Cycle Numbers of Cell Surface Recycling Receptors
Abstract
:1. Introduction
2. Calculation of the Average Cycle Number of Recycling Receptors
3. Relationship between Cycle Number, Half-Life, and Cycling Time
4. Cycle Numbers of Classical Recycling Receptors
Receptor | Cell Type | t½(min) | Tc (min) | nc |
Asialoglycoprotein | HepG2 cells | 720 [11] | 15.9 [4] | 65 |
Rat hepatocytes | 1200 [3] | 7.2 [3] | 240 | |
Low-density lipoprotein | Human fibroblasts | 1200 [12] | 12 [12] | 144 |
Mannose | Macrophages | 1980 [13] | 15 [13] | 190 |
Transferrin | HeLa | 1140 [14] | 21 [15] | 78 |
HepG2 cells | 420 [16] | 15.8 [5] | 38 | |
K562 cells | 480 [17] | 12.5 [17] | 55 | |
Trypanosoma brucei | 426 [7] | 10.7 [7] | 57 |
5. Cycle Numbers of Recycling Receptors Distinguish between Cancer and Normal Cells
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brown, M.S.; Anderson, R.G.W.; Goldstein, J.L. Recycling receptors: The round-trip itinerary of migrant membrane proteins. Cell 1983, 32, 663–667. [Google Scholar] [CrossRef] [PubMed]
- Stahl, P.; Schwartz, A.L. Receptor-mediated endocytosis. J. Clin. Investig. 1986, 77, 657–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warren, R.; Doyle, D. Turnover of the surface proteins and the receptor for serum asialoglycoproteins in primary cultures of rat hepatocytes. J. Biol. Chem. 1981, 256, 1346–1355. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A.L.; Fridovich, S.E.; Lodish, H.F. Kinetics of internalization and recycling of the asialoglycoprotein receptor in a hepatoma cell line. J. Biol. Chem. 1982, 257, 4230–4237. [Google Scholar] [CrossRef]
- Chiechanover, A.; Schwartz, A.L.; Dautry-Varsat, A.; Lodish, H.F. Kinetics of internalization and recycling of transferrin and the transferrin receptor in a human hepatoma cell line. Effect of lysosomotropic agents. J. Biol. Chem. 1983, 258, 9681–9689. [Google Scholar] [CrossRef]
- Harford, J.; Ashwell, G. Assessment of receptor recycling in mammalian hepatocystes: Perspectives based on current techniques. Methods Enzymol. 1985, 109, 232–246. [Google Scholar]
- Kabiri, M.; Steverding, D. Studies on the recycling of the transferrin receptor in Trypanosoma brucei using an inducible gene expression system. Eur. J. Biochem. 2000, 267, 3309–3314. [Google Scholar] [CrossRef]
- GeoGebra. 3D Calculator. Available online: https://www.geogebra.org/3d (accessed on 5 March 2023).
- Goldstein, J.L.; Brown, M.S.; Anderson, R.G.W.; Russell, D.W.; Schneider, W.J. Receptor-mediated endocytosis: Concepts emerging from the LDL receptor system. Ann. Rev. Cell Biol. 1985, 1, 1–39. [Google Scholar] [CrossRef]
- DiPaola, M.; Maxfield, F.R. Conformational changes in the receptors for epidermal growth factor and asialoglycoproteins induced by the mildly acidic pH found in endocytic vesicles. J. Biol. Chem. 1984, 259, 9163–9171. [Google Scholar] [CrossRef]
- Bischoff, J.; Lodish, H.F. Two asialoglycoprotein receptor polypeptides in human hepatoma cells. J. Biol. Chem. 1987, 262, 11825–11832. [Google Scholar] [CrossRef]
- Basu, S.K.; Goldstein, J.L.; Anderson, R.G.W.; Brown, M.S. Monensin interrupts the recycling of low density lipoprotein receptors in human fibroblasts. Cell 1981, 24, 493–502. [Google Scholar] [CrossRef]
- Lennartz, M.R.; Coles, F.S.; Stahl, P.D. Biosynthesis and processing of the mannose receptor in human macrophages. J. Biol. Chem. 1989, 264, 2385–2390. [Google Scholar] [CrossRef] [PubMed]
- Rutledge, E.A.; Mikoryak, C.A.; Draper, R.K. Turnover of the transferrin receptor is not influenced by removing most of the extracellular domain. J. Biol. Chem. 1991, 266, 21125–21130. [Google Scholar] [CrossRef]
- Bleil, J.D.; Bretscher, M.S. Transferrin receptor and its recycling in HeLa cell. EMBO J. 1982, 1, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Volz, B.; Orberger, G.; Porwoll, S.; Hauri, H.-P.; Tauber, R. Selective reentry of recycling cell surface glycoproteins to the biosynthetic pathway in human hepatocarcinoma HepG2 cells. J. Cell Biol. 1995, 130, 537–551. [Google Scholar] [CrossRef] [Green Version]
- Weissman, A.M.; Klausner, R.D.; Rao, K.; Harford, J.B. Exposure of K562 cells to anti-receptor monoclonal antibody OKT9 results in rapid redistribution and enhanced degradation of the transferrin receptor. J. Cell Biol. 1986, 102, 951–958. [Google Scholar] [CrossRef] [Green Version]
- Knowles, B.B.; Howe, C.C.; Aden, D.P. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science 1980, 209, 497–499. [Google Scholar] [CrossRef]
- Klein, E.; Ben-Bassat, H.; Neumann, H.; Ralph, P.; Zeuthen, J.; Polliack, A.; Vánky, F. Properties of the K562 cell line, derived from a patient with chronic myeloid leukemia. Int. J. Cancer 1976, 18, 421–431. [Google Scholar] [CrossRef]
- Lucey, B.P.; Nelson-Rees, W.A.; Hutchins, G.M. Henrietta Lacks, HeLa cells, and cell culture contamination. Arch. Pathol. Lab. Med. 2009, 133, 1463–1467. [Google Scholar] [CrossRef]
- Brown, M.S.; Goldstein, J.L. Regulation of the activity of the low density lipoprotein receptor in human fibroblasts. Cell 1975, 6, 307–316. [Google Scholar] [CrossRef]
- Neagu, M.; Constantin, C.; Popescu, J.D.; Zipeto, D.; Tzanakakis, G.; Nikitovic, D.; Fenga, C.; Stratakis, C.A.; Spandidos, D.A.; Tsatsakis, A.M. Inflammation and metabolism in cancer cell—Mitochondria key player. Front. Oncol. 2019, 9, 348. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Dai, Z.; Locasale, J.W. Metabolic landscape of the tumor microenvironment at single cell resolution. Nat. Commun. 2019, 10, 3763. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, C.R.; Trowbridge, I.S. Internalization and processing of transferrin and the transferrin receptor in human carcinoma A 431 cells. J. Cell Biol. 1983, 97, 508–521. [Google Scholar] [CrossRef]
- Berg, T.; Blomhoff, R.; Naess, L.; Tolleshaug, H.; Drevon, C.A. Monensin inhibits receptor-mediated endocytosis of asialoglycoproteins in hepatocytes. Exp. Cell Res. 1983, 148, 319–330. [Google Scholar] [CrossRef]
- Khan, I.; Steeg, P.S. Endocytosis: A pivotal pathway for regulating metastasis. Br. J. Cancer 2021, 124, 66–75. [Google Scholar] [CrossRef]
nc | Tc (min) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | ||
t½ (min) | 400 | 144 | 96 | 72 | 57 | 48 | 41 | 36 | 32 | 28 |
600 | 216 | 144 | 108 | 86 | 72 | 61 | 54 | 48 | 43 | |
800 | 288 | 192 | 144 | 115 | 96 | 82 | 72 | 64 | 57 | |
1000 | 360 | 240 | 180 | 144 | 120 | 103 | 90 | 80 | 72 | |
1200 | 432 | 288 | 216 | 173 | 144 | 123 | 108 | 96 | 86 | |
1400 | 505 | 336 | 252 | 202 | 168 | 144 | 126 | 112 | 101 | |
1600 | 577 | 384 | 288 | 230 | 192 | 164 | 144 | 128 | 115 | |
1800 | 649 | 432 | 324 | 259 | 216 | 185 | 162 | 144 | 129 | |
2000 | 721 | 481 | 360 | 288 | 240 | 206 | 180 | 160 | 144 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steverding, D. Cycle Numbers of Cell Surface Recycling Receptors. Receptors 2023, 2, 160-165. https://doi.org/10.3390/receptors2020010
Steverding D. Cycle Numbers of Cell Surface Recycling Receptors. Receptors. 2023; 2(2):160-165. https://doi.org/10.3390/receptors2020010
Chicago/Turabian StyleSteverding, Dietmar. 2023. "Cycle Numbers of Cell Surface Recycling Receptors" Receptors 2, no. 2: 160-165. https://doi.org/10.3390/receptors2020010
APA StyleSteverding, D. (2023). Cycle Numbers of Cell Surface Recycling Receptors. Receptors, 2(2), 160-165. https://doi.org/10.3390/receptors2020010