.; Man, N.; Holt, I.; Hof, P.; Morris, G.; Šimić, G. Astrocyte expression of D2-like dopamine receptors in the prefrontal cortex. Transl. Neurosci. 2010, 1, 238–243. [Google Scholar] [CrossRef]
- Wulaer, B.; Kunisawa, K.; Tanabe, M.; Yanagawa, A.; Saito, K.; Mouri, A.; Nabeshima, T. Pharmacological blockade of dopamine D1- or D2-receptor in the prefrontal cortex induces attentional impairment in the object-based attention test through different neuronal circuits in mice. Mol. Brain 2021, 14, 43. [Google Scholar] [CrossRef]
- Mahmoodkhani, M.; Ghasemi, M.; Derafshpour, L.; Amini, M.; Mehranfard, N. Developmental effects of early-life stress on dopamine D2 receptor and proteins involved in noncanonical D2 dopamine receptor signaling pathway in the prefrontal cortex of male rats. J. Complement. Integr. Med. 2021, 19, 697–703. [Google Scholar] [CrossRef]
- Subburaju, S.; Sromek, A.W.; Seeman, P.; Neumeyer, J.L. The High Affinity Dopamine D2 Receptor Agonist MCL-536: A New Tool for Studying Dopaminergic Contribution to Neurological Disorders. ACS Chem. Neurosci. 2021, 12, 1428–1437. [Google Scholar] [CrossRef]
- Alam, S.I.; Jo, M.G.; Park, T.J.; Ullah, R.; Ahmad, S.; Rehman, S.U.; Kim, M.O. Quinpirole-Mediated Regulation of Dopamine D2 Receptors Inhibits Glial Cell-Induced Neuroinflammation in Cortex and Striatum after Brain Injury. Biomedicines 2021, 9, 47. [Google Scholar] [CrossRef]
- Cai, G.; Wang, H.Y.; Friedman, E. Increased dopamine receptor signaling and dopamine receptor-G protein coupling in denervated striatum. J. Pharmacol. Exp. Ther. 2002, 302, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Marcott, P.F.; Gong, S.; Donthamsetti, P.; Grinnell, S.G.; Nelson, M.N.; Newman, A.H.; Birnbaumer, L.; Martemyanov, K.A.; Javitch, J.A.; Ford, C.P. Regional Heterogeneity of D2-Receptor Signaling in the Dorsal Striatum and Nucleus Accumbens. Neuron 2018, 98, 575–587.e4. [Google Scholar] [CrossRef]
- Gong, S.; Fayette, N.; Heinsbroek, J.A.; Ford, C.P. Cocaine shifts dopamine D2 receptor sensitivity to gate conditioned behaviors. Neuron 2021, 109, 3421–3435.e25. [Google Scholar] [CrossRef]
- Lewis, R.G.; Serra, M.; Radl, D.; Gori, M.; Tran, C.; Michalak, S.E.; Vanderwal, C.D.; Borrelli, E. Dopaminergic Control of Striatal Cholinergic Interneurons Underlies Cocaine-Induced Psychostimulation. Cell Rep. 2020, 31, 107527. [Google Scholar] [CrossRef]
- Del’guidice, T.; Lemasson, M.; Beaulieu, J.M. Role of Beta-arrestin 2 downstream of dopamine receptors in the Basal Ganglia. Front. Neuroanat. 2011, 5, 58. [Google Scholar] [CrossRef]
- Urs, N.M.; Gee, S.M.; Pack, T.F.; McCorvy, J.D.; Evron, T.; Snyder, J.C.; Yang, X.; Rodriguiz, R.M.; Borrelli, E.; Wetsel, W.C.; et al. Distinct cortical and striatal actions of a β-arrestin-biased dopamine D2 receptor ligand reveal unique antipsychotic-like properties. Proc. Natl. Acad. Sci. USA 2016, 113, E8178–E8186. [Google Scholar] [CrossRef]
- Urs, N.M.; Peterson, S.M.; Caron, M.G. New Concepts in Dopamine D2 Receptor Biased Signaling and Implications for Schizophrenia Therapy. Biol. Psychiatry 2017, 81, 78–85. [Google Scholar] [CrossRef]
- Matsumoto, M.; Hidaka, K.; Akiho, H.; Tada, S.; Okada, M.; Yamaguchi, T. Low stringency hybridization study of the dopamine D4 receptor revealed D4-like mRNA distribution of the orphan seven-transmembrane receptor, APJ, in human brain. Neurosci. Lett. 1996, 219, 119–122. [Google Scholar] [CrossRef]
- Yuen, E.Y.; Yan, Z. Dopamine D4 receptors regulate AMPA receptor trafficking and glutamatergic transmission in GABAergic interneurons of prefrontal cortex. J. Neurosci. 2009, 29, 550–562. [Google Scholar] [CrossRef]
- Graziane, N.M.; Yuen, E.Y.; Yan, Z. Dopamine D4 Receptors Regulate GABAA Receptor Trafficking via an Actin/Cofilin/Myosin-dependent Mechanism. J. Biol. Chem. 2009, 284, 8329–8336. [Google Scholar] [CrossRef]
- Magill, P.J.; Bolam, J.P.; Bevan, M.D. Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus–globus pallidus network. Neuroscience 2001, 106, 313–330. [Google Scholar] [CrossRef]
- Emmi, A.; Campagnolo, M.; Stocco, E.; Carecchio, M.; Macchi, V.; Antonini, A.; De Caro, R.; Porzionato, A. Neurotransmitter and receptor systems in the subthalamic nucleus. Brain Struct. Funct. 2023, 228, 1595–1617. [Google Scholar] [CrossRef]
- Kaur, S.; Singh, S.; Jaiswal, G.; Kumar, S.; Hourani, W.; Gorain, B.; Kumar, P. Pharmacology of Dopamine and Its Receptors. In Frontiers in Pharmacology of Neurotransmitters; Kumar, P., Deb, P.K., Eds.; Springer: Singapore, 2020; pp. 143–182. [Google Scholar]
- Galvan, A.; Hu, X.; Rommelfanger, K.S.; Pare, J.F.; Khan, Z.U.; Smith, Y.; Wichmann, T. Localization and function of dopamine receptors in the subthalamic nucleus of normal and parkinsonian monkeys. J. Neurophysiol. 2014, 112, 467–479. [Google Scholar] [CrossRef]
- Hurd, Y.L.; Suzuki, M.; Sedvall, G.C. D1 and D2 dopamine receptor mRNA expression in whole hemisphere sections of the human brain. J. Chem. Neuroanat. 2001, 22, 127–137. [Google Scholar] [CrossRef]
- Dawson, T.M.; Gehlert, D.R.; McCabe, R.T.; Barnett, A.; Wamsley, J.K. D-1 dopamine receptors in the rat brain: A quantitative autoradiographic analysis. J. Neurosci. 1986, 6, 2352–2365. [Google Scholar] [CrossRef]
- Wang, X.S.; Ong, W.Y.; Lee, H.K.; Huganir, R.L. A light and electron microscopic study of glutamate receptors in the monkey subthalamic nucleus. J. Neurocytol. 2000, 29, 743–754. [Google Scholar] [CrossRef]
- Emmi, A.; Antonini, A.; Sandre, M.; Baldo, A.; Contran, M.; Macchi, V.; Guidolin, D.; Porzionato, A.; De Caro, R. Topography and distribution of adenosine A2A and dopamine D2 receptors in the human Subthalamic Nucleus. Front. Neurosci. 2022, 16, 945574. [Google Scholar] [CrossRef]
- Gross, G.; Drescher, K. The role of dopamine D3 receptors in antipsychotic activity and cognitive functions. Handb. Exp. Pharmacol. 2012, 167–210. [Google Scholar]
- Nakajima, S.; Gerretsen, P.; Takeuchi, H.; Caravaggio, F.; Chow, T.; Le Foll, B.; Mulsant, B.; Pollock, B.; Graff-Guerrero, A. The potential role of dopamine D3 receptor neurotransmission in cognition. Eur. Neuropsychopharmacol. 2013, 23, 799–813. [Google Scholar] [CrossRef]
- Mehta, T.R.; Murala, S.; Siddiqui, J. Dopamine. In Neurochemistry in Clinical Practice; Bollu, P.C., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–23. [Google Scholar]
- Muly, E.C.; Senyuz, M.; Khan, Z.U.; Guo, J.D.; Hazra, R.; Rainnie, D.G. Distribution of D1 and D5 dopamine receptors in the primate and rat basolateral amygdala. Brain Struct. Funct. 2009, 213, 375–393. [Google Scholar] [CrossRef]
- Lintas, A.; Chi, N.; Lauzon, N.M.; Bishop, S.F.; Gholizadeh, S.; Sun, N.; Tan, H.; Laviolette, S.R. Identification of a dopamine receptor-mediated opiate reward memory switch in the basolateral amygdala-nucleus accumbens circuit. J. Neurosci. 2011, 31, 11172–11183. [Google Scholar] [CrossRef]
- Takahashi, H.; Takano, H.; Kodaka, F.; Arakawa, R.; Yamada, M.; Otsuka, T.; Hirano, Y.; Kikyo, H.; Okubo, Y.; Kato, M.; et al. Contribution of dopamine D1 and D2 receptors to amygdala activity in human. J. Neurosci. 2010, 30, 3043–3047. [Google Scholar] [CrossRef]
- Wu, J.; Xiao, H.; Sun, H.; Zou, L.; Zhu, L.-Q. Role of Dopamine Receptors in ADHD: A Systematic Meta-analysis. Mol. Neurobiol. 2012, 45, 605–620. [Google Scholar] [CrossRef] [PubMed]
- de la Mora, M.P.; Gallegos-Cari, A.; Arizmendi-García, Y.; Marcellino, D.; Fuxe, K. Role of dopamine receptor mechanisms in the amygdaloid modulation of fear and anxiety: Structural and functional analysis. Prog. Neurobiol. 2010, 90, 198–216. [Google Scholar] [CrossRef]
- Ferré, S.; Belcher, A.M.; Bonaventura, J.; Quiroz, C.; Sánchez-Soto, M.; Casadó-Anguera, V.; Cai, N.S.; Moreno, E.; Boateng, C.A.; Keck, T.M.; et al. Functional and pharmacological role of the dopamine D4 receptor and its polymorphic variants. Front. Endocrinol. 2022, 13, 1014678. [Google Scholar] [CrossRef]
- Kempadoo, K.A.; Mosharov, E.V.; Choi, S.J.; Sulzer, D.; Kandel, E.R. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. Proc. Natl. Acad. Sci. USA 2016, 113, 14835–14840. [Google Scholar] [CrossRef]
- Tsetsenis, T.; Broussard, J.I.; Dani, J.A. Dopaminergic regulation of hippocampal plasticity, learning, and memory. Front. Behav. Neurosci. 2023, 16, 1092420. [Google Scholar] [CrossRef]
- Edelmann, E.; Lessmann, V. Dopaminergic innervation and modulation of hippocampal networks. Cell Tissue Res. 2018, 373, 711–727. [Google Scholar] [CrossRef]
- Pan, X.; Kaminga, A.C.; Wen, S.W.; Wu, X.; Acheampong, K.; Liu, A. Dopamine and Dopamine Receptors in Alzheimer’s Disease: A Systematic Review and Network Meta-Analysis. Front. Aging Neurosci. 2019, 11, 175. [Google Scholar] [CrossRef] [PubMed]
- Martorana, A.; Koch, G. Is dopamine involved in Alzheimer’s disease? Front. Aging Neurosci. 2014, 6, 252. [Google Scholar] [CrossRef]
- Sala, A.; Caminiti, S.P.; Presotto, L.; Pilotto, A.; Liguori, C.; Chiaravalloti, A.; Garibotto, V.; Frisoni, G.B.; D’Amelio, M.; Paghera, B.; et al. In vivo human molecular neuroimaging of dopaminergic vulnerability along the Alzheimer’s disease phases. Alzheimers Res. Ther. 2021, 13, 187. [Google Scholar] [CrossRef]
- Zhang, X.-L.; Liu, S.; Sun, Q.; Zhu, J.-X. Dopamine Receptors in the Gastrointestinal Tract. In Dopamine in the Gut; Zhu, J.-X., Ed.; Springer: Singapore, 2021; pp. 53–85. [Google Scholar]
- Prieto, G.A. Abnormalities of Dopamine D3 Receptor Signaling in the Diseased Brain. J. Cent. Nerv. Syst. Dis. 2017, 9, 1179573517726335. [Google Scholar] [CrossRef]
- Latif, S.; Jahangeer, M.; Maknoon Razia, D.; Ashiq, M.; Ghaffar, A.; Akram, M.; El Allam, A.; Bouyahya, A.; Garipova, L.; Ali Shariati, M.; et al. Dopamine in Parkinson’s disease. Clin. Chim. Acta 2021, 522, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Prasad, E.M.; Hung, S.Y. Current Therapies in Clinical Trials of Parkinson’s Disease: A 2021 Update. Pharmaceuticals 2021, 14, 717. [Google Scholar] [CrossRef]
- Robertson, H.A. Synergistic interactions of D1- and D2-selective dopamine agonists in animal models for Parkinson’s disease: Sites of action and implications for the pathogenesis of dyskinesias. Can. J. Neurol. Sci. 1992, 19, 147–152. [Google Scholar] [CrossRef]
- Shetty, A.S.; Bhatia, K.P.; Lang, A.E. Dystonia and Parkinson’s disease: What is the relationship? Neurobiol. Dis. 2019, 132, 104462. [Google Scholar] [CrossRef]
- Kawahata, I.; Fukunaga, K. Degradation of Tyrosine Hydroxylase by the Ubiquitin-Proteasome System in the Pathogenesis of Parkinson’s Disease and Dopa-Responsive Dystonia. Int. J. Mol. Sci. 2020, 21, 3779. [Google Scholar] [CrossRef]
- Kawahata, I.; Fukunaga, K. Impact of fatty acid-binding proteins and dopamine receptors on α-synucleinopathy. J. Pharmacol. Sci. 2022, 148, 248–254. [Google Scholar] [CrossRef]
- Mansvelder, H.D.; McGehee, D.S. Cellular and synaptic mechanisms of nicotine addiction. J. Neurobiol. 2002, 53, 606–617. [Google Scholar] [CrossRef]
- Kauer, J.A. Learning mechanisms in addiction: Synaptic plasticity in the ventral tegmental area as a result of exposure to drugs of abuse. Annu. Rev. Physiol. 2004, 66, 447–475. [Google Scholar] [CrossRef] [PubMed]
- Picciotto, M.R.; Corrigall, W.A. Neuronal systems underlying behaviors related to nicotine addiction: Neural circuits and molecular genetics. J. Neurosci. 2002, 22, 3338–3341. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R.; Adermark, L. Dopaminergic Regulation of Striatal Interneurons in Reward and Addiction: Focus on Alcohol. Neural Plast. 2015, 2015, 814567. [Google Scholar] [CrossRef] [PubMed]
- Kawahata, I.; Ohtaku, S.; Tomioka, Y.; Ichinose, H.; Yamakuni, T. Dopamine or biopterin deficiency potentiates phosphorylation at 40Ser and ubiquitination of tyrosine hydroxylase to be degraded by the ubiquitin proteasome system. Biochem. Biophys. Res. Commun. 2015, 465, 53–58. [Google Scholar] [CrossRef]
- Radnikow, G.; Misgeld, U. Dopamine D1 receptors facilitate GABAA synaptic currents in the rat substantia nigra pars reticulata. J. Neurosci. 1998, 18, 2009–2016. [Google Scholar] [CrossRef] [PubMed]
- Villar-Cheda, B.; Rodríguez-Pallares, J.; Valenzuela, R.; Muñoz, A.; Guerra, M.J.; Baltatu, O.C.; Labandeira-Garcia, J.L. Nigral and striatal regulation of angiotensin receptor expression by dopamine and angiotensin in rodents: Implications for progression of Parkinson’s disease. Eur. J. Neurosci. 2010, 32, 1695–1706. [Google Scholar] [CrossRef] [PubMed]
- Kliem, M.A.; Maidment, N.T.; Ackerson, L.C.; Chen, S.; Smith, Y.; Wichmann, T. Activation of nigral and pallidal dopamine D1-like receptors modulates basal ganglia outflow in monkeys. J. Neurophysiol. 2007, 98, 1489–1500. [Google Scholar] [CrossRef]
- Lahiri, A.K.; Bevan, M.D. Dopaminergic Transmission Rapidly and Persistently Enhances Excitability of D1 Receptor-Expressing Striatal Projection Neurons. Neuron 2020, 106, 277–290.e6. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Zhou, D.; Chase, K.; Gusella, J.F.; Aronin, N.; DiFiglia, M. Immunohistochemical localization of the D1 dopamine receptor in rat brain reveals its axonal transport, pre- and postsynaptic localization, and prevalence in the basal ganglia, limbic system, and thalamic reticular nucleus. Proc. Natl. Acad. Sci. USA 1992, 89, 11988–11992. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Xu, P.; Mao, C.; Wang, L.; Krumm, B.; Zhou, X.E.; Huang, S.; Liu, H.; Cheng, X.; Huang, X.P.; et al. Structural insights into the human D1 and D2 dopamine receptor signaling complexes. Cell 2021, 184, 931–942. [Google Scholar] [CrossRef] [PubMed]
- Rani, M.; Kanungo, M.S. Expression of D2 dopamine receptor in the mouse brain. Biochem. Biophys. Res. Commun. 2006, 344, 981–986. [Google Scholar] [CrossRef]
- Nagatsu, T.; Levitt, M.; Udenfriend, S. Tyrosine Hydroxylase. The initial step in norepinephrine biosynthesis. J. Biol. Chem. 1964, 239, 2910–2917. [Google Scholar] [CrossRef]
- Nagatsu, T. Change of tyrosine hydroxylase in the parkinsonian brain and in the brain of MPTP-treated mice as revealed by homospecific activity. Neurochem. Res. 1990, 15, 425–429. [Google Scholar] [CrossRef]
- Nagatsu, T. The catecholamine system in health and disease—Relation to tyrosine 3-monooxygenase and other catecholamine-synthesizing enzymes. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2007, 82, 388–415. [Google Scholar] [CrossRef]
- Nagatsu, T.; Nagatsu, I. Tyrosine hydroxylase (TH), its cofactor tetrahydrobiopterin (BH4), other catecholamine-related enzymes, and their human genes in relation to the drug and gene therapies of Parkinson’s disease (PD): Historical overview and future prospects. J. Neural Transm. 2016, 123, 1255–1278. [Google Scholar] [CrossRef]
- Nagatsu, T. Catecholamines and Parkinson’s disease: Tyrosine hydroxylase (TH) over tetrahydrobiopterin (BH4) and GTP cyclohydrolase I (GCH1) to cytokines, neuromelanin, and gene therapy: A historical overview. J. Neural Transm. 2023, 1–14. [Google Scholar] [CrossRef]
- Salvatore, M.F.; Kasanga, E.A.; Kelley, D.P.; Venable, K.E.; McInnis, T.R.; Cantu, M.A.; Terrebonne, J.; Lanza, K.; Meadows, S.M.; Centner, A.; et al. Modulation of nigral dopamine signaling mitigates parkinsonian signs of aging: Evidence from intervention with calorie restriction or inhibition of dopamine uptake. Geroscience 2023, 45, 45–63. [Google Scholar] [CrossRef]
- Salvatore, M.F.; Terrebonne, J.; Cantu, M.A.; McInnis, T.R.; Venable, K.; Kelley, P.; Kasanga, E.A.; Latimer, B.; Owens, C.L.; Pruett, B.S.; et al. Dissociation of Striatal Dopamine and Tyrosine Hydroxylase Expression from Aging-Related Motor Decline: Evidence from Calorie Restriction Intervention. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 73, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Trevitt, J.; Carlson, B.; Nowend, K.; Salamone, J. Substantia nigra pars reticulata is a highly potent site of action for the behavioral effects of the D1 antagonist SCH 23390 in the rat. Psychopharmacology 2001, 156, 32–41. [Google Scholar] [CrossRef]
- Li, H.; Feng, Y.; Chen, Z.; Jiang, X.; Zhou, Z.; Yuan, J.; Li, F.; Zhang, Y.; Huang, X.; Fan, S.; et al. Pepper component 7-ethoxy-4-methylcoumarin, a novel dopamine D2 receptor agonist, ameliorates experimental Parkinson’s disease in mice and Caenorhabditis elegans. Pharmacol. Res. 2021, 163, 105220. [Google Scholar] [CrossRef] [PubMed]
- Kasanga, E.A.; Han, Y.; Shifflet, M.K.; Navarrete, W.; McManus, R.; Parry, C.; Barahona, A.; Nejtek, V.A.; Manfredsson, F.P.; Kordower, J.H.; et al. Nigral-specific increase in ser31 phosphorylation compensates for tyrosine hydroxylase protein and nigrostriatal neuron loss: Implications for delaying parkinsonian signs. Exp. Neurol. 2023, 368, 114509. [Google Scholar] [CrossRef] [PubMed]
- David, V.; Besson, M.; Changeux, J.P.; Granon, S.; Cazala, P. Reinforcing effects of nicotine microinjections into the ventral tegmental area of mice: Dependence on cholinergic nicotinic and dopaminergic D1 receptors. Neuropharmacology 2006, 50, 1030–1040. [Google Scholar] [CrossRef]
- Ikemoto, S.; Qin, M.; Liu, Z.H. Primary reinforcing effects of nicotine are triggered from multiple regions both inside and outside the ventral tegmental area. J. Neurosci. 2006, 26, 723–730. [Google Scholar] [CrossRef]
- de Oliveira, A.R.; Reimer, A.E.; Brandão, M.L. Role of dopamine receptors in the ventral tegmental area in conditioned fear. Behav. Brain Res. 2009, 199, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Tong, Q. Anatomy and Function of Ventral Tegmental Area Glutamate Neurons. Front. Neural Circuits 2022, 16, 867053. [Google Scholar] [CrossRef] [PubMed]
- Hamamah, S.; Aghazarian, A.; Nazaryan, A.; Hajnal, A.; Covasa, M. Role of Microbiota-Gut-Brain Axis in Regulating Dopaminergic Signaling. Biomedicines 2022, 10, 436. [Google Scholar] [CrossRef] [PubMed]
- Kutlu, M.G.; Burke, D.; Slade, S.; Hall, B.J.; Rose, J.E.; Levin, E.D. Role of insular cortex D1 and D2 dopamine receptors in nicotine self-administration in rats. Behav. Brain Res. 2013, 256, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Chu, R.; Cao, F.; Wang, Y.; Liu, Y.; Cao, J.; Guo, Y.; Mi, W.; Tong, L. Dopaminergic Neurons in the Ventral Tegmental-Prelimbic Pathway Promote the Emergence of Rats from Sevoflurane Anesthesia. Neurosci. Bull. 2022, 38, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Root, D.H.; Hoffman, A.F.; Good, C.H.; Zhang, S.; Gigante, E.; Lupica, C.R.; Morales, M. Norepinephrine activates dopamine D4 receptors in the rat lateral habenula. J. Neurosci. 2015, 35, 3460–3469. [Google Scholar] [CrossRef] [PubMed]
- Isaacson, S.H.; Hauser, R.A.; Pahwa, R.; Gray, D.; Duvvuri, S. Dopamine agonists in Parkinson’s disease: Impact of D1-like or D2-like dopamine receptor subtype selectivity and avenues for future treatment. Clin. Park. Relat. Disord. 2023, 9, 100212. [Google Scholar] [CrossRef] [PubMed]
- Mailman, R.B.; Yang, Y.; Huang, X. D1, not D2, dopamine receptor activation dramatically improves MPTP-induced parkinsonism unresponsive to levodopa. Eur. J. Pharmacol. 2021, 892, 173760. [Google Scholar] [CrossRef]
- Zhao, F.; Cheng, Z.; Piao, J.; Cui, R.; Li, B. Dopamine Receptors: Is It Possible to Become a Therapeutic Target for Depression? Front. Pharmacol. 2022, 13, 947785. [Google Scholar] [CrossRef]
- Svensson, K.A.; Heinz, B.A.; Schaus, J.M.; Beck, J.P.; Hao, J.; Krushinski, J.H.; Reinhard, M.R.; Cohen, M.P.; Hellman, S.L.; Getman, B.G.; et al. An Allosteric Potentiator of the Dopamine D1 Receptor Increases Locomotor Activity in Human D1 Knock-In Mice without Causing Stereotypy or Tachyphylaxis. J. Pharmacol. Exp. Ther. 2017, 360, 117–128. [Google Scholar] [CrossRef]
- Riesenberg, R.; Werth, J.; Zhang, Y.; Duvvuri, S.; Gray, D. PF-06649751 efficacy and safety in early Parkinson’s disease: A randomized, placebo-controlled trial. Ther. Adv. Neurol. Disord. 2020, 13, 1756286420911296. [Google Scholar] [CrossRef]
- Young, D.; Popiolek, M.; Trapa, P.; Fonseca, K.R.; Brevard, J.; Gray, D.L.; Kozak, R. D1 Agonist Improved Movement of Parkinsonian Nonhuman Primates with Limited Dyskinesia Side Effects. ACS Chem. Neurosci. 2020, 11, 560–566. [Google Scholar] [CrossRef]
- Sohur, U.S.; Gray, D.L.; Duvvuri, S.; Zhang, Y.; Thayer, K.; Feng, G. Phase 1 Parkinson’s Disease Studies Show the Dopamine D1/D5 Agonist PF-06649751 is Safe and Well Tolerated. Neurol. Ther. 2018, 7, 307–319. [Google Scholar] [CrossRef]
- Balice-Gordon, R.; Honey, G.D.; Chatham, C.; Arce, E.; Duvvuri, S.; Naylor, M.G.; Liu, W.; Xie, Z.; DeMartinis, N.; Harel, B.T.; et al. A Neurofunctional Domains Approach to Evaluate D1/D5 Dopamine Receptor Partial Agonism on Cognition and Motivation in Healthy Volunteers With Low Working Memory Capacity. Int. J. Neuropsychopharmacol. 2020, 23, 287–299. [Google Scholar] [CrossRef]
- Huang, X.; Lewis, M.M.; Van Scoy, L.J.; De Jesus, S.; Eslinger, P.J.; Arnold, A.C.; Miller, A.J.; Fernandez-Mendoza, J.; Snyder, B.; Harrington, W.; et al. The D1/D5 Dopamine Partial Agonist PF-06412562 in Advanced-Stage Parkinson’s Disease: A Feasibility Study. J. Parkinsons Dis. 2020, 10, 1515–1527. [Google Scholar] [CrossRef]
- Papapetropoulos, S.; Liu, W.; Duvvuri, S.; Thayer, K.; Gray, D.L. Evaluation of D1/D5 Partial Agonist PF-06412562 in Parkinson’s Disease following Oral Administration. Neurodegener. Dis. 2018, 18, 262–269. [Google Scholar] [CrossRef]
- Yang, P.; Knight, W.C.; Li, H.; Guo, Y.; Perlmutter, J.S.; Benzinger, T.L.S.; Morris, J.C.; Xu, J. Dopamine D1 + D3 receptor density may correlate with parkinson disease clinical features. Ann. Clin. Transl. Neurol. 2021, 8, 224–237. [Google Scholar] [CrossRef]
- Ptacek, R.; Kuzelova, H.; Stefano, G.B.; Raboch, J.; Kream, R.M. Targeted D4 dopamine receptors: Implications for drug discovery and therapeutic development. Curr. Drug Targets 2013, 14, 507–512. [Google Scholar] [CrossRef]
- Mohr, P.; Masopust, J.; Kopeček, M. Dopamine Receptor Partial Agonists: Do They Differ in Their Clinical Efficacy? Front. Psychiatry 2021, 12, 781946. [Google Scholar] [CrossRef]
- Keks, N.; Hope, J.; Schwartz, D.; McLennan, H.; Copolov, D.; Meadows, G. Comparative Tolerability of Dopamine D2/3 Receptor Partial Agonists for Schizophrenia. CNS Drugs 2020, 34, 473–507. [Google Scholar] [CrossRef] [PubMed]
- Kaczor, A.A.; Wróbel, T.M.; Bartuzi, D. Allosteric Modulators of Dopamine D2 Receptors for Fine-Tuning of Dopaminergic Neurotransmission in CNS Diseases: Overview, Pharmacology, Structural Aspects and Synthesis. Molecules 2022, 28, 178. [Google Scholar] [CrossRef] [PubMed]
- Basu, D.; Tian, Y.; Bhandari, J.; Jiang, J.R.; Hui, P.; Johnson, R.L.; Mishra, R.K. Effects of the dopamine D2 allosteric modulator, PAOPA, on the expression of GRK2, arrestin-3, ERK1/2, and on receptor internalization. PLoS ONE 2013, 8, e70736. [Google Scholar] [CrossRef] [PubMed]
Subtypes | Location | Responses | Ref. | |
---|---|---|---|---|
D1-Like Receptors | D1 (D1A and D1B) Receptor | Predominantly in the striatum, nucleus accumbens, substantia nigra, olfactory bulb, and cortex | Stimulates adenylate cyclase, increasing intracellular cAMP levels | [1,2,3,5,6,13,14,15,16,17,18,19] |
D5 Receptor | Broadly distributed in the brain, including in the hippocampus, thalamus, striatum, nucleus accumbens, and amygdala | Stimulates adenylate cyclase, increasing intracellular cAMP levels | [1,4,5,20,21,22,23] | |
D2-Like Receptors | D2 (D2S and D2L) Receptor | Predominantly in the striatum, nucleus accumbens, and olfactory bulb; the hippocampus, amygdala, hypothalamus, and cortex at a lower level | Inhibits adenylate cyclase, decreasing cAMP levels | [6,7,8,9,10,24,25,26,27,28,29,30,31,32,33,34] |
D3 Receptor | Found in the nucleus accumbens, insular cortex, amygdala, and hippocampus | Inhibits adenylate cyclase, decreasing cAMP levels | [35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51] | |
D4 Receptor | Located in the prefrontal cortex, hippocampus, amygdala, and striatum | Inhibits adenylate cyclase, decreasing cAMP levels | [52,53,54,55,56,57,58] |
Subtypes | Expression | Function | Related Diseases | Ref. |
---|---|---|---|---|
D1 receptors | Direct pathway medium spiny neurons (dMSNs) | Facilitation of movement, reward and reinforcement, cognitive functions, neuroplasticity | Motor disorders, including Parkinson’s disease, Huntington’s disease, schizophrenia, addictions | [5,13,36,84,85,93,95,96,99,100,101,102] |
D2 receptors | Indirect pathway medium spiny neurons (iMSNs) | Inhibition of movement, modulation of reward, neurotransmitter release, motor learning | Motor disorders, including Parkinson’s disease, Huntington’s disease, schizophrenia, addictions | [9,36,84,85,91,93,95,96,99,100,101,102,103,104,105,106] |
D3 receptors | Cholinergic interneurons and iMSNs | Emotional responses, motivation, cognitive functions | Addiction, schizophrenia, mood disorders | [36,38,46,83,84,85,99,100,101,107] |
D4 receptors | GABAergic interneurons and dMSNs | Executive functions, emotional processing, response to novelty | Attention-deficit hyperactivity disorder (ADHD), certain psychiatric conditions | [36,53,54,84,85,99,101,104] |
D5 receptors | Cholinergic and parvalbumin-positive interneurons, dMSNs | Modulation of motor activity and cognitive processes | Schizophrenia, cognitive dysfunction | [5,9,23,84,85,99,101] |
Subtypes | Expression | Function | Related Diseases | Ref. |
---|---|---|---|---|
D1 receptors | Predominantly in the dMSNs | Rewards, motivation, and learning; olfaction and learning | Implicated in addiction, ADHD, schizophrenia, and depression | [1,6,14,36,52,85,99,100,106,107,117,121,122] |
D2 receptors | Predominantly in the iMSNs | Rewards, pleasures, and addictions; olfaction, social behavior, and emotion | Linked to Parkinson’s disease, addiction, schizophrenia | [1,6,14,36,52,85,99,100,106,107,117,121,122] |
D3 receptors | Nucleus accumbens shell; large aspiny neuron | Fear, anxiety, and depression; olfaction and rewards | Associated with addiction, depression, and schizophrenia | [83,85,99,100,107,121] |
D4 receptors | Nucleus accumbens core; medium aspiny neuron | Attention and motivation; olfaction and attention | Linked with ADHD and schizophrenia | [53,54,85,99,100,121] |
D5 receptors | Nucleus accumbens shell; dMSNs | Memory and cognition; olfaction and memory | Implicated in learning, memory, and cognitive disorders | [23,85,99,100,121] |
Subtypes | Physiological Functions | Related Diseases | Ref. |
---|---|---|---|
D1 receptors | Working memory maintenance, cognitive flexibility, executive functions, modulation of emotional responses | Implicated in cognitive deficits, schizophrenia | [38,67,85,88,99,100,118,119,120,125,139] |
D2 receptors | Modulation of executive functions, inhibition of impulsive behavior, regulation of reward-related behaviors, influences on attention and motivation | Associated with ADHD, addiction, cognitive impairments | [38,67,85,88,99,100,118,119,120,125,139] |
D3 receptors | Modulation of emotional responses, involvement in motivation and reward, potential role in addiction and dependence | Implicated in mood disorders, addiction | [38,67,85,88,99,100,118,119,120,125] |
D4 receptors | Contribution to executive functions, role in emotional processing, response to novelty, implications in attention disorders | Linked to ADHD, psychiatric impairments | [67,85,88,99,100,118,119,120,125] |
D5 receptors | Modulation of cognitive processes, potential involvement in schizophrenia | Associated with cognitive impairments, schizophrenia | [5,23,84,121] |
Subtypes | Physiological Functions | Related Diseases | Ref. |
---|---|---|---|
D1 receptors | Modulation of thalamocortical activity; motor functions, regulation of neuronal activity, working memory, and cognitive flexibility | Linked to movement disorders such as Parkinson’s disease, dyskinesia, schizophrenia, and addiction | [13,14,102,117,122,156,158] |
D2 receptors | Regulates thalamic output; reward processing and motor control | Associated with schizophrenia, Parkinson’s disease, addiction, depression | [14,102,113,122,157,159,160] |
D3 receptors | Mediates thalamic inhibition, motivation, and emotional regulation | Implications in schizophrenia, addiction, depression, anxiety | [42,83,100,107,161,162] |
D4 receptors | Influences thalamic gating, novelty seeking, and impulsivity | Implications in schizophrenia, ADHD, addiction | [67,150,155,163] |
D5 receptors | Enhances thalamocortical transmission, learning, and memory | Implication in schizophrenia, Parkinson’s disease, Alzheimer’s disease | [20,67,155,156,163] |
Subtypes | Physiological Functions | Related Diseases | Ref. |
---|---|---|---|
D1 receptors | Modulation of emotional responses, fear conditioning, synaptic plasticity Facilitates neuronal plasticity, which is necessary for fear conditioning and fear elimination | Dysfunctions linked to mood disorders, anxiety, and fear-related pathologies | [3,14,57,117,121,122,158,164,166,167] |
D2 receptors | Regulation of emotional responses and reinforcement learning Suppresses neuronal plasticity, which is necessary for fear conditioning and fear elimination | Altered expression associated with mood disorders, addictive behaviors, anxiety | [14,28,38,57,122,166,167] |
D3 receptors | Modulation of emotional responses, motivation, and reward, potential role in addiction and dependence | Potential involvement in mood disorders, addictive behaviors, anxiety disorders | [38,41,57,67,83,107,168] |
D4 receptors | Contribution to emotional processing, role in response to novelty, implications in attention and cognitive tasks | ADHD, schizophrenia, depression | [55,57,67,169] |
D5 receptors | Modulation of emotional responses, involvement in cognitive processes, potential role in schizophrenia | Alzheimer’s disease, depression, drug abuse | [23,57,121,164,167] |
Subtypes | Physiological Functions | Related Diseases | Ref. |
---|---|---|---|
D1 receptors | Positive modulation of motor coordination, influencing cognitive functions | Dysfunctions linked to movement disorders like Parkinson’s disease, motor impairments, and potentially addictive behaviors | [15,22,84,93,101,125,189,191,192,193,194] |
D2 receptors | Inhibition of excessive movement, control of reward-related behaviors involvement in motor skill learning | Altered expression associated with movement disorders, such as Parkinson’s disease, and some neuropsychiatric conditions | [22,91,93,101,125,140,194,195] |
D3 receptors | Modulation of emotional responses Regulation of cognitive functions | Potential implications in movement disorders | [38,42,49,83,101,125] |
D4 receptors | Contribution to executive functions Role in response to novelty | Parkinson’s disease, motor impairments | [53,54,67,84,101] |
D5 receptors | Modulation of motor activity Regulation of cognitive functions | Parkinson’s disease, motor impairments | [4,20,22,23,101] |
Subtypes | Physiological Functions | Related Diseases | Ref. |
---|---|---|---|
D1 receptors | Regulation of reward-related behaviors, control of motivation and reinforcement, contribution to emotional responses | Dysfunctions may contribute to addictive behaviors, mood disorders, and cognitive impairments | [1,6,13,102,116,125,210,211,212] |
D2 receptors | Modulation of aversive responses, regulation of neurotransmitter release, contribution to motor learning and adaptation | Altered expression linked to addiction, schizophrenia, and potentially motor-related disorders | [1,6,116,125,210,211] |
D3 receptors | Influence on motivation and reward processing, potential role in drug addiction and dependence | Implications in addiction and reward-related disorders | [38,67,125,210] |
D4 receptors | Involved in regulating dopamine pathways, potential role in motivation | Potential involvement in motivation and reward-related disorders, depression | [54,67,150,210,213] |
D5 receptors | Modulates neurotransmission, influences motor functions and cognitive processes | Addiction and cognitive impairments, depression | [4,20,23,67,210] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawahata, I.; Finkelstein, D.I.; Fukunaga, K. Dopamine D1–D5 Receptors in Brain Nuclei: Implications for Health and Disease. Receptors 2024, 3, 155-181. https://doi.org/10.3390/receptors3020009
Kawahata I, Finkelstein DI, Fukunaga K. Dopamine D1–D5 Receptors in Brain Nuclei: Implications for Health and Disease. Receptors. 2024; 3(2):155-181. https://doi.org/10.3390/receptors3020009
Chicago/Turabian StyleKawahata, Ichiro, David I. Finkelstein, and Kohji Fukunaga. 2024. "Dopamine D1–D5 Receptors in Brain Nuclei: Implications for Health and Disease" Receptors 3, no. 2: 155-181. https://doi.org/10.3390/receptors3020009
APA StyleKawahata, I., Finkelstein, D. I., & Fukunaga, K. (2024). Dopamine D1–D5 Receptors in Brain Nuclei: Implications for Health and Disease. Receptors, 3(2), 155-181. https://doi.org/10.3390/receptors3020009