The Efficiency of China’s Carbon Trading Schemes: A Tale of Seven Pilot Markets
Abstract
:1. Introduction
2. Literature Review
3. Analysis of Empirical Results
3.1. Data Analysis on Output Indicators
3.2. Empirical Results and Discussion
3.2.1. Comparative Analysis of Efficiency between Traditional DEA and Bootstrap DEA
3.2.2. Efficiency Analysis of Pilot ETS Markets under the CCR and BCC Models
3.2.3. Comparative Analysis of Seven Pilot ETS Markets’ Efficiencies
4. Research Methods and Data
4.1. Research Methods
4.1.1. The DEA Method
4.1.2. The Bootstrap-DEA Method
- Assuming the original sample data in which each decision-making unit input and output (), the DEA method is adopted to calculate the efficiency value ().
- Assuming the efficiency values of n decision-making units (), the bootstrap method is adopted to obtain random efficiency values where b refers to the number of iterations using the bootstrap method.
- In the next step, we calculate the simulated sample (), where .
- We adopt the DEA method for each simulated sample to calculate the efficiency value:
- Steps 2 to 4 are repeated B times to produce a series of efficiency values:
- .
4.2. Index Selection and Data Sources
Indicators | Definitions | Literature | |
---|---|---|---|
Input indicators | Total quota (x1) | Annual carbon emission limit of all emission-control enterprises in the pilot area | [34,38,39,40,41] |
Number of emissions-control enterprises (x2) | Number of enterprises keeping an agreement on carbon emission in the pilot area | [22,42,43] | |
Third-party verification institutions (x3) | Number of institutions for monitoring and verifying the carbon emission behavior of emission-control enterprises and providing relevant services | [27,43,44,45] | |
Output indicators | Total trading volume (y1) | The annual cumulative trading volume of carbon emission quota | [29,46,47,48,49,50] |
Stability of carbon price (y2) | For measuring the stability of carbon trading price near the weighted average price | [10,51,52,53] |
5. Conclusions and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Year | Carbon Market | Input—Total Quota (Billion Tonnes) | Input—Number of Verifying Institutions (Number) | Input—Number of Emission Control Enterprises | Output—Total Volume Traded (Tonnes) | Output—Carbon Price Stability (%) |
---|---|---|---|---|---|---|
2014 | Beijing | 0.50 | 19 | 543 | 1,069,605 | 32.21 |
2014 | Tianjin | 1.60 | 3 | 114 | 1,011,340 | 33.10 |
2014 | Shanghai | 1.60 | 10 | 191 | 1,666,724 | 20.00 |
2014 | Guangdong | 4.08 | 16 | 184 | 1,055,542 | 56.45 |
2014 | Shenzhen | 0.33 | 21 | 635 | 1,816,381 | 54.53 |
2014 | Hubei | 3.24 | 3 | 138 | 7,001,171 | 8.38 |
2014 | Chongqing | 1.16 | 10 | 240 | 145,000 | 0.00 |
2015 | Beijing | 0.47 | 19 | 973 | 1,243,046 | 26.40 |
2015 | Tianjin | 1.60 | 4 | 112 | 975,713 | 14.34 |
2015 | Shanghai | 0.53 | 10 | 191 | 1,476,108 | 25.80 |
2015 | Guangdong | 3.70 | 16 | 186 | 6,756,520 | 20.11 |
2015 | Shenzhen | 0.30 | 21 | 634 | 4,326,048 | 29.42 |
2015 | Hubei | 3.24 | 3 | 138 | 14,731,100 | 8.11 |
2015 | Chongqing | 1.06 | 11 | 237 | 132,099 | 13.60 |
2016 | Beijing | 0.47 | 19 | 947 | 2,426,412 | 31.60 |
2016 | Tianjin | 1.60 | 4 | 112 | 367,796 | 16.20 |
2016 | Shanghai | 1.55 | 10 | 368 | 3,867,071 | 23.01 |
2016 | Guangdong | 3.70 | 16 | 218 | 22,232,995 | 10.88 |
2016 | Shenzhen | 0.30 | 21 | 824 | 10,643,885 | 27.20 |
2016 | Hubei | 3.24 | 3 | 166 | 11,722,793 | 13.63 |
2016 | Chongqing | 1.06 | 11 | 254 | 459,846 | 44.24 |
2017 | Beijing | 0.50 | 28 | 943 | 2,323,443 | 29.24 |
2017 | Tianjin | 1.60 | 4 | 109 | 1,162,370 | 5.04 |
2017 | Shanghai | 1.56 | 9 | 381 | 2,368,328 | 14.60 |
2017 | Guangdong | 4.22 | 31 | 246 | 16,573,388 | 7.85 |
2017 | Shenzhen | 0.30 | 23 | 787 | 5,245,930 | 11.98 |
2017 | Hubei | 2.57 | 8 | 344 | 12,488,892 | 7.89 |
2017 | Chongqing | 1.30 | 11 | 254 | 7,436,603 | 18.99 |
2018 | Beijing | 0.50 | 35 | 903 | 3,214,335 | 44.28 |
2018 | Tianjin | 1.60 | 8 | 107 | 1,875,205 | 0.00 |
2018 | Shanghai | 1.58 | 9 | 381 | 2,665,961 | 14.79 |
2018 | Guangdong | 4.22 | 35 | 249 | 26,860,458 | 9.07 |
2018 | Shenzhen | 0.30 | 23 | 794 | 12,657,462 | 22.00 |
2018 | Hubei | 2.56 | 8 | 344 | 8,607,490 | 18.64 |
2018 | Chongqing | 1.00 | 11 | 197 | 269,445 | 29.69 |
2019 | Beijing | 0.45 | 27 | 843 | 3,013,700 | 39.08 |
2019 | Tianjin | 1.50 | 8 | 125 | 43,400 | 22.70 |
2019 | Shanghai | 1.50 | 9 | 313 | 2,683,300 | 20.47 |
2019 | Guangdong | 4.65 | 21 | 242 | 12,250,600 | 22.86 |
2019 | Shenzhen | 0.29 | 22 | 721 | 784,900 | 32.34 |
2019 | Hubei | 2.40 | 8 | 373 | 4,022,300 | 22.00 |
2019 | Chongqing | 1.17 | 11 | 187 | 112,800 | 36.32 |
2020 | Beijing | 0.50 | 26 | 859 | 1,150,600 | 40.38 |
2020 | Tianjin | 1.60 | 8 | 216 | 5,202,700 | 12.00 |
2020 | Shanghai | 1.58 | 12 | 314 | 2,147,200 | 21.33 |
2020 | Guangdong | 4.65 | 31 | 243 | 19,488,600 | 18.83 |
2020 | Shenzhen | 0.29 | 22 | 687 | 1,239,200 | 39.08 |
2020 | Hubei | 2.70 | 8 | 332 | 14,216,200 | 18.70 |
2020 | Chongqing | 1.30 | 11 | 187 | 219,700 | 33.71 |
2021 | Beijing | 0.50 | 25 | 886 | 1,870,700 | 83.26 |
2021 | Tianjin | 1.60 | 8 | 192 | 4,948,700 | 13.10 |
2021 | Shanghai | 1.05 | 10 | 323 | 1,380,000 | 8.91 |
2021 | Guangdong | 4.65 | 41 | 178 | 26,835,400 | 18.81 |
2021 | Shenzhen | 0.30 | 25 | 750 | 5,992,900 | 35.32 |
2021 | Hubei | 1.66 | 8 | 339 | 3,852,900 | 18.60 |
2021 | Chongqing | 1.30 | 11 | 308 | 1,147,200 | 19.59 |
2022 | Beijing | 0.50 | 25 | 909 | 1,752,800 | 107.49 |
2022 | Tianjin | 0.75 | 8 | 145 | 5,143,600 | 13.76 |
2022 | Shanghai | 1.09 | 11 | 378 | 1,648,400 | 21.24 |
2022 | Guangdong | 2.66 | 34 | 200 | 14,609,100 | 24.10 |
2022 | Shenzhen | 0.25 | 14 | 684 | 5,080,700 | 61.90 |
2022 | Hubei | 1.82 | 8 | 343 | 5,733,500 | 24.20 |
2022 | Chongqing | 1.45 | 11 | 308 | 759,100 | 20.20 |
2023 | Beijing | 0.50 | 29 | 1126 | 3,016,212 | 89.81 |
2023 | Tianjin | 1.20 | 10 | 218 | 6,145,784 | 8.49 |
2023 | Shanghai | 1.30 | 11 | 433 | 2,109,692 | 15.31 |
2023 | Guangdong | 4.02 | 41 | 268 | 27,226,192 | 12.46 |
2023 | Shenzhen | 0.27 | 20 | 906 | 6,120,611 | 42.47 |
2023 | Hubei | 1.63 | 10 | 440 | 5,441,108 | 25.49 |
2023 | Chongqing | 1.39 | 11 | 336 | 1,032,182 | 31.96 |
Pilot ETS | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 |
---|---|---|---|---|---|---|---|---|---|---|
Beijing | 59.50 | 46.63 | 48.77 | 50.06 | 57.95 | 78.76 | 87.09 | 60.95 | 96.42 | 113.26 |
Tianjin | 20.23 | 14.30 | 11.33 | 8.90 | 12.12 | 13.66 | 22.53 | 27.26 | 33.85 | 32.54 |
Shanghai | 34.87 | 25.41 | 8.41 | 34.87 | 36.54 | 40.46 | 39.98 | 40.89 | 56.21 | 62.87 |
Guangdong | 53.27 | 16.37 | 12.45 | 13.57 | 12.45 | 16.13 | 17.34 | 16.77 | 23.47 | 31.44 |
Shenzhen | 62.55 | 38.15 | 26.45 | 27.91 | 23.46 | 13.30 | 23.45 | 11.61 | 36.72 | 59.38 |
Hubei | 23.79 | 24.99 | 17.67 | 14.63 | 22.91 | 21.42 | 15.47 | 22.74 | 30.72 | 29.49 |
Chongqing | 30.74 | 17.74 | 7.96 | 2.25 | 4.36 | 9.74 | 26.46 | 30.63 | 38.35 | 35.10 |
References
- Yüksel, I. Global warming and renewable energy sources for sustainable development in Turkey. Renew. Energy 2008, 33, 802–812. [Google Scholar] [CrossRef]
- Li, Y.; Wei, Y.; Xu, H.; Liu, H.; Chevallier, J. Carbon monoxide and multi-pollutants flow between China and India: A multiregional input–output model. World Econ. 2022, 46, 2514–2537. [Google Scholar] [CrossRef]
- Calleja-Agius, J.; England, K.; Calleja, N. The effect of global warming on mortality. Early Hum. Dev. 2020, 155, 105222. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wojewodzki, M.; Cai, Y.; Sharma, S. The dynamic relationships between carbon prices and policy uncertainties. Technol. Forecast. Soc. Chang. 2023, 188, 122325. [Google Scholar] [CrossRef]
- Wei, Y.; Zhu, Y.Q.; Tan, L.Y. Emission Trading Scheme, Technological Innovation, and Competitiveness: Evidence from China’s Thermal Power Enterprises. J. Environ. Manag. 2022, 320, 115874. [Google Scholar] [CrossRef] [PubMed]
- Wojewodzki, M.; Wei, Y.; Cheong, T.S.; Shi, X. Urbanisation, agriculture and convergence of carbon emissions nexus: Global distribution dynamics analysis. J. Clean. Prod. 2023, 385, 135697. [Google Scholar] [CrossRef]
- Huang, W.; Wang, H.; Wei, Y. Identifying the determinants of European carbon allowances prices: A novel robust partial least squares method for open-high-low-close data. Int. Rev. Financ. Anal. 2023, 90, 102938. [Google Scholar] [CrossRef]
- Zhu, R.; Wei, Y.; Tan, L. Low-carbon technology adoption and diffusion with heterogeneity in the emissions trading scheme. Appl. Energy 2024, 369, 123537. [Google Scholar] [CrossRef]
- Wei, Y.; Liang, X.; Xu, L.; Kou, G.; Chevallier, J. Trading, storage, or penalty? Uncovering firms’ decision-making behavior in the Shanghai emissions trading scheme: Insights from agent-based modeling. Energy Econ. 2023, 117, 106463. [Google Scholar] [CrossRef]
- Zhao, X.-G.; Jiang, G.-W.; Nie, D.; Chen, H. How to improve the market efficiency of carbon trading: A perspective of China. Renew. Sustain. Energy Rev. 2016, 59, 1229–1245. [Google Scholar] [CrossRef]
- Cheng, L.; Shen, J.; Wojewodzki, M. A cross-country analysis of corporate carbon performance: An international investment perspective. Res. Int. Bus. Financ. 2023, 64, 101888. [Google Scholar] [CrossRef]
- Wojewodzki, M.; Cheong, T.S.; Shen, J.; Cheng, L. Does corporate carbon performance converge in the global market? Evidence from a distribution dynamic approach. J. Environ. Manag. 2023, 342, 118355. [Google Scholar] [CrossRef]
- Wang, K.; Wei, Y.-M.; Huang, Z. Potential gains from carbon emissions trading in China: A DEA based estimation on abatement cost savings. Omega 2016, 63, 48–59. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, X.; Zhang, J.; Li, K. Emissions trading system (ETS) implementation and its collaborative governance effects on air pollution: The China story. Energy Policy 2020, 138, 111282. [Google Scholar] [CrossRef]
- Wei, Y.; Li, Y.; Wang, Z. Multiple price bubbles in global major emission trading schemes: Evidence from European Union, New Zealand, South Korea and China. Energy Econ. 2022, 113, 106232. [Google Scholar] [CrossRef]
- He, Y.; Wei, Y.; Fang, Y.; Cao, Y. Booming or sinking: How does an emission trading scheme affect enterprise value? Chin. J. Popul. Resour. Environ. 2022, 20, 227–236. [Google Scholar] [CrossRef]
- Fall, F.; Akim, A.-M.; Wassongma, H. DEA and SFA research on the efficiency of microfinance institutions: A meta-analysis. World Dev. 2018, 107, 176–188. [Google Scholar] [CrossRef]
- Zhang, D.; Karplus, V.J.; Cassisa, C.; Zhang, X. Emissions trading in China: Progress and prospects. Energy Policy 2014, 75, 9–16. [Google Scholar] [CrossRef]
- Cui, L.-B.; Fan, Y.; Zhu, L.; Bi, Q.-H. How will the emissions trading scheme save cost for achieving China’s 2020 carbon intensity reduction target? Appl. Energy 2014, 136, 1043–1052. [Google Scholar] [CrossRef]
- Weng, Q.; Xu, H. A review of China’s carbon trading market. Renew. Sustain. Energy Rev. 2018, 91, 613–619. [Google Scholar] [CrossRef]
- Yi, L.; Li, Z.-P.; Yang, L.; Liu, J.; Liu, Y.-R. Comprehensive evaluation on the “maturity” of China’s carbon markets. J. Clean. Prod. 2018, 198, 1336–1344. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, X.; Zhu, B.; He, K.; Wang, P. Measuring the maturity of carbon market in China: An entropy-based TOPSIS approach. J. Clean. Prod. 2019, 229, 94–103. [Google Scholar] [CrossRef]
- Jiang, J.J.; Ye, B.; Ma, X.M. The construction of Shenzhen’s carbon emission trading scheme. Energy Policy 2014, 75, 17–21. [Google Scholar] [CrossRef]
- Wu, L.; Qian, H.; Li, J. Advancing the experiment to reality: Perspectives on Shanghai pilot carbon emissions trading scheme. Energy Policy 2014, 75, 22–30. [Google Scholar] [CrossRef]
- Qi, S.; Wang, B.; Zhang, J. Policy design of the Hubei ETS pilot in China. Energy Policy 2014, 75, 31–38. [Google Scholar] [CrossRef]
- Liao, Z.; Zhu, X.; Shi, J. Case study on initial allocation of Shanghai carbon emission trading based on Shapley value. J. Clean. Prod. 2015, 103, 338–344. [Google Scholar] [CrossRef]
- Zhang, W.; Li, J.; Li, G.; Guo, S. Emission reduction effect and carbon market efficiency of carbon emissions trading policy in China. Energy 2020, 196, 117117. [Google Scholar] [CrossRef]
- Zhao, X.-G.; Wu, L.; Li, A. Research on the efficiency of carbon trading market in China. Renew. Sustain. Energy Rev. 2017, 79, 1–8. [Google Scholar] [CrossRef]
- Yi, L.; Liu, Y.; Li, Z.-P.; Yang, L.; Wang, F. Study on serviceability and efficiency of seven pilot carbon trading exchanges in China. Sci. Total Environ. 2020, 703, 135465. [Google Scholar] [CrossRef]
- Montagnoli, A.; de Vries, F.P. Carbon trading thickness and market efficiency. Energy Econ. 2010, 32, 1331–1336. [Google Scholar] [CrossRef]
- Fan, X.; Lv, X.; Yin, J.; Liang, J. Quantifying market efficiency of China’s regional carbon market by multifractal detrended analysis. Energy Procedia 2018, 152, 787–792. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, T.; Lin, Y. Efficiency Measurement of China’s Carbon Quota Trading Markets. J. Nanjing Univ. Aeronaut. Astronaut. 2016, 18, 1–9. [Google Scholar]
- Yang, Q.; Qian, C.; Zhang, R. Comparative Analysis of Operational Efficiency of Pilot Carbon Trading Market. Sci. Technol. Manag. Land Resour. 2017, 34, 19–29. [Google Scholar]
- Cheng, Y.; Mu, D. Research on evaluation of operation efficiency of pilot carbon market in China. Sci. Technol. Manag. Res. 2017, 37, 96–100. [Google Scholar]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision-making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P. Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models. Manag. Sci. 1998, 44, 49–61. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, X.; Chen, X.; Dai, H. Allowance allocation matters in China’s carbon emissions trading system. Energy Econ. 2020, 92, 105012. [Google Scholar] [CrossRef]
- Wu, R.; Dai, H.; Geng, Y.; Xie, Y.; Masui, T.; Tian, X. Achieving China’s INDC through carbon cap-and-trade: Insights from Shanghai. Appl. Energy 2016, 184, 1114–1122. [Google Scholar] [CrossRef]
- Yu, Z.; Geng, Y.; Dai, H.; Wu, R.; Liu, Z.; Tian, X.; Bleischwitz, R. A general equilibrium analysis on the impacts of regional and sectoral emission allowance allocation at carbon trading market. J. Clean. Prod. 2018, 192, 421–432. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Jia, Z. Impact of carbon allowance allocation on power industry in China’s carbon trading market: Computable general equilibrium based analysis. Appl. Energy 2018, 229, 814–827. [Google Scholar] [CrossRef]
- Hu, Y.-J.; Li, X.-Y.; Tang, B.-J. Assessing the operational performance and maturity of the carbon trading pilot program: The case study of Beijing’s carbon market. J. Clean. Prod. 2017, 161, 1263–1274. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.-X. Assessing the maturity of China’s seven carbon trading pilots. Adv. Clim. Chang. Res. 2019, 10, 150–157. [Google Scholar] [CrossRef]
- Ye, W.; Liu, L.; Zhang, B. Designing and implementing pollutant emissions trading systems in China: A twelve-year reflection. J. Environ. Manag. 2020, 261, 110207. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Andrews-Speed, P. State versus market in China’s low-carbon energy transition: An institutional perspective. Energy Res. Soc. Sci. 2020, 66, 101503. [Google Scholar] [CrossRef]
- An, X. Research on the Measurement of Pilot Carbon Market Efficiency and Its Influence Factors; Southwestern University of Finance and Economics: Chengdu, China, 2018. [Google Scholar]
- Cong, R.; Lo, A.Y. Emission trading and carbon market performance in Shenzhen, China. Appl. Energy 2017, 193, 414–425. [Google Scholar] [CrossRef]
- Ibikunle, G.; Gregoriou, A.; Hoepner, A.G.F.; Rhodes, M. Liquidity and market efficiency in the world’s largest carbon market. Br. Account. Rev. 2016, 48, 431–447. [Google Scholar] [CrossRef]
- Kalaitzoglou, I.; Ibrahim, B.M. Trading patterns in the European carbon market: The role of trading intensity and OTC transactions. Q. Rev. Econ. Financ. 2013, 53, 402–416. [Google Scholar] [CrossRef]
- Tan, X.; Wang, X. The market performance of carbon trading in China: A theoretical framework of structure-conduct-performance. J. Clean. Prod. 2017, 159, 410–424. [Google Scholar] [CrossRef]
- Chang, K.; Chen, R.; Chevallier, J. Market fragmentation, liquidity measures and improvement perspectives from China’s emissions trading scheme pilots. Energy Econ. 2018, 75, 249–260. [Google Scholar] [CrossRef]
- Deng, M.-Z.; Zhang, W.-X. Recognition and analysis of potential risks in China’s carbon emission trading markets. Adv. Clim. Chang. Res. 2019, 10, 30–46. [Google Scholar] [CrossRef]
- Sun, L.; Xiang, M.; Shen, Q. A comparative study on the volatility of EU and China’s carbon emission permits trading markets. Phys. A Stat. Mech. Appl. 2020, 560, 125037. [Google Scholar] [CrossRef]
- Zhu, Y. Evaluation of Carbon Finance Market Efficiency in China: Based on an Empirical Study of Eight Pilot Carbon Trading Markets Nationwide; Shanghai International Studies University: Shanghai, China, 2019. [Google Scholar]
- Song, Y.; Liu, T.; Ye, B.; Zhu, Y.; Li, Y.; Song, X. Improving the liquidity of China’s carbon market: Insight from the effect of carbon price transmission under the policy release. J. Clean. Prod. 2019, 239, 118049. [Google Scholar] [CrossRef]
- Liu, L.; Chen, C.; Zhao, Y.; Zhao, E. China’s carbon-emissions trading: Overview, challenges and future. Renew. Sustain. Energy Rev. 2015, 49, 254–266. [Google Scholar] [CrossRef]
- Li, R.; Tang, B.J. Initial carbon quota allocation methods of power sectors: A China case study. Nat. Hazards 2016, 84, 1075–1089. [Google Scholar] [CrossRef]
- Ye, F.; Fang, X.; Li, L.; Li, Y.; Chang, C.-T. Allocation of carbon dioxide emission quotas based on the energy-economy-environment perspective: Evidence from Guangdong Province. Sci. Total Environ. 2019, 669, 657–667. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, B. Does China’s national carbon market function well? A perspective on effective market design. J. Chin. Gov. 2023, 8, 1–30. [Google Scholar] [CrossRef]
- Song, Y.; Liu, T.; Li, Y.; Zhu, Y.; Ye, B. Paths and policy adjustments for improving carbon-market liquidity in China. Energy Econ. 2022, 115, 106379. [Google Scholar] [CrossRef]
Model | Year | Traditional DEA | Bootstrap DEA |
---|---|---|---|
CCR-TE | 2014 | 0.749 | 0.612 |
2015 | 0.799 | 0.749 | |
2016 | 0.749 | 0.635 | |
2017 | 0.994 | 0.986 | |
2018 | 0.849 | 0.718 | |
2019 | 0.950 | 0.991 | |
2020 | 0.930 | 0.930 | |
2021 | 0.832 | 0.832 | |
2022 | 0.819 | 0.819 | |
2023 | 0.898 | 0.898 | |
Average | 0.857 | 0.817 | |
BCC-PTE | 2014 | 0.926 | 0.844 |
2015 | 0.940 | 0.874 | |
2016 | 0.970 | 0.935 | |
2017 | 0.999 | 0.999 | |
2018 | 0.967 | 0.921 | |
2019 | 0.960 | 1.000 | |
2020 | 0.966 | 0.966 | |
2021 | 1.000 | 1.000 | |
2022 | 0.917 | 0.917 | |
2023 | 0.990 | 0.990 | |
Average | 0.964 | 0.945 |
(a) Overall Efficiency | |||||||
Year | Pilot ETS | ||||||
Beijing | Guangdong | Hubei | Shanghai | Shenzhen | Tianjin | Chongqing | |
2014 | 0.685 | 0.175 | 0.758 | 0.865 | 0.759 | 0.250 | 0.792 |
2015 | 0.888 | 0.660 | 0.825 | 0.868 | 0.829 | 0.852 | 0.321 |
2016 | 0.890 | 0.787 | 0.786 | 0.401 | 0.747 | 0.044 | 0.792 |
2017 | 0.991 | 0.991 | 0.992 | 0.954 | 0.992 | 0.992 | 0.992 |
2018 | 0.655 | 0.812 | 0.861 | 0.847 | 0.807 | 0.842 | 0.205 |
2019 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.935 | 1.000 |
2020 | 0.839 | 1.000 | 1.000 | 0.674 | 1.000 | 1.000 | 1.000 |
2021 | 1.000 | 1.000 | 0.843 | 0.350 | 1.000 | 0.956 | 0.674 |
2022 | 1.000 | 1.000 | 0.693 | 0.488 | 1.000 | 1.000 | 0.554 |
2023 | 1.000 | 0.998 | 0.876 | 0.486 | 1.000 | 0.924 | 1.000 |
Average | 0.895 | 0.842 | 0.863 | 0.693 | 0.913 | 0.780 | 0.733 |
(b) Pure Technical Efficiency | |||||||
Year | Pilot ETS | ||||||
Beijing | Guangdong | Hubei | Shanghai | Shenzhen | Tianjin | Chongqing | |
2014 | 0.952 | 0.468 | 0.890 | 0.943 | 0.873 | 0.877 | 0.908 |
2015 | 0.933 | 0.948 | 0.906 | 0.908 | 0.909 | 0.910 | 0.605 |
2016 | 0.984 | 0.956 | 0.958 | 0.778 | 0.958 | 0.959 | 0.955 |
2017 | 0.999 | 0.999 | 0.999 | 0.995 | 0.999 | 0.999 | 0.999 |
2018 | 0.753 | 0.953 | 0.951 | 0.950 | 0.946 | 0.946 | 0.947 |
2019 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
2020 | 1.000 | 1.000 | 1.000 | 0.762 | 1.000 | 1.000 | 1.000 |
2021 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
2022 | 1.000 | 1.000 | 1.000 | 0.705 | 1.000 | 1.000 | 0.716 |
2023 | 1.000 | 1.000 | 1.000 | 0.932 | 1.000 | 1.000 | 1.000 |
Average | 0.962 | 0.932 | 0.970 | 0.897 | 0.969 | 0.969 | 0.913 |
(c) Scale Efficiency | |||||||
Year | Pilot ETS | ||||||
Beijing | Guangdong | Hubei | Shanghai | Shenzhen | Tianjin | Chongqing | |
2014 | 0.719 | 0.373 | 0.851 | 0.917 | 0.870 | 0.285 | 0.872 |
2015 | 0.952 | 0.696 | 0.911 | 0.956 | 0.912 | 0.937 | 0.530 |
2016 | 0.905 | 0.824 | 0.821 | 0.515 | 0.780 | 0.046 | 0.829 |
2017 | 0.992 | 0.992 | 0.993 | 0.959 | 0.993 | 0.993 | 0.992 |
2018 | 0.870 | 0.852 | 0.905 | 0.891 | 0.852 | 0.890 | 0.216 |
2019 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.935 | 1.000 |
2020 | 0.839 | 1.000 | 1.000 | 0.884 | 1.000 | 1.000 | 1.000 |
2021 | 1.000 | 1.000 | 0.843 | 0.350 | 1.000 | 0.956 | 0.674 |
2022 | 1.000 | 1.000 | 0.693 | 0.692 | 1.000 | 1.000 | 0.774 |
2023 | 1.000 | 0.998 | 0.876 | 0.522 | 1.000 | 0.924 | 1.000 |
Average | 0.928 | 0.874 | 0.889 | 0.769 | 0.941 | 0.797 | 0.789 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Li, Y.; Chevallier, J.; Wojewodzki, M. The Efficiency of China’s Carbon Trading Schemes: A Tale of Seven Pilot Markets. Commodities 2024, 3, 355-375. https://doi.org/10.3390/commodities3030020
Wei Y, Li Y, Chevallier J, Wojewodzki M. The Efficiency of China’s Carbon Trading Schemes: A Tale of Seven Pilot Markets. Commodities. 2024; 3(3):355-375. https://doi.org/10.3390/commodities3030020
Chicago/Turabian StyleWei, Yigang, Yan Li, Julien Chevallier, and Michal Wojewodzki. 2024. "The Efficiency of China’s Carbon Trading Schemes: A Tale of Seven Pilot Markets" Commodities 3, no. 3: 355-375. https://doi.org/10.3390/commodities3030020
APA StyleWei, Y., Li, Y., Chevallier, J., & Wojewodzki, M. (2024). The Efficiency of China’s Carbon Trading Schemes: A Tale of Seven Pilot Markets. Commodities, 3(3), 355-375. https://doi.org/10.3390/commodities3030020