Cluster Set Resistance Training Reduces Autonomic Perturbations Compared to Traditional Protocols in Trained Healthy Young Individuals: A Clinical Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Aspects
2.2. Participants
2.3. Experimental Design
2.4. RT Protocol
2.5. Heart Rate Variability Measurement
2.6. Blood Pressure Measurement
2.7. Rating of Perceived Exertion
2.8. Statistical Analysis
3. Results
3.1. HRV Parameters
3.2. Blood Pressure and Heart Rate Data
3.3. RPE Data
3.4. Gender Effects
4. Discussion
Experimental Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2021 Mortality Collaborators. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 1681–1729. [Google Scholar]
- Grässler, B.; Thielmann, B.; Böckelmann, I.; Hökelmann, A. Effects of different training interventions on heart rate variability and cardiovascular health and risk factors in young and middle-aged adults: A systematic review. Front. Physiol. 2021, 12, 657274. [Google Scholar] [CrossRef]
- Kannankeril, P.J.; Goldberger, J.J. Parasympathetic effects on cardiac electrophysiology during exercise and recovery. Am. J. Physiol. Heart Circ. Physiol. 2002, 282, H2091–H2098. [Google Scholar] [CrossRef]
- Marasingha-Arachchige, S.U.; Rubio-Arias, J.Á.; Alcaraz, P.E.; Chung, L.H. Factors that affect heart rate variability following acute resistance exercise: A systematic review and meta-analysis. J. Sport Health Sci. 2022, 11, 376–392. [Google Scholar] [CrossRef] [PubMed]
- Besson, C.; Baggish, A.L.; Monteventi, P.; Schmitt, L.; Stucky, F.; Gremeaux, V. Assessing the clinical reliability of short-term heart rate variability: Insights from controlled dual-environment and dual-position measurements. Sci. Rep. 2025, 15, 5611. [Google Scholar] [CrossRef]
- Heffernan, K.S.; Kelly, E.E.; Collier, S.R.; Fernhall, B. Cardiac autonomic modulation during recovery from acute endurance versus resistance exercise. Eur. J. Cardiovasc. Prev. Rehabil. 2006, 13, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Dobbs, W.C.; Fedewa, M.V.; MacDonald, H.V.; Holmes, C.J.; Cicone, Z.S.; Plews, D.J.; Esco, M.R. The accuracy of acquiring heart rate variability from portable devices: A systematic review and meta-analysis. Sports Med. 2019, 49, 417–435. [Google Scholar] [CrossRef]
- Michael, S.; Graham, K.S.; Davis, G.M. Cardiac autonomic responses during exercise and post-exercise recovery using heart rate variability and systolic time intervals—A review. Front. Physiol. 2017, 8, 301. [Google Scholar] [CrossRef]
- Kingsley, J.D.; Figueroa, A. Acute and training effects of resistance exercise on heart rate variability. Clin. Physiol. Funct. Imaging 2016, 36, 179–187. [Google Scholar] [CrossRef]
- Steele, J.; Raubold, K.; Kemmler, W.; Fisher, J.; Gentil, P.; Giessing, J. The effects of 6 months of progressive high-effort resistance training methods upon strength, body composition, function, and wellbeing of elderly adults. Biomed. Res. Int. 2017, 2017, 2541090. [Google Scholar] [CrossRef]
- Vargas-Molina, S.; García-Sillero, M.; Maroto-Izquierdo, S.; Baz-Valle, E.; Bautista-Mayorga, B.; Murri, M.; Schoenfeld, B.J.; Benítez-Porres, J. Cluster sets and traditional sets elicit similar muscular hypertrophy: A volume and effort-matched study in resistance-trained individuals. Eur. J. Appl. Physiol. 2025, in press. [Google Scholar] [CrossRef] [PubMed]
- Haff, G.G. Quantifying workloads in resistance training: A brief review. Prof. Strength Cond. 2010, 19, 31–40. Available online: https://www.researchgate.net/publication/239731099_Quantifying_Workloads_in_Resistance_Training_A_Brief_Review (accessed on 11 July 2024).
- Nunes, J.H.C.; Locatelli, J.C.; Reck, H.B.; Porto, F.E.; Francisquini Neto, A.; Lopes, W.A. Cardiac autonomic control following resistance exercise with different set configurations in apparently healthy young men: A crossover study. Physiol. Behav. 2021, 230, 113292. [Google Scholar] [CrossRef]
- Gobbo, H.R.; Barbosa, G.M.; de Oliveira, L.C.; de Oliveira, G.V. The effect of different resistance training protocols on cardiac autonomic modulation during exercise recovery: A crossover, randomized, and controlled pilot study. J. Vasc. Dis. 2024, 3, 375–384. [Google Scholar] [CrossRef]
- Oliver, J.M.; Kreutzer, A.; Jenke, S.; Phillips, M.D.; Mitchell, J.B.; Jones, M.T. Acute response to cluster sets in trained and untrained men. Eur. J. Appl. Physiol. 2015, 115, 2383–2393. [Google Scholar] [CrossRef]
- Way, K.L.; Thomas, H.J.; Parker, L.; Maiorana, A.; Keske, M.A.; Scott, D.; Reed, J.L.; Tieng, J.; Hackett, D.; Hawkins, T.; et al. Cluster sets to prescribe interval resistance training: A potential method to optimise resistance training safety, feasibility, and efficacy in cardiac patients. Sports Med. Open 2023, 9, 86. [Google Scholar] [CrossRef]
- Rúa-Alonso, M.; Mayo, X.; Mota, J.; Kingsley, J.D.; Iglesias-Soler, E. A short set configuration attenuates the cardiac parasympathetic withdrawal after a whole-body resistance training session. Eur. J. Appl. Physiol. 2020, 120, 1803–1812. [Google Scholar] [CrossRef]
- Kliszczewicz, B.M.; Esco, M.R.; Quindry, J.C.; Blessing, D.L.; Oliver, G.D.; Taylor, K.J.; Price, B.M. Autonomic responses to an acute bout of high-intensity body weight resistance exercise vs. treadmill running. J. Strength Cond. Res. 2016, 30, 1050–1058. [Google Scholar] [CrossRef]
- Cavarretta, D.J.; Hall, E.E.; Bixby, W.R. The effects of increasing training load on affect and perceived exertion. J. Strength Cond. Res. 2022, 36, 16–21. [Google Scholar] [CrossRef]
- Sullivan, G.M.; Feinn, R. Using effect size—Or why the P value is not enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef]
- Figueiredo, T.; Willardson, J.M.; Miranda, H.; Bentes, C.M.; Reis, V.M.; Simão, R. Influence of load intensity on postexercise hypotension and heart rate variability after a strength training session. J. Strength Cond. Res. 2015, 29, 2941–2948. [Google Scholar] [CrossRef] [PubMed]
- Rial-Vázquez, J.; Rúa-Alonso, M.; Fariñas, J.; Aracama, A.; Tufano, J.; Iglesias-Soler, E. Heart rate responses and cardiovascular adaptations to resistance training programs differing in set configuration: A randomized controlled trial. Res. Q. Exerc. Sport 2023, 94, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Morshedi-Meibodi, A.; Larson, M.G.; Levy, D.; O’Donnell, C.J.; Vasan, R.S. Heart rate recovery after treadmill exercise testing and risk of cardiovascular disease events (The Framingham Heart Study). Am. J. Cardiol. 2002, 90, 848–852. [Google Scholar] [CrossRef] [PubMed]
- Mølgaard, H.; Sørensen, K.E.; Bjerregaard, P. Attenuated 24-h heart rate variability in apparently healthy subjects, subsequently suffering sudden cardiac death. Clin. Auton. Res. 1991, 1, 233–237. [Google Scholar] [CrossRef]
- Li, R.; Yan, R.; Cheng, W.; Ren, H. Effect of resistance training on heart rate variability of anxious female college students. Front. Public Health 2022, 10, 1050469. [Google Scholar] [CrossRef]
N (female) | 16 (7) |
Age (years) | 25 ± 2 |
Height (m) | 1.70 ± 0.1 |
Weight (kg) | 77.2 ± 16.5 |
BMI (kg/m2) | 25.9 ± 4.5 |
HRV Metrics | Traditional | Cluster Set | |
---|---|---|---|
RMSSD (ms) | Pre | 60.6 ± 33.3 | 59.7 ± 35.1 |
Post | 28.8 ± 20.9 a | 48.6 ± 50.4 | |
HF (nu) | Pre | 48.8 ± 17.9 | 48.1 ± 18.4 |
Post | 30.8 ± 16.3 a | 36.8 ± 21.9 | |
SD1 (ms) | Pre | 43.6 ± 23.4 | 43.2 ± 24.3 |
Post | 20.4 ± 14.8 a | 35.3 ± 34.6 | |
LF (nu) | Pre | 49.2 ± 15.8 | 52.3 ± 18.9 |
Post | 69.1 ±16.3 a | 63.1 ± 21.9 a | |
LF/HF ratio | Pre | 1.4 ± 1.2 | 1.4 ± 1.1 |
Post | 3.6 ± 3.3 a | 2.9 ± 2.5 a | |
SD2 (ms) | Pre | 69.5 ± 33.3 | 66.5 ± 29.7 |
Post | 43.1 ± 21.9 a | 56.8 ± 39.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soares, B.d.S.; Alves, M.C.G.; Cantelmo, C.E.; Barros, B.C.d.O.; de Oliveira, G.V. Cluster Set Resistance Training Reduces Autonomic Perturbations Compared to Traditional Protocols in Trained Healthy Young Individuals: A Clinical Study. J. Vasc. Dis. 2025, 4, 22. https://doi.org/10.3390/jvd4020022
Soares BdS, Alves MCG, Cantelmo CE, Barros BCdO, de Oliveira GV. Cluster Set Resistance Training Reduces Autonomic Perturbations Compared to Traditional Protocols in Trained Healthy Young Individuals: A Clinical Study. Journal of Vascular Diseases. 2025; 4(2):22. https://doi.org/10.3390/jvd4020022
Chicago/Turabian StyleSoares, Bianca de Souza, Maria Clara Gomes Alves, Carlos Eduardo Cantelmo, Bruna Cristina de Oliveira Barros, and Gustavo Vieira de Oliveira. 2025. "Cluster Set Resistance Training Reduces Autonomic Perturbations Compared to Traditional Protocols in Trained Healthy Young Individuals: A Clinical Study" Journal of Vascular Diseases 4, no. 2: 22. https://doi.org/10.3390/jvd4020022
APA StyleSoares, B. d. S., Alves, M. C. G., Cantelmo, C. E., Barros, B. C. d. O., & de Oliveira, G. V. (2025). Cluster Set Resistance Training Reduces Autonomic Perturbations Compared to Traditional Protocols in Trained Healthy Young Individuals: A Clinical Study. Journal of Vascular Diseases, 4(2), 22. https://doi.org/10.3390/jvd4020022