Systemic Arterial Function after Multisystem Inflammatory Syndrome in Children Associated with COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Definition
2.2. Subjects
2.3. Diagnostic Testing
2.3.1. Arterial Function
2.3.2. Echocardiography
2.4. Statistical Analysis
3. Results
3.1. Demographics
3.1.1. Pulse Wave Velocity and Echocardiographic Parameters
3.1.2. Inter-Observer/Intra-Observer Correlations for Echocardiographic Metrics
4. Discussion
4.1. Similarities to Kawasaki Disease
4.2. Possible Etiologies of Multisystem Inflammatory Syndrome in Children
4.3. Utility of Pulse Wave Velocity
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MIS-C | Multisystem inflammatory syndrome in children |
KD | Kawasaki Disease |
COVID-19 | Coronavirus 2019 |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
PWV | Pulse wave velocity |
CDC | Centers for Disease Control and Prevention |
CSTE | Council of State and Territorial Epidemiologists |
LV | Left ventricle |
Appendix A
- An individual aged < 21 years presenting with:
- ○
- Clinically severe illness requiring hospitalization.
- ○
- No alternative plausible diagnosis.
- ○
- Fever ≥ 38.0 °C for ≥24 h, or report of subjective fever lasting ≥24 h.
- ○
- Laboratory evidence of inflammation including, but not limited to, one or more of the following: an elevated C-reactive protein, erythrocyte sedimentation rate, fibrinogen, procalcitonin, d-dimer, ferritin, lactic acid dehydrogenase, or interleukin 6, elevated neutrophils, reduced lymphocytes and low albumin.
- ○
- Multisystem (≥2) organ involvement:
- ▪
- Cardiac (e.g., shock. Elevated troponin, BNP, abnormal echocardiogram, arrhythmia).
- ▪
- Renal (e.g., acute kidney injury, renal failure).
- ▪
- Respiratory (e.g., pneumonia, ARDS, pulmonary embolism).
- ▪
- Hematologic (e.g., elevated D-dimer, thrombophilia, thrombocytopenia).
- ▪
- Gastrointestinal (e.g., elevated bilirubin, elevated liver enzymes, diarrhea).
- ▪
- Dermatologic (e.g., rash, mucocutaneous lesions).
- ▪
- Neurological (e.g., CVA, aseptic meningitis, encephalopathy).
- Positive for current or recent SARS-CoV-2 infection by RT-PCR, serology, or antigen test; or exposure to a suspected or confirmed COVID-19 within the 4 weeks prior to the onset of symptoms.
Appendix B
- The clinical AND the laboratory criteria (Confirmed).
- OR the clinical criteria AND epidemiologic linkage criteria (Probable).
- OR the vital records criteria (Suspect).
- Subjective or documented fever (temperature ≥ 38.0 °C).
- Clinical severity requiring hospitalization or resulting in death.
- Evidence of systemic inflammation indicated by C reactive protein ≥ 3.0 mg/dL (30 mg/L).
- New onset manifestations in at least two of the following categories:
- 1.
- Cardiac involvement indicated by:
- a.
- Left ventricular ejection fraction < 55%.
- b.
- OR coronary artery dilatation, aneurysm, or ectasia.
- c.
- OR troponin elevated above laboratory normal range or indicated as elevated in a clinical note.
- 2.
- Mucocutaneous involvement indicated by:
- a.
- Rash.
- b.
- OR inflammation of the oral mucosa (e.g., mucosal erythema or swelling, drying or fissuring of the lips, strawberry tongue).
- c.
- OR conjunctivitis or conjunctival injection (redness of the eyes).
- d.
- OR extremity findings (e.g., erythema [redness] or edema [swelling] of the hands or feet).
- 3.
- Shock (Clinical documentation of shock meets this criterion)
- 4.
- Gastrointestinal involvement indicated by:
- a.
- Abdominal pain.
- b.
- OR vomiting.
- c.
- OR diarrhea.
- 5.
- Hematologic involvement indicated by:
- a.
- Platelet count < 150,000 cells/µL.
- b.
- OR absolute lymphocyte count (ALC) < 1000 cells/µL.
- Detection of SARS-CoV-2 RNA in a clinical specimen up to 60 days prior to or during hospitalization, or in a post-mortem specimen using a diagnostic molecular amplification test (e.g., polymerase chain reaction [PCR].
- OR detection of SARS-CoV-2 specific antigen in a clinical specimen up to 60 days prior to or during hospitalization, or in a post-mortem specimen.
- OR detection of SARS-CoV-2 specific antibodies in serum, plasma, or whole blood associated with current illness resulting in or during hospitalization.
References
- World Health Organization. Naming the Coronavirus Disease (COVID-19) and the Virus That Causes It. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease--(covid-2019)-and-the-virus-that-causes-it (accessed on 31 May 2023).
- Feldstein, L.R.; Rose, E.B.; Horwitz, S.M.; Collins, J.P.; Newhams, M.M.; Son, M.B.F.; Newburger, J.W.; Kleinman, L.C.; Heidemann, S.M.; Martin, M.A.; et al. Overcoming COVID-19 Investigators. Multisystem inflammatory syndrome in U.S. children and adolescents. N. Engl. J. Med. 2020, 383, 334–346. [Google Scholar] [CrossRef] [PubMed]
- Belay, E.D.; Abrams, J.; Oster, M.E.; Giovanni, J.; Pierce, T.; Meng, L.; Prezzato, E.; Balachandran, N.; Openshaw, J.J.; Rosen, H.E.; et al. Trends in geographic and temporal distribution of US children with multisystem inflammatory syndrome during the COVID-19 pandemic. JAMA Pediatr. 2021, 175, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Dufort, E.M.; Koumans, E.H.; Chow, E.J.; Rosenthal, E.M.; Alison Muse, M.P.H.; Jemma Rowlands, M.P.H.; Barranco, M.A.; Angela, M.P.H.; Maxted, M.; Rosenberg, E.S.; et al. New York State Centers for Disease Control and Prevention Multisystem inflammatory Syndrome in Children Investigation Team. Multisystem inflammatory syndrome in children in New York State. N. Engl. J. Med. 2020, 383, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, T. Acute febrile mucocutaneous syndrome with lymphoid involvement with specific desquamation of the fingers and toes in children: Clinical observations of 50 Cases. Jpn. J. Allergol. 1967, 16, 178–222. [Google Scholar]
- Kawasaki, T.; Kosaki, F.; Okawa, S.; Shigematsu, I.; Yanagawa, S. A new infantile acute febrile mucocutaneous lymph node syndrome (MLNS) prevailing in Japan. Pediatrics 1974, 54, 271–276. [Google Scholar] [CrossRef]
- Dhillon, R.; Clarkson, P.; Donald, A.E.; Powe, A.J.; Nash, M.; Novelli, V.; Dillon, M.J.; Deanfield, J.E. Endothelial dysfunction late after Kawasaki Disease. Circulation 1996, 94, 2103–2106. [Google Scholar] [CrossRef]
- McMurray, J.C.; May, J.W.; Cunningham, M.W.; Jones, O.Y. Multisystem inflammatory syndrome in children (multisystem inflammatory syndrome in children), a post-viral myocarditis and systemic vasculitis—A critical review of its pathogenesis and treatment. Front. Pediatr. 2020, 8, 626182. [Google Scholar] [CrossRef]
- Ooyanagi, R.; Fuse, S.; Tomita, H.; Takamuro, M.; Horita, N.; Mori, M.; Tsutsumi, H. Pulse wave velocity and ankle brachial index in patients with Kawasaki disease. Pediatr. Int. Off. J. Jpn. Pediatr. Soc. 2004, 46, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Jud, P.; Gressenberger, P.; Muster, V.; Avian, A.; Meinitzer, A.; STrohmaiier, H.; Sourij, H.; Raggam, R.B.; Stradner, M.H.; Demel, U.; et al. Evaluation of endothelial dysfunction and inflammatory vasculopathy after SARS-CoV-2 infection—A Cross-Sectional Study. Front. Cardiovasc. Med. 2021, 8, 750887. [Google Scholar] [CrossRef]
- Lambadiari, V.; Mitrakou, A.; Kountouri, A.; Thymis, J.; Katogiannis, K.; Korakas, E.; Varlamos, C.; Andreadou, I.; Tsoumani, M.; Triantafyllidi, H.; et al. Association of COVID-19 with impaired endothelial glycocalyx, vascular function and myocardial deformation 4 months after infection. Eur. J. Heart Fail. 2021, 23, 1916–1926. [Google Scholar] [CrossRef]
- Ikonomidis, I.; Lambadiari, V.; Mitrakou, A.; Kountouri, A.; Katogiannis, K.; Thymis, J.; Korakas, E.; Pavlidis, G.; Kazakou, P.; Panagopoulos, G.; et al. Myocardial work and vascular dysfunction are partially improved at 12 months after COVID-19 infection. Eur. J. Heart Fail. 2022, 24, 727–729. [Google Scholar] [CrossRef] [PubMed]
- Stamatelopoulos, K.; Georgiopoulos, G.; Baker, K.F.; Tiseo, G.; Delialis, D.; Lazaridis, C.; Barbieri, G.; Masi, S.; Vlachogiannis, N.I.; Sopova, K.; et al. Estimated pulse wave velocity improves risk stratification for all-cause mortality in patients with COVID-19. Sci. Rep. 2021, 11, 20239. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Case Definition for Multisystem Inflammatory Syndrome in Children (Multisystem Inflammatory Syndrome in Children). Atlanta, Georgia. Available online: https://emergency.cdc.gov/han/2020/han00432.asp (accessed on 31 May 2023).
- Council of State and Territorial Epidemiologists and Centers for Disease Control and Prevention. Surveillance Case Definition for Multisystem Inflammatory Syndrome in Children (Multisystem Inflammatory Syndrome in Children). Atlanta, Georgia. Effective January 1, 2023. Available online: https://www.cdc.gov/mmwr/volumes/71/rr/rr7104a1.htm (accessed on 24 August 2023).
- Laurent, S.; Cockcroft, J.; Van Bortel, L.; Boutouyrie, P.; Giannattasio, C.; Hayoz, D.; Pannier, B.; Vlachopoulos, C.; Wilkinson, I.; Struijker-Boudier, H. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur. Heart J. 2006, 27, 2588–2605. [Google Scholar] [CrossRef] [PubMed]
- Lopez, L.; Colan, S.D.; Frommelt, P.C.; Ensing, G.J.; Kendall, K.; Younoszai, A.K.; Lai, W.W.; Geva, T. Recommendations for Quantification Methods During the Performance of a Pediatric Echocardiogram: A Report From the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J. Am. Soc. Echocardiogr. 2010, 23, 465–495. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 233–271. [Google Scholar] [CrossRef] [PubMed]
- Devereux, R.B.; Alonso, D.R.; Lutas, E.M.; Gottlieb, G.J.; Campo, E.; Sachs, I.; Reichek, N. Echocardiographic assessment of left ventricular hypertrophy: Comparison to necropsy findings. Am. J. Cardiol. 1986, 57, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Reusz, G.S.; Cseprekal, O.; Temmar, M.; Kis, E.; Cherif, A.B.; Thaleb, A.; Fekete, A.; Szabó, A.J.; Benetos, A.; Salvi, P. Reference values of pulse wave velocity in healthy children and teenagers. Hypertension 2010, 56, 217–224. [Google Scholar] [CrossRef]
- Hidvégi, E.V.; Jakab, A.E.; Lenkey, Z.; Bereczki, C.; Cziráki, A.; Illyés, M. Updated and revised normal values of aortic pulse wave velocity in children and adolescents aged 3–18 years. J. Hum. Hypertens. 2020, 35, 604–612. [Google Scholar] [CrossRef]
- Cannon, L.; Campbell, M.J.; Wu, E.Y. Multisystem Inflammatory Syndrome in Children and Kawasaki Disease: Parallels in Pathogenesis and Treatment. Curr. Allergy Asthma Rep. 2023, 23, 341–350. [Google Scholar] [CrossRef]
- Feldstein, L.R.; Tenforde, M.W.; Friedman, K.G.; Newhams, M.; Rose, E.B.; Dapul, H.; Soma, V.L.; Maddux, A.B.; Mourani, P.M.; Bowens, C.; et al. Characteristics and Outcomes of US Children and Adolescents With Multisystem Inflammatory Syndrome in Children (multisystem inflammatory syndrome in children) Compared With Severe Acute COVID-19. JAMA 2021, 325, 1074–1087. [Google Scholar] [CrossRef] [PubMed]
- McCrindle, B.W.; Rowley, A.H.; Newburger, J.W.; Burns, J.C.; Bolger, A.F.; Gewitz, M.; Baker, A.L.; Jackson, M.A.; Takahashi, M.; Shah, P.B.; et al. Diagnosis, Treatment, and Long-Term Management of Kawasaki Disease: A Scientific Statement for Health Professionals From the American Heart Association. Circulation 2017, 135, e927–e999. [Google Scholar] [CrossRef] [PubMed]
- McCrindle, B.W.; Rowley, A.H. Improving coronary artery outcomes for children with Kawasaki disease. Lancet 2019, 393, 1077–1078. [Google Scholar] [CrossRef] [PubMed]
- Newburger, J.W.; Takahashi, M.; Gerber, M.A.; Gewitz, M.H.; Tani, L.Y.; Burns, J.C.; Shulman, S.T.; Bolger, A.F.; Ferrieri, P.; Baltimore, R.S.; et al. Diagnosis, treatment and long term management of Kawasaki disease: A statement for health professionals from the Committee on Rheumatic Fever; Endocarditis and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American heart Association. Circulation 2004, 110, 2747–2771. [Google Scholar] [CrossRef] [PubMed]
- Chou, J.; Thomas, P.G.; Randolph, A.G. Immunology of SARS-CoV-2 infection in children. Nat. Immunol. 2022, 23, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Consiglio, C.R.; Cotugno, N.; Sardh, F.; Pou, C.; Amodio, D.; Rodriguez, L.; Tan, Z.; Zicari, S.; Ruggiero, A.; Pascucci, G.R.; et al. The Immunology of Multisystem Inflammatory Syndrome in Children with COVID-19. Cell 2020, 183, 968–981.e7. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; Aznaouridis, K.; Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: A systematic review and meta -analysis. J. Am. Coll. Cardiol. 2010, 55, 1318. [Google Scholar] [CrossRef] [PubMed]
- Cooper, L.l.; Palmisano, J.N.; Benjamin, E.J.; Larson, M.G.; Vasan, R.S.; Mitchell, G.F.; Hamburg, N.M. Microvascular Function Contributes to the Relation Between Aortic Stiffness and Cardiovascular Events: The Framington Heart Study. Circ. Cardiovasc. Imaging 2016, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Podrug, M.; Koren, P.; Maras, E.D.; Podrug, J.; Čulić, V.; Perissiou, M.; Bruno, R.M.; Mudnić, I.; Boban, M.; Jerončić, A. Long-Term Adverse Effects of Mild COVID-19 Disease on Arterial Stiffness, and Systemic and Central Hemodynamics: A Pre-Post Study. J. Clin. Med. 2023, 12, 2123. [Google Scholar] [CrossRef]
- Torigoe, T.; Dallaire, F.; Slorach, C.; Cardinal, M.-P.; Hui, W.; Bradley, T.J.; Sarkola, T.; Mertens, L.; Jaeggi, E. New Comprehensive Reference Values for Arterial Vascular Parameters in Children. J. Am. Soc. Echocardiogr. 2020, 33, 1014–1022.e4. [Google Scholar] [CrossRef]
- Savant, J.D.; Furth, S.L.; Meyers, K.E. Arterial Stiffness in Children: Pediatric Measurement and Considerations. Pulse 2014, 2, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Sochett, E.; Noone, D.; Grattan, M.; Slorach, C.; Moineddin, R.; Elia, Y.; Mahmud, F.H.; Dunger, D.B.; Dalton, N.; Cherney, D.; et al. Relationship between serum inflammatory markers and vascular function in a cohort of adolescents with type 1 diabetes. Cytokine 2017, 99, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Fischer, D.-C.; Schreiver, C.; Heimhalt, M.; Noerenberg, A.; Haffner, D. Pediatric reference values of carotid-femoral pulse wave velocity determined with an oscillometric device. J. Hypertens. 2012, 30, 2159–2167. [Google Scholar] [CrossRef] [PubMed]
Patients N = 28 | ||
---|---|---|
Number | Percentage | |
Race | ||
African American | 10 | 35.7% |
White | 12 | 42.9% |
Others | 5 | 17.9% |
Declined | 1 | 3.6% |
Ethnicity | ||
Hispanic | 3 | 10.7% |
Non-Hispanic | 25 | 89.3% |
Gender | ||
Female | 7 | 25.0% |
Male | 21 | 75.0% |
Median (IQR) | Mean (SD) | |
Age (years) | 9.3 [6.6–11.4] | 9.2(3.1) |
BMI (kg/m2) | 19.0 [16.6–22.7] | 20.4(5.2) |
Interval—Hospital discharge to clinic visit 1 (days) | 18.5 [14.0–22.3] | 20.1 (10.7) |
Interval—Clinic visit 1 to clinic visit 2 (days) | 35.0 [32.8–43.8] | 45.1 (27.2) |
Variable | N at Visit 1 | Mean (SD) at V1 | N at Visit 2 | Mean (SD) at V2 | p Value |
---|---|---|---|---|---|
Systolic blood pressure | 28 | 112.6 (12.7) | 28 | 110.6 (12.3) | 0.486 |
Diastolic blood pressure | 28 | 65.6 (9.5) | 28 | 62.5 (7.6) | 0.211 |
Pulse wave velocity (m/s) | 28 | 5.29 (1.34) | 28 | 4.51 (0.91) | 0.009 |
LVEF (%) | 28 | 65 (6) | 28 | 65 (3) | 0.9 |
SF (%) | 28 | 36 (5) | 28 | 35 (3) | 0.5 |
LV strain (%) | 20 | −19.83 (3.86) | 21 | −20.69 (2.65) | 0.06 |
LA volume (cm3/BSA) | 13 | 33 (13) | 11 | 39 (12) | 0.7 |
LV mass/ht2.7 (g/m2.7) | 28 | 42.36 (9.13) | 28 | 38.26 (7.64) | 0.02 |
E/A inflow | 27 | 1.94 (0.69) | 28 | 2.15 (0.51) | 0.06 |
E′/A′ lateral | 9 | 3.00 (0.83) | 11 | 2.94 (0.80) | 0.9 |
E′/A′ septal | 8 | 2.22 (0.48) | 8 | 2.23 (0.47) | 0.7 |
E/E′ lateral | 21 | 6.1 (1.69) | 19 | 5.93 (1.21) | 0.8 |
E/e′ septal | 21 | 7.51 (1.49) | 21 | 7.53 (0.85) | 0.8 |
E/e′ lateral | 9 | 3.00 (0.83) | 11 | 2.94 (0.80) | 0.98 |
TR gradient | 13 | 17 (3.32) | 12 | 17 (4.44) | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukhopadhyay, K.; Johnston, M.S.; Krulisky, J.S.; Yang, S.; Kimball, T.R. Systemic Arterial Function after Multisystem Inflammatory Syndrome in Children Associated with COVID-19. J. Vasc. Dis. 2024, 3, 267-277. https://doi.org/10.3390/jvd3030021
Mukhopadhyay K, Johnston MS, Krulisky JS, Yang S, Kimball TR. Systemic Arterial Function after Multisystem Inflammatory Syndrome in Children Associated with COVID-19. Journal of Vascular Diseases. 2024; 3(3):267-277. https://doi.org/10.3390/jvd3030021
Chicago/Turabian StyleMukhopadhyay, Ketaki, Marla S. Johnston, James S. Krulisky, Shengping Yang, and Thomas R. Kimball. 2024. "Systemic Arterial Function after Multisystem Inflammatory Syndrome in Children Associated with COVID-19" Journal of Vascular Diseases 3, no. 3: 267-277. https://doi.org/10.3390/jvd3030021
APA StyleMukhopadhyay, K., Johnston, M. S., Krulisky, J. S., Yang, S., & Kimball, T. R. (2024). Systemic Arterial Function after Multisystem Inflammatory Syndrome in Children Associated with COVID-19. Journal of Vascular Diseases, 3(3), 267-277. https://doi.org/10.3390/jvd3030021