Modeling Sea Level Rise Using Ensemble Techniques: Impacts on Coastal Adaptation, Freshwater Ecosystems, Agriculture and Infrastructure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction of the Dataset
2.1.1. Study Area
2.1.2. Sea Level Rise
2.1.3. Greenhouse Gases Contributing to SLR
2.1.4. Specific Conductance
2.1.5. Dissolved Oxygen (DO)
2.2. Preprocessing of Dataset
2.3. Analysis of the Dataset
3. Results
3.1. Sea Level Rise Modeling
3.2. Root Cause SLR Predictions
- Input layer (64 input neurons);
- Three intermediate layers (64, 64, and 32 neurons, respectively);
- One dense unit at the output;
- Dropout of 0.2 after each layer followed by batch normalization;
- Optimizer = ‘adam’, Loss = ‘mean squared error’.
3.3. Analyzing the Effects of Sea Level Rise
3.3.1. Projected Conductivity
3.3.2. Projected Dissolved Oxygen
- Good Water Quality: DO levels above 8 mg/L are considered indicative of good water quality.
- Moderate Water Quality: DO levels between 3 mg/L and 8 mg/L may indicate moderate pollution.
- Poor Water Quality: DO levels below 3 mg/L suggest poor water quality and significant pollution.
4. Discussion
4.1. Impact on Freshwater Aquatic Ecosystems
4.2. Impact on Agriculture
4.3. Impact on Drinking Water
4.4. Impact on Infrastructure
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lumpkin, R.L. Climate Change: Global Sea Level. Reviewed By Rick. Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-global-sea-level?utm_source=twitter.com&utm_medium=social&utm_campaign=sealevelrise%2Bwebsite (accessed on 5 May 2024).
- Wachler, B.; Seiffert, R.; Rasquin, C.; Kösters, F. Tidal response to sea level rise and bathymetric changes in the German Wadden Sea. Ocean. Dyn. 2020, 70, 1033–1052. [Google Scholar] [CrossRef]
- Jakobsson, M.; Mayer, L.A. Polar region bathymetry: Critical knowledge for the prediction of global sea level rise. Front. Mar. Sci. 2022, 8, 788724. [Google Scholar] [CrossRef]
- Garner, G.; Hermans, T.H.J.; Kopp, R.; Slangen, A.; Edwards, T.; Levermann, A.; Nowicki, S.; Palmer, M.D.; Smith, C.; Fox-Kemper, B.; et al. IPCC AR6 WGI Sea Level Projections; World Data Center for Climate (WDCC): Hamburg, Germany, 2022. [Google Scholar]
- Stramma, L.; Schmidtko, S. Tropical deoxygenation sites revisited to investigate oxygen and nutrient trends. Ocean. Sci. 2021, 17, 833–847. [Google Scholar] [CrossRef]
- Ashrafuzzaman, M.; Gomes, C.; Guerra, J. Climate justice for the southwestern coastal region of Bangladesh. Front. Clim. 2022, 4, 881709. [Google Scholar] [CrossRef]
- Notz, D. Challenges in simulating sea ice in Earth System Models. Wiley Interdiscip. Rev. Clim. Chang. 2012, 3, 509–526. [Google Scholar] [CrossRef]
- Allison, I.; Paul, F.; Colgan, W.; King, M. Ice sheets, glaciers, and sea level. In Snow and Ice-Related Hazards, Risks, and Disasters; Elsevier: Amsterdam, The Netherlands, 2021; pp. 707–740. [Google Scholar]
- Van Der Veen, C.J.; Payne, A.J. Modelling land-ice dynamics. In Mass Balance of the Cryosphere Observations and Modelling of Contemporary and Future Changes; Cambridge University Press: Cambridge, UK, 2004; pp. 169–219. [Google Scholar]
- Pickering, M.D.; Horsburgh, K.J.; Blundell, J.R.; Hirschi, J.M.; Nicholls, R.J.; Verlaan, M.; Wells, N.C. The impact of future sea-level rise on the global tides. Cont. Shelf Res. 2017, 142, 50–68. [Google Scholar] [CrossRef]
- Ponte, R.M.; Carson, M.; Cirano, M.; Domingues, C.M.; Jevrejeva, S.; Marcos, M.; Mitchum, G.; Van De Wal, R.S.W.; Woodworth, P.L.; Ablain, M.; et al. Towards comprehensive observing and modeling systems for monitoring and predicting regional to coastal sea level. Front. Mar. Sci. 2019, 6, 437. [Google Scholar] [CrossRef]
- Tebaldi, C.; Strauss, B.H.; Zervas, C.E. Modelling sea level rise impacts on storm surges along US coasts. Environ. Res. Lett. 2012, 7, 014032. [Google Scholar] [CrossRef]
- Lentz, E.E.; Thieler, E.R.; Plant, N.G.; Stippa, S.R.; Horton, R.M.; Gesch, D.B. Evaluation of dynamic coastal response to sea-level rise modifies inundation likelihood. Nat. Clim. Chang. 2016, 6, 696–700. [Google Scholar] [CrossRef]
- Plant, N.G.; Thieler, E.R.; Passeri, D.L. Coupling centennial-scale shoreline change to sea-level rise and coastal morphology in the Gulf of Mexico using a Bayesian network. Earth’s Future 2016, 4, 143–158. [Google Scholar] [CrossRef]
- Hauer, M.E.; Evans, J.M.; Mishra, D.R. Millions projected to be at risk from sea-level rise in the continental United States. Nat. Clim. Chang. 2016, 6, 691–695. [Google Scholar] [CrossRef]
- Bahari, N.A.A.B.S.; Ahmed, A.N.; Chong, K.L.; Lai, V.; Huang, Y.F.; Koo, C.H.; Ng, J.L.; El-Shafie, A. Predicting sea level rise using artificial intelligence: A review. Arch. Comput. Methods Eng. 2023, 30, 4045–4062. [Google Scholar] [CrossRef]
- Hall, J.A.; Weaver, C.P.; Obeysekera, J.; Crowell, M.; Horton, R.M.; Kopp, R.E.; Marburger, J.; Marcy, D.C.; Parris, A.; Sweet, W.V.; et al. Rising sea levels: Helping decision-makers confront the inevitable. Coast. Manag. 2019, 47, 127–150. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, R.J.; Hanson, S.E.; Lowe, J.A.; Slangen, A.B.A.; Wahl, T.; Hinkel, J.; Long, A.J. Integrating new sea-level scenarios into coastal risk and adaptation assessments: An ongoing process. Wiley Interdiscip. Rev. Clim. Chang. 2021, 12, e706. [Google Scholar] [CrossRef]
- Khojasteh, D.; Haghani, M.; Nicholls, R.J.; Moftakhari, H.; Sadat-Noori, M.; Mach, K.J.; Fagherazzi, S.; Vafeidis, A.T.; Barbier, E.; Shamsipour, A.; et al. The evolving landscape of sea-level rise science from 1990 to 2021. Commun. Earth Environ. 2023, 4, 257. [Google Scholar] [CrossRef]
- Titheridge, H.; Parikh, P. Selected Conference Proceedings: 3rd International Conference on Urban Sustainability and Resilience; UCL: London, UK, 2017. [Google Scholar]
- Avron, L.A. Knowing and Responding: Localizing Climate Predictions in Florida; Cornell University: Ithaca, NY, USA, 2021. [Google Scholar]
- Tur, R.; Tas, E.; Haghighi, A.T.; Mehr, A.D. Sea level prediction using machine learning. Water 2021, 13, 3566. [Google Scholar] [CrossRef]
- Ranasinghe, R. Climate Change 2021: Summary for All. 2022. Available online: https://ris.utwente.nl/ws/portalfiles/portal/294260489/IPCC_AR6_WGI_SummaryForAll.pdf (accessed on 5 May 2024).
- Adshead, D.; Akay, H.; Duwig, C.; Eriksson, E.; Höjer, M.; Larsdotter, K.; Svenfelt, Å.; Vinuesa, R.; Nerini, F.F. A mission-driven approach for converting research into climate action. npj Clim. Action 2023, 2, 13. [Google Scholar] [CrossRef]
- Sebestyén, V.; Czvetkó, T.; Abonyi, J. The applicability of big data in climate change research: The importance of system of systems thinking. Front. Environ. Sci. 2021, 9, 619092. [Google Scholar] [CrossRef]
- Griggs, G.; Reguero, B.G. Coastal adaptation to climate change and sea-level rise. Water 2021, 13, 2151. [Google Scholar] [CrossRef]
- Crossett, K.M. Population Trends along the Coastal United States: 1980–2008; US Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, Management and Budget Office, Special Projects: Washington, DC, USA, 2004; Volume 55. [Google Scholar]
- Inventory and Appraisal of Glaciers in the St. Elias Mountains, Alaska and Yukon Territory, Canada, and Selected other Glaciers in Alaska: Description of Digital Geospatial Database. U.S. Geological Survey. Available online: https://pubs.usgs.gov/publication/70221055 (accessed on 5 May 2024).
- World Bank. Data Catalog. World Bank. Available online: https://datacatalog.worldbank.org/ (accessed on 5 May 2024).
- Sangari, S.; Ray, H.E. Evaluation of imputation techniques with varying percentage of missing data. arXiv 2021, arXiv:2109.04227. [Google Scholar]
- Petković, T.; Petrović, L.; Marković, I.; Petrović, I. Ensemble of lstms and feature selection for human action prediction. In International Conference on Intelligent Autonomous Systems; Springer International Publishing: Cham, Switzerland, 2021; pp. 429–441. [Google Scholar]
- Achmadi, G.R.; Saikhu, A.; Amaliah, B. Cryptocurrency Price Movement Prediction Using the Hybrid SARIMAX-LSTM Method. In Proceedings of the 2023 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA), Mataram City, Indonesia, 14–15 November 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 711–716. [Google Scholar]
- Oulhaj, Z.; Carrière, M.; Michel, B. Differentiable mapper for topological optimization of data representation. arXiv 2024, arXiv:2402.12854. [Google Scholar]
- Priestley, R.K.; Heine, Z.; Milfont, T.L. Public understanding of climate change-related sea-level rise. PLoS ONE 2021, 16, e0254348. [Google Scholar] [CrossRef] [PubMed]
- Yoon, T.J.; Patel, L.A.; Vigil, M.J.; Maerzke, K.A.; Findikoglu, A.T.; Currier, R.P. Electrical conductivity, ion pairing, and ion self-diffusion in aqueous NaCl solutions at elevated temperatures and pressures. J. Chem. Phys. 2019, 151, 224504. [Google Scholar] [CrossRef]
- Harvey, J.W.; Conaway, C.H.; Dornblaser, M.M.; Gellis, A.C.; Stewart, A.R.; Green, C.T. (Eds.) Knowledge Gaps and Opportunities in Water-Quality Drivers of Aquatic Ecosystem Health; Open-File Report, no. 2023-1085; U.S. Geological Survey: Reston, VA, USA, 2024. [Google Scholar] [CrossRef]
- Draft Field-Based Methods for Developing Aquatic Life Criteria for Specific Conductivity 2016. Water Quality Criteria. U.S. EPA. 2016. Available online: https://archive.epa.gov/epa/sites/production/files/2016-12/documents/field-based-conductivity-report.pdf (accessed on 5 May 2024).
- Welker, A.F.; Moreira, D.C.; Campos, É.G.; Hermes-Lima, M. Role of Redox Metabolism for Adaptation of Aquatic Animals to Drastic Changes in Oxygen Availability. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2013, 165, 384–404. [Google Scholar] [CrossRef] [PubMed]
- Pörtner, H.O.; Langenbuch, M.; Michaelidis, B. Synergistic Effects of Temperature Extremes, Hypoxia, and Increases in CO2 on Marine Animals: From Earth History to Global Change. J. Geophys. Res. Ocean. 2005, 110, C9. [Google Scholar] [CrossRef]
- Dhal, S.; Wyatt, B.M.; Mahanta, S.; Bhattarai, N.; Sharma, S.; Rout, T.; Saud, P.; Acharya, B.S. Internet of Things (IoT) in Digital Agriculture: An Overview. Agron. J. 2024, 116, 1144–1163. [Google Scholar] [CrossRef]
- Qian, Q.; Yu, K.; Yadav, P.K.; Dhal, S.; Kalafatis, S.; Thomasson, J.A.; Hardin, R.G., IV. Cotton Crop Disease Detection on Remotely Collected Aerial Images with Deep Learning. In Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping VII; SPIE: Orlando, FL, USA, 2022; Volume 12114, pp. 23–31. [Google Scholar]
- Dhal, S.B.; Kalafatis, S.; Braga-Neto, U.; Gadepally, K.C.; Landivar-Scott, J.L.; Zhao, L.; Nowka, K.; Landivar, J.; Pal, P.; Bhandari, M. Testing the Performance of LSTM and ARIMA Models for In-Season Forecasting of Canopy Cover (CC) in Cotton Crops. Remote Sens. 2024, 16, 1906. [Google Scholar] [CrossRef]
- Dhal, S.B.; Jungbluth, K.; Lin, R.; Sabahi, S.P.; Bagavathiannan, M.; Braga-Neto, U.; Kalafatis, S. A Machine-Learning-Based IoT System for Optimizing Nutrient Supply in Commercial Aquaponic Operations. Sensors 2022, 22, 3510. [Google Scholar] [CrossRef]
- Sharma, N.; Acharya, S.; Kumar, K.; Singh, N.; Chaurasia, O.P. Hydroponics as an Advanced Technique for Vegetable Production: An Overview. J. Soil Water Conserv. 2018, 17, 364–371. [Google Scholar] [CrossRef]
- Dhal, S.B.; Bagavathiannan, M.; Braga-Neto, U.; Kalafatis, S. Nutrient Optimization for Plant Growth in Aquaponic Irrigation Using Machine Learning for Small Training Datasets. Artif. Intell. Agric. 2022, 6, 68–76. [Google Scholar] [CrossRef]
- Shrestha, A.; Dunn, B. Oklahoma Cooperative Extension Service. Hydroponics. 2010. Available online: https://shareok.org/bitstream/handle/11244/50283/oksd_hla_6442_2010-03.pdf?sequence=1 (accessed on 5 May 2024).
- Dhal, S.B.; Mahanta, S.; Gumero, J.; O’Sullivan, N.; Soetan, M.; Louis, J.; Gadepally, K.C.; Mahanta, S.; Lusher, J.; Kalafatis, S. An IoT-Based Data-Driven Real-Time Monitoring System for Control of Heavy Metals to Ensure Optimal Lettuce Growth in Hydroponic Set-Ups. Sensors 2023, 23, 451. [Google Scholar] [CrossRef] [PubMed]
- Dhal, S.B.; Bagavathiannan, M.; Braga-Neto, U.; Kalafatis, S. Can Machine Learning Classifiers Be Used to Regulate Nutrients Using Small Training Datasets for Aquaponic Irrigation?: A Comparative Analysis. PLoS ONE 2022, 17, e0269401. [Google Scholar] [CrossRef]
- Dhal, S.B.; Mahanta, S.; Gadepally, K.C.; He, S.; Hughes, M.; Moore, J.; Nowka, K.J.; Kalafatis, S. CNN-Based Real-Time Prediction of Growth Stage in Soybeans Cultivated in Hydroponic Set-Ups. In Proceedings of the SoutheastCon 2023, Orlando, FL, USA, 14–16 April 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 193–197. [Google Scholar]
- Mahanta, S.; Habib, M.R.; Moore, J.M. Effect of High-Voltage Atmospheric Cold Plasma Treatment on Germination and Heavy Metal Uptake by Soybeans (Glycine max). Int. J. Mol. Sci. 2022, 23, 1611. [Google Scholar] [CrossRef] [PubMed]
- Vashisht, P.; Verma, D.; Pradeep Raja Charles, A.; Singh Saini, G.; Sharma, S.; Singh, L.; Mahanta, S.; Mahanta, S.; Singh, K.; Gaurav, G. Ozone Processing in the Dairy Sector: A Review of Applications, Quality Impact and Implementation Challenges. ChemRxiv 2023. [Google Scholar] [CrossRef]
- Habib, M.R.; Mahanta, S.; Jolly, Y.N.; Moore, J.M. Alleviating Heavy Metal Toxicity in Milk and Water through a Synergistic Approach of Absorption Technique and High Voltage Atmospheric Cold Plasma and Probable Rheological Changes. Biomolecules 2022, 12, 913. [Google Scholar] [CrossRef] [PubMed]
- Vashisht, P.; Singh, L.; Mahanta, S.; Verma, D.; Sharma, S.; Saini, G.S.; Sharma, A.; Chowdhury, B.; Awasti, N.; Gaurav; et al. Pulsed Electric Field Processing in the Dairy Sector: A Review of Applications, Quality Impact and Implementation Challenges. Int. J. Food Sci. Technol. 2024, 59, 2122–2135. [Google Scholar] [CrossRef]
- Yadav, S.; Malik, K.; Moore, J.M.; Kamboj, B.R.; Malik, S.; Malik, V.K.; Arya, S.; Singh, K.; Mahanta, S.; Bishnoi, D.K. Valorisation of Agri-Food Waste for Bioactive Compounds: Recent Trends and Future Sustainable Challenges. Molecules 2024, 29, 2055. [Google Scholar] [CrossRef] [PubMed]
- Tropea, A. Food Waste Valorization. Fermentation 2022, 8, 168. [Google Scholar] [CrossRef]
- Mohsin, M.; Safdar, S.; Asghar, F.; Jamal, F. Assessment of Drinking Water Quality and Its Impact on Residents’ Health in Bahawalpur City. Int. J. Humanit. Soc. Sci. 2013, 3, 114–128. [Google Scholar]
- Khan, S.; Shahnaz, M.; Jehan, N.; Rehman, S. Tahir Shah, and Islamud Din. Drinking Water Quality and Human Health Risk in Charsadda District, Pakistan. J. Clean. Prod. 2013, 60, 93–101. [Google Scholar] [CrossRef]
- Garg, V.K.; Suthar, S.; Singh, S.; Sheoran, A.; Garima; Meenakshi; Jain, S. Drinking Water Quality in Villages of Southwestern Haryana, India: Assessing Human Health Risks Associated with Hydrochemistry. Environ. Geol. 2009, 58, 1329–1340. [Google Scholar] [CrossRef]
- Glass, G.K.; Buenfeld, N.R. Chloride-Induced Corrosion of Steel in Concrete. Prog. Struct. Eng. Mater. 2000, 2, 448–458. [Google Scholar] [CrossRef]
- Khan, M.U.; Ahmad, S.; Al-Gahtani, H.J. Chloride-Induced Corrosion of Steel in Concrete: An Overview on Chloride Diffusion and Prediction of Corrosion Initiation Time. Int. J. Corros. 2017, 2017, 5819202. [Google Scholar] [CrossRef]
Pollutant | Contribution to Global Warming and Sea Level Rise (SLR) |
---|---|
SO2 | Forms sulfate aerosols, reflecting sunlight but also absorbing radiation, leading to warming. Contributes to melting of polar ice caps and glaciers, resulting in thermal expansion of ocean water. |
CO | Extends the lifespan of greenhouse gases, amplifying the greenhouse effect and warming. Accelerates polar ice melt, leading to increased water volume in the oceans. |
PM10 | Absorbs solar radiation, reduces ice reflectivity, and accelerates melting and warming. Reduces albedo of ice and snow surfaces, leading to faster melting and subsequent sea level rise. |
NO2 | Acts as a precursor to ozone and absorbs solar radiation, contributing to global warming. Accelerates the melting of glaciers and polar ice caps, adding water volume to the oceans. |
CO2 | Traps heat in the atmosphere, causing overall warming and thermal expansion of oceans. Causes thermal expansion of ocean water as temperatures rise, contributing to SLR. |
PM2.5 | Absorbs solar radiation, influences cloud formation, reduces ice reflectivity, and contributes to global warming. Contributes to ice melt acceleration, increasing water volume in the oceans. |
Model Name | Model Specifications | Weights |
---|---|---|
SARIMA model | Order = (1,1,1), Seasonal Order = (1,1,1,12), Max iterations = 1000 | 0.4 |
LSTM model | Neurons in input layer = 50, Neurons in intermediate layer = 50, Number of dense units = 1, Optimizer = ‘adam’ | 0.4 |
Exponential Smoothing | Seasonal periods = 12 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhal, S.B.; Singh, R.; Pandey, T.; Dey, S.; Kalafatis, S.; Kesireddy, V. Modeling Sea Level Rise Using Ensemble Techniques: Impacts on Coastal Adaptation, Freshwater Ecosystems, Agriculture and Infrastructure. Analytics 2024, 3, 276-296. https://doi.org/10.3390/analytics3030016
Dhal SB, Singh R, Pandey T, Dey S, Kalafatis S, Kesireddy V. Modeling Sea Level Rise Using Ensemble Techniques: Impacts on Coastal Adaptation, Freshwater Ecosystems, Agriculture and Infrastructure. Analytics. 2024; 3(3):276-296. https://doi.org/10.3390/analytics3030016
Chicago/Turabian StyleDhal, Sambandh Bhusan, Rishabh Singh, Tushar Pandey, Sheelabhadra Dey, Stavros Kalafatis, and Vivekvardhan Kesireddy. 2024. "Modeling Sea Level Rise Using Ensemble Techniques: Impacts on Coastal Adaptation, Freshwater Ecosystems, Agriculture and Infrastructure" Analytics 3, no. 3: 276-296. https://doi.org/10.3390/analytics3030016
APA StyleDhal, S. B., Singh, R., Pandey, T., Dey, S., Kalafatis, S., & Kesireddy, V. (2024). Modeling Sea Level Rise Using Ensemble Techniques: Impacts on Coastal Adaptation, Freshwater Ecosystems, Agriculture and Infrastructure. Analytics, 3(3), 276-296. https://doi.org/10.3390/analytics3030016