Critical Windows of Vulnerability: Behavioral Dysregulation After Prenatal vs. Adolescent THC Exposure
Abstract
1. Introduction
2. Endocannabinoid System
3. Prenatal Exposure Adolescent Behaviors
3.1. Social Interaction
3.2. Learning and Memory
3.3. Fear Conditioning
3.4. Anxiety
4. Adolescent Exposure
4.1. Social Interaction
4.2. Learning and Memory
4.3. Fear Conditioning
4.4. Anxiety
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Thompson, R.; DeJong, K.; Lo, J. Marijuana Use in Pregnancy: A Review. Obstet. Gynecol. Surv. 2019, 74, 415–428. [Google Scholar] [CrossRef]
- Bryan, K. Cannabis Overview, National Conference of State Legislatures. Available online: https://www.ncsl.org/civil-and-criminal-justice/cannabis-overview (accessed on 19 September 2024).
- Goldschmidt, L.; Day, N.L.; Richardson, G.A. Effects of prenatal marijuana exposure on child behavior problems at age 10. Neurotoxicol. Teratol. 2000, 22, 325–336. [Google Scholar] [CrossRef]
- Paul, S.E.; Hatoum, A.S.; Fine, J.D.; Johnson, E.C.; Hansen, I.; Karcher, N.R.; Moreau, A.L.; Bondy, E.; Qu, Y.; Carter, E.B.; et al. Associations Between Prenatal Cannabis Exposure and Childhood Outcomes: Results From the ABCD Study. JAMA Psychiatry 2021, 78, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Moore, B.F.; Salmons, K.A.; Hoyt, A.T.; Swenson, K.S.; Bates, E.A.; Sauder, K.A.; Shapiro, A.L.B.; Wilkening, G.; Kinney, G.L.; Neophytou, A.M.; et al. Associations between Prenatal and Postnatal Exposure to Cannabis with Cognition and Behavior at Age 5 Years: The Healthy Start Study. Int. J. Environ. Res. Public Health 2023, 20, 4880. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, N.; Salas-Pérez, F.; Ortíz, M.; Álvarez, D.; Echiburú, B.; Maliqueo, M. Rodent models in placental research. Implications for fetal origins of adult disease. Anim. Reprod. 2022, 19, e20210134. [Google Scholar] [CrossRef]
- Committee Opinion Marijuana Use During Pregnancy and Lactation. Available online: https://www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2017/10/marijuana-use-during-pregnancy-and-lactation (accessed on 19 September 2024).
- Spear, L.P. The adolescent brain and age-related behavioral manifestations. Neurosci. Biobehav. Rev. 2000, 24, 417–463. [Google Scholar] [CrossRef]
- Arain, M.; Haque, M.; Johal, L.; Mathur, P.; Nel, W.; Rais, A.; Sandhu, R.; Sharma, S. Maturation of the adolescent brain. Neuropsychiatr. Dis. Treat. 2013, 9, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Miech, R.A.; Johnston, L.D.; Patrick, M.E.; O’Malley, P. Monitoring the Future National Survey Results on Drug Use, 1975–2024: Overview and Detailed Results for Secondary School Students; Institute for Social Research, University of Michigan: Ann Arbor, MI, USA, 2025; Available online: https://monitoringthefuture.org/results/annual-reports/ (accessed on 20 June 2025).
- Bjork, J.M. The Ups and Downs of Relating Nondrug Reward Activation to Substance Use Risk in Adolescents. Curr. Addict. Rep. 2020, 7, 421–429. [Google Scholar] [CrossRef]
- Holliday, E.D.; Logue, S.F.; Oliver, C.; Bangasser, D.A.; Gould, T.J. Stress and nicotine during adolescence disrupts adult hippocampal-dependent learning and alters stress reactivity. Addict. Biol. 2019, 25, e12769. [Google Scholar] [CrossRef]
- Portugal, G.S.; Wilkinson, D.S.; Turner, J.R.; Blendy, J.A.; Gould, T.J. Developmental effects of acute, chronic, and withdrawal from chronic nicotine on fear conditioning. Neurobiol. Learn. Mem. 2012, 97, 482–494. [Google Scholar] [CrossRef]
- Logue, S.; Chein, J.; Gould, T.; Holliday, E.; Steinberg, L. Adolescent mice, unlike adults, consume more alcohol in the presence of peers than alone. Dev. Sci. 2014, 17, 79–85. [Google Scholar] [CrossRef]
- Spear, L.P. Adolescents and alcohol: Acute sensitivities, enhanced intake, and later consequences. Neurotoxicol. Teratol. 2014, 41, 51–59. [Google Scholar] [CrossRef]
- Doherty, J.M.; Frantz, K.J. Heroin self-administration and reinstatement of heroin-seeking in adolescent vs. adult male rats. Psychopharmacology 2012, 219, 763–773. [Google Scholar] [CrossRef]
- Zhang, Y.; Picetti, R.; Butelman, E.R.; Schlussman, S.D.; Ho, A.; Kreek, M.J. Behavioral and Neurochemical Changes Induced by Oxycodone Differ Between Adolescent and Adult Mice. Neuropsychopharmacology 2009, 34, 912–922. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.-C.; Mackie, K. An introduction to the endogenous cannabinoid system. Biol. Psychiatry 2016, 79, 516–525. [Google Scholar] [CrossRef]
- Ellgren, M.; Artmann, A.; Tkalych, O.; Gupta, A.; Hansen, H.S.; Hansen, S.H.; Devi, L.A.; Hurd, Y.L. Dynamic changes of the endogenous cannabinoid and opioid mesocorticolimbic systems during adolescence: THC effects. Eur. Neuropsychopharmacol. 2008, 18, 826–834. [Google Scholar] [CrossRef] [PubMed]
- Demuth, D.G.; Molleman, A. Cannabinoid signalling. Life Sci. 2006, 78, 549–563. [Google Scholar] [CrossRef] [PubMed]
- Gómez, M.; Hernández, M.L.; Pazos, M.R.; Tolón, R.M.; Romero, J.; Fernández-Ruiz, J. Colocalization of CB1 receptors with L1 and GAP-43 in forebrain white matter regions during fetal rat brain development: Evidence for a role of these receptors in axonal growth and guidance. Neuroscience 2008, 153, 687–699. [Google Scholar] [CrossRef]
- Heng, L.; Beverley, J.A.; Steiner, H.; Tseng, K.Y. Differential developmental trajectories for CB1 cannabinoid receptor expression in limbic/associative and sensorimotor cortical areas. Synapse 2011, 65, 278–286. [Google Scholar] [CrossRef]
- Schneider, M. Puberty as a highly vulnerable developmental period for the consequences of cannabis exposure. Addict. Biol. 2008, 13, 253–263. [Google Scholar] [CrossRef]
- Chowdhury, K.U.; Holden, M.E.; Wiley, M.T.; Suppiramaniam, V.; Reed, M.N. Effects of Cannabis on Glutamatergic Neurotransmission: The Interplay between Cannabinoids and Glutamate. Cells 2024, 13, 1130. [Google Scholar] [CrossRef]
- Weimar, H.V.; Wright, H.R.; Warrick, C.R.; Brown, A.M.; Lugo, J.M.; Freels, T.G.; McLaughlin, R.J. Long-term effects of maternal cannabis vapor exposure on emotional reactivity, social behavior, and behavioral flexibility in offspring. Neuropharmacology 2020, 179, 108288. [Google Scholar] [CrossRef]
- Miczek, K. Chronic Δ9-Tetrahydrocannabinol in rats: Effect on social interactions, mouse killing, motor activity, consummatory behavior, and body temperature. Psychopharmacology 1979, 60, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Arias, M.; Navarrete, F.; Daza-Losada, M.; Navarro, D.; Aguilar, M.A.; Berbel, P.; Miñarro, J.; Manzanares, J. CB1 cannabinoid receptor-mediated aggressive behavior. Neuropharmacology 2013, 75, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Vargish, G.A.; Pelkey, K.A.; Yuan, X.; Chittajallu, R.; Collins, D.; Fang, C.; McBain, C.J. Persistent inhibitory circuit defects and disrupted social behaviour following in utero exogenous cannabinoid exposure. Mol. Psychiatry 2017, 22, 56–67. [Google Scholar] [CrossRef]
- Bara, A.; Manduca, A.; Bernabeu, A.; Borsoi, M.; Serviado, M.; Lassalle, O.; Murphy, M.; Wager-Miller, J.; Mackie, K.; Pelissier-Alicot, A.-L.; et al. Sex-dependent effects of in utero cannabinoid exposure on cortical function. Elife 2018, 7, e36234. [Google Scholar] [CrossRef]
- DeVuono, M.V.; Nashed, M.G.; Sarikahya, M.H.; Kocsis, A.; Lee, K.; Vanin, S.R.; Hudson, R.; Lonnee, E.P.; Rushlow, W.J.; Hardy, D.B.; et al. Prenatal tetrahydrocannabinol and cannabidiol exposure produce sex-specific pathophysiological phenotypes in the adolescent prefrontal cortex and hippocampus. Neurobiol. Dis. 2024, 199, 106588. [Google Scholar] [CrossRef]
- Brancato, A.; Castelli, V.; Lavanco, G.; Marino, R.A.M.; Cannizzaro, C. In utero Δ9-tetrahydrocannabinol exposure confers vulnerability towards cognitive impairments and alcohol drinking in the adolescent offspring: Is there a role for neuropeptide Y? J. Psychopharmacol. 2020, 34, 663–679. [Google Scholar] [CrossRef]
- Castelli, V.; Lavanco, G.; Feo, S.; D’Amico, C.; Micale, V.; Kuchar, M.; Plescia, F.; Brancato, A.; Cannizzaro, C. Prenatal Exposure to Δ9-Tetrahydrocannabinol Affects Hippocampus-Related Cognitive Functions in the Adolescent Rat Offspring: Focus on Specific Markers of Neuroplasticity. Pharmaceutics 2023, 15, 692. [Google Scholar] [CrossRef]
- Castelli, V.; Lavanco, G.; Tringali, G.; D’Amico, C.; Feo, S.; Di Bartolomeo, M.; D’Addario, C.; Kuchar, M.; Brancato, A.; Cannizzaro, C. Prenatal THC exposure drives sex-specific alterations in spatial memory and hippocampal excitatory/inhibitory balance in adolescent rats. Biomed. Pharmacother. 2024, 181, 117699. [Google Scholar] [CrossRef] [PubMed]
- Lei, A.; Breit, K.R.; Thomas, J.D. Prenatal alcohol and tetrahydrocannabinol exposure: Effects on spatial and working memory. Front. Neurosci. 2023, 17, 1192786. [Google Scholar] [CrossRef]
- Lallai, V.; Manca, L.; Sherafat, Y.; Fowler, C.D. Effects of Prenatal Nicotine, THC, or Co-Exposure on Cognitive Behaviors in Adolescent Male and Female Rats. Nicotine Tob. Res. 2022, 24, 1150–1160. [Google Scholar] [CrossRef]
- Pinky, P.D.; Bloemer, J.; Smith, W.D.; Du, Y.; Heslin, R.T.; Setti, S.E.; Pfitzer, J.C.; Chowdhury, K.; Hong, H.; Bhattacharya, S.; et al. Prenatal Cannabinoid Exposure Elicits Memory Deficits Associated with Reduced PSA-NCAM Expression, Altered Glutamatergic Signaling, and Adaptations in Hippocampal Synaptic Plasticity. Cells 2023, 12, 2525. [Google Scholar] [CrossRef]
- Trezza, V.; Campolongo, P.; Cassano, T.; Macheda, T.; Dipasquale, P.; Carratù, M.R.; Gaetani, S.; Cuomo, V. Effects of perinatal exposure to delta-9-tetrahydrocannabinol on the emotional reactivity of the offspring: A longitudinal behavioral study in Wistar rats. Psychopharmacology 2008, 198, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Newsom, R.J.; Kelly, S.J. Perinatal delta-9-tetrahydrocannabinol exposure disrupts social and open field behavior in adult male rats. Neurotoxicol. Teratol. 2008, 30, 213–219. [Google Scholar] [CrossRef]
- Sarikahya, M.H.; Cousineau, S.; Felice, M.D.; Lee, K.; Wong, K.K.; DeVuono, M.V.; Jung, T.; Rodríguez-Ruiz, M.; Ng, T.H.J.; Gummerson, D.; et al. Prenatal THC Exposure Induces Sex-Dependent Neuropsychiatric Endophenotypes in Offspring and Long-Term Disruptions in Fatty-Acid Signaling Pathways Directly in the Mesolimbic Circuitry. Eneuro 2022, 9, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Quinn, H.R.; Matsumoto, I.; Callaghan, P.D.; Long, L.E.; Arnold, J.C.; Gunasekaran, N.; Thompson, M.R.; Dawson, B.; Mallet, P.E.; Kashem, M.A.; et al. Adolescent Rats Find Repeated Δ9-THC Less Aversive Than Adult Rats but Display Greater Residual Cognitive Deficits and Changes in Hippocampal Protein Expression Following Exposure. Neuropsychopharmacology 2008, 33, 1113–1126. [Google Scholar] [CrossRef]
- Rubino, T.; Vigano’, D.; Realini, N.; Guidali, C.; Braida, D.; Capurro, V.; Castiglioni, C.; Cherubino, F.; Romualdi, P.; Candeletti, S.; et al. Chronic Δ9-Tetrahydrocannabinol During Adolescence Provokes Sex-Dependent Changes in the Emotional Profile in Adult Rats: Behavioral and Biochemical Correlates. Neuropsychopharmacology 2008, 33, 2760–2771. [Google Scholar] [CrossRef]
- Mohammed, A.N.; Alugubelly, N.; Kaplan, B.L.; Carr, R.L. Effect of repeated juvenile exposure to Δ9-tetrahydrocannabinol on anxiety-related behavior and social interactions in adolescent rats. Neurotoxicol. Teratol. 2018, 69, 11–20. [Google Scholar] [CrossRef]
- Mabou Tagne, A.; Fotio, Y.; Alan Springs, Z.; Su, S.; Piomelli, D. Frequent Δ9- tetrahydrocannabinol exposure during adolescence impairs sociability in adult mice exposed to an aversive painful stimulus. Eur. Neuropsychopharmacol. 2021, 53, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Iemolo, A.; Montilla-Perez, P.; Li, H.-R.; Yang, X.; Telese, F. Chronic adolescent exposure to cannabis in mice leads to sex-biased changes in gene expression networks across brain regions. Neuropsychopharmacology 2022, 47, 2071–2080. [Google Scholar] [CrossRef]
- Kasten, C.R.; Zhang, Y.; Boehm, S.L. Acute Cannabinoids Produce Robust Anxiety-Like and Locomotor Effects in Mice, but Long-Term Consequences Are Age- and Sex-Dependent. Front. Behav. Neurosci. 2019, 13, 32. [Google Scholar] [CrossRef]
- Chen, H.-T.; Mackie, K. Adolescent Δ9-Tetrahydrocannabinol Exposure Selectively Impairs Working Memory but Not Several Other mPFC-Mediated Behaviors. Front. Psychiatry 2020, 11, 576214. [Google Scholar] [CrossRef] [PubMed]
- Harte-Hargrove, L.C.; Dow-Edwards, D.L. Withdrawal from THC during Adolescence: Sex Differences in Locomotor Activity and Anxiety. Behav. Brain Res. 2012, 231, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Renard, J.; Szkudlarek, H.J.; Kramar, C.P.; Jobson, C.E.L.; Moura, K.; Rushlow, W.J.; Laviolette, S.R. Adolescent THC Exposure Causes Enduring Prefrontal Cortical Disruption of GABAergic Inhibition and Dysregulation of Sub-Cortical Dopamine Function. Sci. Rep. 2017, 7, 11420. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.; Black, R.; Michaelides, M.; Hurd, Y.L.; Dow-Edwards, D. Sex and age specific effects of delta-9-tetrahydrocannabinol during the periadolescent period in the rat: The unique susceptibility of the prepubescent animal. Neurotoxicol. Teratol. 2016, 58, 88–100. [Google Scholar] [CrossRef]
- Prini, P.; Rusconi, F.; Zamberletti, E.; Gabaglio, M.; Penna, F.; Fasano, M.; Battaglioli, E.; Parolaro, D.; Rubino, T. Adolescent THC exposure in female rats leads to cognitive deficits through a mechanism involving chromatin modifications in the prefrontal cortex. J. Psychiatry Neurosci. 2018, 43, 87–101. [Google Scholar] [CrossRef]
- Smiley, C.E.; Saleh, H.K.; Nimchuk, K.E.; Garcia-Keller, C.; Gass, J.T. Adolescent exposure to delta-9-tetrahydrocannabinol and ethanol heightens sensitivity to fear stimuli. Behav. Brain Res. 2021, 415, 113517. [Google Scholar] [CrossRef]
- Panksepp, J.; Siviy, S.; Normansell, L. The psychobiology of play: Theoretical and methodological perspectives. Neurosci. Biobehav. Rev. 1984, 8, 465–492. [Google Scholar] [CrossRef]
- Green, M.R.; Barnes, B.; McCormick, C.M. Social instability stress in adolescence increases anxiety and reduces social interactions in adulthood in male long–evans rats. Dev. Psychobiol. 2013, 55, 849–859. [Google Scholar] [CrossRef]
- Orben, A.; Tomova, L.; Blakemore, S.-J. The effects of social deprivation on adolescent development and mental health. Lancet Child Adolesc. Health 2020, 4, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Scheyer, A.F.; Laviolette, S.R.; Pelissier, A.-L.; Manzoni, O.J.J. Cannabis in Adolescence: Lasting Cognitive Alterations and Underlying Mechanisms. Cannabis Cannabinoid Res. 2023, 8, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Sharapova, S.R.; Phillips, E.; Sirocco, K.; Kaminski, J.W.; Leeb, R.T.; Rolle, I. Effects of prenatal marijuana exposure on neuropsychological outcomes in children aged 1–11 years: A systematic review. Paediatr. Perinat. Epidemiol. 2018, 32, 512–532. [Google Scholar] [CrossRef]
- Matsuda, L.A.; Bonner, T.I.; Lolait, S.J. Localization of cannabinoid receptor mRNA in rat brain. J. Comp. Neurol. 1993, 327, 535–550. [Google Scholar] [CrossRef]
- Barnes, C.A. Memory deficits associated with senescence: A neurophysiological and behavioral study in the rat. J. Comp. Physiol. Psychol. 1979, 93, 74–104. [Google Scholar] [CrossRef]
- Pitts, M.W. Barnes Maze Procedure for Spatial Learning and Memory in Mice. Bio Protoc. 2018, 8, e2744. [Google Scholar] [CrossRef]
- Swenson, K.S.; Gomez Wulschner, L.E.; Hoelscher, V.M.; Folts, L.; Korth, K.M.; Oh, W.C.; Bates, E.A. Fetal cannabidiol (CBD) exposure alters thermal pain sensitivity, problem-solving, and prefrontal cortex excitability. Mol. Psychiatry 2023, 28, 3397–3413. [Google Scholar] [CrossRef]
- Costa, H.H.V.; Vilela, F.C.; Giusti-Paiva, A. Continuous central infusion of cannabinoid receptor agonist WIN 55,212-2 decreases maternal care in lactating rats: Consequences for fear conditioning in adulthood males. Behav. Brain Res. 2013, 257, 31–38. [Google Scholar] [CrossRef]
- Gray, K.A.; Day, N.L.; Leech, S.; Richardson, G.A. Prenatal marijuana exposure: Effect on child depressive symptoms at ten years of age. Neurotoxicol. Teratol. 2005, 27, 439–448. [Google Scholar] [CrossRef]
- Leech, S.L.; Larkby, C.A.; Day, R.; Day, N.L. Predictors and Correlates of High Levels of Depression and Anxiety Symptoms Among Children at Age 10. J. Am. Acad. Child. Adolesc. Psychiatry 2006, 45, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Peterson, C.S.; Ifionu, I.; Hamood, F.; Semizeh, H.; Ali, A.; Noble, D.; Qiao, M.; Borgland, S.L. Prenatal and early postnatal cannabis exposure interactions with adolescent chronic stress on anxiety-like, depression-like, and risk-taking behaviour. Psychopharmacology 2025. [Google Scholar] [CrossRef]
- Traccis, F.; Serra, V.; Sagheddu, C.; Congiu, M.; Saba, P.; Giua, G.; Devoto, P.; Frau, R.; Cheer, J.F.; Melis, M. Prenatal THC Does Not Affect Female Mesolimbic Dopaminergic System in Preadolescent Rats. Int. J. Mol. Sci. 2021, 22, 1666. [Google Scholar] [CrossRef] [PubMed]
- Hall, W.; Degenhardt, L. Cannabis use and the risk of developing a psychotic disorder. World Psychiatry 2008, 7, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Fontes, M.A.; Bolla, K.I.; Cunha, P.J.; Almeida, P.P.; Jungerman, F.; Laranjeira, R.R.; Bressan, R.A.; Lacerda, A.L.T. Cannabis use before age 15 and subsequent executive functioning. Br. J. Psychiatry 2011, 198, 442–447. [Google Scholar] [CrossRef]
- Clarke, J.R.; Rossato, J.I.; Monteiro, S.; Bevilaqua, L.R.M.; Izquierdo, I.; Cammarota, M. Posttraining activation of CB1 cannabinoid receptors in the CA1 region of the dorsal hippocampus impairs object recognition long-term memory. Neurobiol. Learn. Mem. 2008, 90, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Fanselow, M.S. Contextual fear, gestalt memories, and the hippocampus. Behav. Brain Res. 2000, 110, 73–81. [Google Scholar] [CrossRef]
- Pamplona, F.A.; Takahashi, R.N. WIN 55212-2 impairs contextual fear conditioning through the activation of CB1 cannabinoid receptors. Neurosci. Lett. 2006, 397, 88–92. [Google Scholar] [CrossRef]
- Lightfoot, S.H.M.; Nastase, A.S.; Costa Lenz Cesar, G.; Hume, C.; Gom, R.C.; Teskey, G.C.; Hill, M.N. Acute and chronic cannabis vapor exposure produces immediate and delayed impacts on phases of fear learning in a sex specific manner. Psychopharmacology 2025. [Google Scholar] [CrossRef]
- Ballinger, M.D.; Saito, A.; Abazyan, B.; Taniguchi, Y.; Huang, C.-H.; Ito, K.; Zhu, X.; Segal, H.; Jaaro-Peled, H.; Sawa, A.; et al. Adolescent cannabis exposure interacts with mutant DISC1 to produce impaired adult emotional memory. Neurobiol. Dis. 2015, 82, 176–184. [Google Scholar] [CrossRef]
- Jacob, W.; Marsch, R.; Marsicano, G.; Lutz, B.; Wotjak, C.T. Cannabinoid CB1 receptor deficiency increases contextual fear memory under highly aversive conditions and long-term potentiation in vivo. Neurobiol. Learn. Mem. 2012, 98, 47–55. [Google Scholar] [CrossRef]
- Duperrouzel, J.; Hawes, S.W.; Lopez-Quintero, C.; Pacheco-Colón, I.; Comer, J.; Gonzalez, R. The Association between Adolescent Cannabis Use and Anxiety: A Parallel Process Analysis. Addict. Behav. 2018, 78, 107–113. [Google Scholar] [CrossRef] [PubMed]
- De Gregorio, D.; Dean Conway, J.; Canul, M.-L.; Posa, L.; Bambico, F.R.; Gobbi, G. Effects of chronic exposure to low doses of Δ9- tetrahydrocannabinol in adolescence and adulthood on serotonin/norepinephrine neurotransmission and emotional behaviors. Int. J. Neuropsychopharmacol. 2020, 23, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Mompo, C.; Curto, Y.; Carceller, H.; Gilabert-Juan, J.; Rodriguez-Flores, E.; Guirado, R.; Nacher, J. Δ-9-Tetrahydrocannabinol treatment during adolescence and alterations in the inhibitory networks of the adult prefrontal cortex in mice subjected to perinatal NMDA receptor antagonist injection and to postweaning social isolation. Transl. Psychiatry 2020, 10, 177. [Google Scholar] [CrossRef]
- Godino, M.C.; Torres, M.; Sánchez-Prieto, J. Inhibition of N- and P/Q-type Ca2+ channels by cannabinoid receptors in single cerebrocortical nerve terminals. FEBS Lett. 2005, 579, 768–772. [Google Scholar] [CrossRef] [PubMed]
- Twitchell, W.; Brown, S.; Mackie, K. Cannabinoids Inhibit N- and P/Q-Type Calcium Channels in Cultured Rat Hippocampal Neurons. J. Neurophysiol. 1997, 78, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Huizink, A.C.; Mulder, E.J.H. Maternal smoking, drinking or cannabis use during pregnancy and neurobehavioral and cognitive functioning in human offspring. Neurosci. Biobehav. Rev. 2006, 30, 24–41. [Google Scholar] [CrossRef]
- Sorkhou, M.; Singla, D.R.; Castle, D.J.; George, T.P. Birth, cognitive and behavioral effects of intrauterine cannabis exposure in infants and children: A systematic review and meta-analysis. Addiction 2024, 119, 411–437. [Google Scholar] [CrossRef]
- Keles, H.O.; Radoman, M.; Pachas, G.N.; Evins, A.E.; Gilman, J.M. Using Functional Near-Infrared Spectroscopy to Measure Effects of Delta 9-Tetrahydrocannabinol on Prefrontal Activity and Working Memory in Cannabis Users. Front. Hum. Neurosci. 2017, 11, 488. [Google Scholar] [CrossRef]
- Spear, L.P. Adolescent neurobehavioral characteristics, alcohol sensitivities, and intake: Setting the stage for alcohol use disorders? Child. Dev. Perspect. 2011, 5, 231–238. [Google Scholar] [CrossRef]
- Jacobus, J.; Tapert, S.F. Effects of Cannabis on the Adolescent Brain. Curr. Pharm. Des. 2014, 20, 2186–2193. [Google Scholar] [CrossRef]
- Scott, J.C.; Slomiak, S.T.; Jones, J.D.; Rosen, A.F.G.; Moore, T.M.; Gur, R.C. Association of Cannabis with Cognitive Functioning in Adolescents and Young Adults: A Systematic Review and Meta-analysis. JAMA Psychiatry 2018, 75, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Holliday, E.; Bagasra, A. Challenges in Recovery Research from a Neuroscience Perspective. Addict. Addict. Disord. 2023, 10, 120. [Google Scholar] [CrossRef]
Experiment | Time of Exposure to the Rodent Model | Drug and Dosage; Route of Administration | Age/Time Period of the Behavior Experiment | Outcome | Source or Reference |
---|---|---|---|---|---|
Ultrasonic-induced vocalization | GD 0–GD 21 | 400 mg/mL phytacannabinoid at a conc of 99.2 mg/mL THC; Vape | PND 6, PND 10, PND 13 | Showed more frequency-modulated harmonic calls on P6 only | Weimer et al., 2020 [25] |
Social Play behavior | GD 0–GD 21 | 400 mg/mL phytacannabinoid at a conc of 99.2 mg/mL THC; Vape | PND 26 | Fewer social investigation cases on male only | Weimer et al., 2020 [25] |
Elevated Plus Maze | GD 0–GD 21 | 400 mg/mL phytacannabinoid at a conc of 99.2 mg/mL THC; Vape | PND 27 (Adolescence) P73 (Adulthood) | No effect during adolescence, but increases anxiety-like behavior (spent less time exploring the open arms) during adulthood | Weimer et al., 2020 [25] |
Behavioral Flexibility | GD 0–GD 21 | 99.2 mg/mL THC; Vape | PND 60–PND 110 | Impaired | Weimer et al., 2020 [25] |
Miczek et al., 1979 [26] | |||||
No THC, only aarachdonly 2-chloroethaylamide | Rodriguez-Arias et al., 2013 [27] | ||||
Social Interaction test | E 10.5–E 18.5 | 0.75 mg/kg WIN55,212-2; IP | PND 14–PND 45 | Decreased | Vargish, Pelkey, Yuan, Chittajallu, Collins, Fang, & McBain et al., 2017 [28] |
Social Interaction test | GD 5–GD 20 | 0.5 mg/kg WIN; SC | PND > 90 | Reduced sniffing, and playing behaviors are impaired, but the number of attacks remains unchanged (in males only) | Bara et al., 2018 [29] |
Elevated Plus Maze | GD 5–GD 20 | 0.5 mg/kg WIN; SC | PND > 90 | No differences | Bara et al., 2018 [29] |
Elevated Plus Maze | GD 7–GD 22 | 3 mg/kg THC; IP | PND 35–PND 45 | Increased anxiety-like behavior—Spent less time in open arms and more time in closed arms (in females only) Males spent more time in open arms and less time in closed arms | Devuono et al., 2024 [30] |
Temporal Order Novel Object Recognition | GD 7–GD 22 | 3 mg/kg THC; IP | PND 35–PND 45 | Impaired memory and reduced cognition (in males only) | Devuono et al., 2024 [30] |
Three-Chamber Social interaction and Memory Test | GD 7–GD 22 | 3 mg/kg THC; IP | PND 35–PND 45 | Reduced social recognition | Devuono et al., 2024 [30] |
Open Field Test | GD 7–GD 22 | 3 mg/kg THC; IP | PND 35–PND 45 | No Effect | Devuono et al., 2024 [30] |
Pre Pulse Inhibition Test | GD 7–GD 22 | 3 mg/kg THC; IP | PND 35–PND 45 | Sensorimotor gating impairments (in males only) | Devuono et al., 2024 [30] |
Open Field Test | GD 5–GD 20 | 2 mg/kg THC; SC | PND 25 to PND 30 | Increased locomotor activity | Brancato et al., 2020 [31] |
Novel Object Recognition | GD 5–GD 20 | 2 mg/kg THC; SC | PND 25 to PND 30 | No effect | Brancato et al., 2020 [31] |
Enhanced Object Recognition | GD 5–GD 20 | 2 mg/kg THC; SC | PND 25 to PND 30 | Decreased limbic learning and memory | Brancato et al., 2020 [31] |
Barnes Maze | GD 5–GD 20 | 2 mg/kg Delta 9 THC; SC | PND 35–PND 46 | Impaired retrieval and reversal | Castelli et al., 2023 [32] |
Can test | GD5–GD 20 | 2 mg/kg Delta 9 THC; SC | PND 35–PND 46 | Impaired cognitive execution | Castelli et al., 2023 [32] |
Barnes Maze | GD 5–GD 20 | 2 mg/kg Delta 9 THC; SC | PND 35–PND 60 | Target latency increased in males only Prelocation and preservation errors (increased in male only) Retrieval delayed (in females only) | Castelli et al., 2024 [33] |
Morris Water Maze (Visuospatial Learning) | GD 5–GD 20 | 100 mg/mL delta 9 THC; Vape | PND 40–PND 45 | Impaired spatial learning and memory; required longer path lengths to find the hidden platform (in female only) | Lei et al., 2023 [34] |
Morris Water Maze (Working Memory) | GD 5–GD 20 | 100 mg/mL delta 9 THC; Vape | PND 55–PND 60 | No effect | Lei et al., 2023 [34] |
Noble Object Recognition | G 0–G 20 | 5 mg/kg; Oral | PND 35 | No preference for the noble object | Lallai et al., 2022 [35] |
Novelty Suppressed Feeding Test | G 0–G 20 (preconception for five days) | 5 mg/kg; Oral | PND 37 | Longer approach latency (in males only) | Lallai et al., 2022 [35] |
Open Field Test | GD 3-PND 2 | 2 mg/kg WIN 55,212; SC | PND 41 | More time spent in the central area; decreased anxiety | Pinky et al., 2023 [36] |
Contextual fear conditioning | GD 3-PND 2 | 2 mg/kg WIN 55,212; SC | PND 46–PND 47 | Decreased freezing during contextual fear retention | Pinky et al., 2023 [36] |
Morris Water Maze | GD 3-PND 2 | 2 mg/kg WIN 55,212; SC | PND 52–PND 53 | Deficits in spatial memory | Pinky et al., 2023 [36] |
Ultrasonic induced vocalization | GD 15-PND 9 | 2.5–5 mg/kg delta 9 THC; oral | PND 12 | Increased number of ultrasounds | Trezza et al., 2008 [37] |
Social Interaction | GD 15-PND 9 | 2.5–5 mg/kg delta 9 THC; oral | PND 35 | Adolescents: ↓ social interaction/play | Trezza et al., 2008 [37] |
Elevated Plus Maze | GD 15-PND 9 | 2.5–5 mg/kg delta 9 THC; oral | PND 80 | Adults: anxiogenic-like profile in EPM (decreased time spent in open-arms) | Trezza et al., 2008 [37] |
Open field | GD 1–GD 22, PND 2–PND 10 | 2 mg/kg delta 9 THC; SC | PND 90 | Spent less time in inner zone, indicating increased anxiety-like behavior | Newsom et al., 2008 [38] |
Elevated Plus maze | GD 7–GD 22 | 3 mg/kg delta 9 THC; SC | PND 70–PND 100 | Males spent less time in light/open arms; females unaffected | Sarikahya et al., 2022 [39] |
Sucrose Preference test | GD 7–GD 22 | 3 mg/kg delta 9 THC; SC | PND 70–PND 100 | No effect | Sarikahya et al., 2022 [39] |
Object recognition memory | PND 28+ and PND 60+ | 5 mg/kg Delta 9 THC; IP | 10–15 days washout and 17 days post last injection | Impaired only in adolescents | Quinn et al., 2008 [40] |
PND 28+ and PND 60+ | 5 mg/kg Delta 9 THC; IP | 10–15 days washout and 17 days post last injection | Adults showed strong place aversion that persisted for 16 days; adolescents displayed no significant aversion; reduced social interaction in both groups | Quinn et al., 2008 [40] | |
Elevated Plus Maze | PND 35–45 | 2.5, 5, 10 mg/kg delta 9 THC; IP | PND 75 | No change | Rubino et al., 2008 [41] |
Open Field test | PND 35–45 | 2.5, 5, 10 mg/kg delta 9 THC; IP | PND 75 | No change | Rubino et al., 2008 [41] |
Forced Swim test | PND 35–45 | 2.5, 5, 10 mg/kg delta 9 THC; IP | PND 75 | Adult females exhibited depressive-like behaviors in forced swim test (immobility ↑26%, climbing ↓40%) and anhedonia (↓ sucrose preference); males showed only anhedonia; reduced social interactions when tested in adulthood | Rubino et al., 2008 [41] |
Elevated Plus Maze | PND 10–PND 16 | 10 mg/kg delta 9 THC; Oral | PND 37–PND 38 | Males showed reduced anxiety-like behavior (increased open-arm time in elevated plus maze) and hyperactivity, but females did not | Mohammed et al., 2018 [42] |
Social Play Initiation | PND 10–PND 16 | 10 mg/kg delta 9 THC; Oral | PND 37–PND 38 | Both sexes exhibited increased social play initiation | Mohammed et al., 2018 [42] |
Social Interaction | PND 30–PND 43 | 5 mg/kg delta 9 THC; IP | PND 70 | Reduced (in males only) | Mabou Tagne et al., 2021 [43] |
Social interaction | PND 35–PND 56 | 10 mg/kg THC; IP | PND 70 | Impaired | Zuo, Lemolo, Montilla-Perez, Li, Yang, & Telese et al., 2022 [44] |
Elevated Plus Maze | PND 28–30 (Adolescent) PND 70+ (Adult) | 0, 1, 5, or 10 mg/kg delta 9 THC, IP | PND 28–PND 30 (Adolescent) PND 70+ (Adult) | No change in adolescence but decreased open-arm entries in adulthood | Kasten et al., 2019 [45] |
Noble Object Recognition | PND 28–30 (Adolescent) PND 70+ (Adult) | 0, 1, 5, or 10 mg/kg delta 9 THC, IP | PND 28–PND 30 (Adolescent) PND 70+ (Adult) | No change | Kasten et al., 2019 [45] |
Chen and Mackie et al., 2020 [46] | |||||
Harte-Hargrove and Dow-Edwards et al., 2012 [47] | |||||
PND 35–PND 45 | 2.5, 5, 10 mg/kg Delta 9 THC; IP | PND 60+ | Adult deficits in short-term memory, social motivation, and increased anxiety-like behavior—indicative of schizophrenia-like phenotypes | Renard et al., 2017 [48] | |
Open arm time | PND 21–PND 30 (F) PND 29–PND 28 (M) | 3 mg/kg Delta 9 THC;IP | Pre-pubescent animals showed reduced anxiety (↑ open-arm time); effect absent in pubertal-treated animals | Silva et al., 2016 [49] | |
Noble object recognition | PND 35–PND 45 | 2.5, 5, 10 mg/kg delta 9 THC; IP | PND 75 | Reduced (females only) | Prini et al., 2018 [50] |
Social interaction | PND 35–PND 45 | 2.5, 5, 10 mg/kg delta 9 THC; IP | PND 75 | Reduced (females only) | Prini et al., 2018 [50] |
Conditioned Fear Cues | PND 35–PND 39 | Delta 9 THC; Vapor | PND 60 | Increased freezing | Smiley et al., 2021 [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holliday, E.; Chowdhury, K.U.; Chen, K.; Saleem, B.; Yenduri, A.; Suppiramaniam, V. Critical Windows of Vulnerability: Behavioral Dysregulation After Prenatal vs. Adolescent THC Exposure. Psychoactives 2025, 4, 29. https://doi.org/10.3390/psychoactives4030029
Holliday E, Chowdhury KU, Chen K, Saleem B, Yenduri A, Suppiramaniam V. Critical Windows of Vulnerability: Behavioral Dysregulation After Prenatal vs. Adolescent THC Exposure. Psychoactives. 2025; 4(3):29. https://doi.org/10.3390/psychoactives4030029
Chicago/Turabian StyleHolliday, Erica, Kawsar Ullah Chowdhury, Kai Chen, Bilal Saleem, Abhinav Yenduri, and Vishnu Suppiramaniam. 2025. "Critical Windows of Vulnerability: Behavioral Dysregulation After Prenatal vs. Adolescent THC Exposure" Psychoactives 4, no. 3: 29. https://doi.org/10.3390/psychoactives4030029
APA StyleHolliday, E., Chowdhury, K. U., Chen, K., Saleem, B., Yenduri, A., & Suppiramaniam, V. (2025). Critical Windows of Vulnerability: Behavioral Dysregulation After Prenatal vs. Adolescent THC Exposure. Psychoactives, 4(3), 29. https://doi.org/10.3390/psychoactives4030029