Extended Reality and Its Applications in Cardiovascular Medicine
1. Introduction
2. Review of the Key Findings of the Systematic Review
3. Summary and Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
Abbreviations
2D | Two-dimensional |
3D | Three-dimensional |
VR | Virtual reality |
AR | Augmented reality |
MR | Mixed reality |
XR | Extended reality |
CT | Computed tomography |
MRI | Magnetic resonance imaging |
RCTs | Randomized controlled trials |
VAST | Video-assisted thoracoscopic surgery |
References
- De Oliveira, J.F.; Filho, G.C.A.; Sousa, L.E. Teaching abdominal aorta anatomy applied to clinical practice through active methodology and 3D printing. Surg. Radiol. Anat. 2025, 47, 104. [Google Scholar] [CrossRef]
- Lau, I.; Sun, Z. Three-dimensional printing in congenital heart disease: A systematic review. J. Med. Radiat. Sci. 2018, 65, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Verghi, E.; Catanese, V.; Nenna, A.; Montelione, N.; Mastroianni, C.; Lusini, M.; Stilo, F.; Chello, M. 3D printing in cardiovascular disease: Current applications and future perspectives. Surg. Technol. Int. 2021, 38, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Daring, D.L.; Sun, Z. Investigation of the clinical value of three-dimensional-printed personalised vascular models for the education and training of clinicians when performing interventional endovascular procedures. Appl. Sci. 2025, 15, 5695. [Google Scholar] [CrossRef]
- Bernhard, B.; Illi, J.; Gloeckler, M.; Pilgrim, T.; Praz, F.; Windecker, S.; Haeberlin, A.; Grani, C. Imaging-based, patient-specific three-dimensional printing to plan, train, and guide cardiovascular interventions: A systematic review and meta-analysis. Heart Lung Circ. 2022, 31, 1203–1218. [Google Scholar] [CrossRef]
- Capellini, K.; Ait-Ali, L.; Pak, V.; Cantinotti, M.; Murzi, M.; Vignali, E.; Fanni, B.M.; Clemente, A.; Celi, S.; Gasparotti, E. Three-dimensional printed models as an effective tool for the management of complex congenital heart disease. Front. Bioeng. Biotechnol. 2024, 12, 1369514. [Google Scholar] [CrossRef]
- Gómez-Ciriza, G.; Gómez-Cía, T.; Rivas-González, J.A.; Velasco Forte, M.N.; Valverde, I. Affordable three-dimensional printed heart models. Front. Cardiovasc. Med. 2021, 8, 642011. [Google Scholar] [CrossRef]
- DeCampos, D.; Teixeira, R.; Saleiro, C.; Oliveira-Santos, M.; Paiva, L.; Costa, M.; Botelho, A.; Goncalves, L. 3D printing for left atrial appendage closure: A meta-analysis and systematic review. Int. J. Cardiol. 2022, 356, 38–43. [Google Scholar] [CrossRef]
- Giannopoulos, A.A.; Steigner, M.L.; George, E.; Barile, M.; Hunsaker, A.R.; Rybicki, F.J.; Mitsouras, D. Cardiothoracic Applications of 3-dimensional Printing. J. Thorac. Imaging 2016, 31, 253–272. [Google Scholar] [CrossRef]
- Illmann, C.; Hosking, M.; Harris, K.C. Utility and access to 3-dimensional printing in the context of congenital heart disease: An international physician survey study. CJC Open 2020, 2, 207–213. [Google Scholar] [CrossRef]
- Sadeghi, A.; el Mathari, S.; Abjigitova, D.; Maat, A.P.W.M.; Taverne, Y.J.H.J.; Bogers, A.J.J.C.; Mahtab, E.A.F. Current and future applications of virtual, augmented, and mixed reality in cardiothoracic surgery. Ann. Thorac. Surg. 2022, 113, 681–691. [Google Scholar] [CrossRef]
- Grine, M.; Guerreriro, C.; Costa, F.M.; Menezes, M.N.; Ladeiras-Lopes, R.; Ferreira, D.; Oliveira-Santos, M. Digital health in cardiovascular medicine: An oveview of key appliations and clinical impact by the Portuguese Society of Cardiology Study Group on Digital Health. Rev. Port. Cardiol. 2025, 44, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Mahtab, E.A.F.; Max, S.A.; Braun, J.; Regeer, M.V.; Kaufman, B.; Duning, J.; Bibleraaj, B.; Lecoq, R.R.; Klinceva, M.; Rosalia, R.; et al. Developing a systematic approach for the implementation of medical extended reality learning modules in cardiothoracic health care: Recommendations from an international expert group. JACC Adv. 2025, 4, 101633. [Google Scholar] [CrossRef] [PubMed]
- Kanschik, D.; Bruno, R.R.; van Genderen, M.E.; Serruys, P.W.; Tsai, T.Y.; Kelm, M.; Jung, C. Extended reality in cardiovascular care: A systematic review. Eur. Heart J.-Digit. Health 2025, ztaf070. [Google Scholar] [CrossRef]
- Harris, E.; Fenton, S.; Stephenson, J.; Ewart, F.; Goharinezhad, S.; Lee, H.; Astin, F. Do extended reality interventions benefit patients undergoing elective cardiac surgical and interventional procedures? A systematic review and meta-analysis. J. Clin. Nurs. 2025, 34, 1465–1492. [Google Scholar] [CrossRef]
- Arjomandi Rad, A.; Vardanyan, R.; Thavarajasingam, S.G.; Zubarevich, A.; van den Eynde, J.; Sa, M.B.P.O.; Zhigalov, K.; Nia, P.S.; Ruhparwar, A.; Weymann, A. Extended, virtual and augmented reality in thoracic surgery: A systematic review. Interdiscip. Cardiovasc. Thorac. Surg. 2022, 34, 201–211. [Google Scholar] [CrossRef]
- Nanchahal, S.; Arjomandi Rad, A.; Naruka, V.; Chacko, J.; Liu, G.; Afoke, J.; Miller, G.; Malawana, J.; Punjab, P. Mitral valve surgery assisted by virtual and augmented reality: Cardiac surgery at the front of innovation. Perfusion 2024, 39, 244–255. [Google Scholar] [CrossRef]
- Salavitabar, A.; Zampi, J.D.; Thomas, C.; Zanaboni, D.; Les, A.; Lowery, R.; Wu, S.; Whiteside, W. Augmented reality visualization of 3D rotational angiography in congenital heart disease: A comparative study to standard computer visualization. Pediatr. Cardiol. 2024, 45, 1759–1766. [Google Scholar] [CrossRef]
- Garcia-Vazquez, V.; von Haxthausen, F.; Jackle, S.; Schumann, C.; Kuhlemann, I.; Bouchagiar, J.; Hofer, A.C.; Matysiak, F.; Huttmann, G.; Goltz, J.P.; et al. Navigation and visualisation with Hololens in endovascular aortic repair. Innov. Surg. Sci. 2018, 3, 167–177. [Google Scholar] [CrossRef]
- Ponzoni, M.; Bertelli, F.; Yoo, S.J.; Peel, B.; Seatle, H.; Honjon, O.; Haller, C.; Barron, D.J.; Seed, M.; Lam, C.Z.; et al. Mixed reality for preoperative planning and intraoperative planning and intraoperative assistance of surgical correction of complex congenital heart defects. J. Thorac. Cardiovasc. Surg. 2025, 170, 327–335.e1. [Google Scholar] [CrossRef]
- Aye, W.M.M.; Kiraly, L.; Kumar, S.S.; Kasivishavanaath, A.; Goa, Y.; Kofidis, T. Mixed reality (holography)-guided minimally invasive cardiac surgery-A novel comparative feasibility study. J. Cardiovasc. Dev. Dis. 2025, 12, 49. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Vaccarezza, M. Extended Reality and Its Applications in Cardiovascular Medicine. Virtual Worlds 2025, 4, 42. https://doi.org/10.3390/virtualworlds4030042
Sun Z, Vaccarezza M. Extended Reality and Its Applications in Cardiovascular Medicine. Virtual Worlds. 2025; 4(3):42. https://doi.org/10.3390/virtualworlds4030042
Chicago/Turabian StyleSun, Zhonghua, and Mauro Vaccarezza. 2025. "Extended Reality and Its Applications in Cardiovascular Medicine" Virtual Worlds 4, no. 3: 42. https://doi.org/10.3390/virtualworlds4030042
APA StyleSun, Z., & Vaccarezza, M. (2025). Extended Reality and Its Applications in Cardiovascular Medicine. Virtual Worlds, 4(3), 42. https://doi.org/10.3390/virtualworlds4030042