New Psychoactive Substances: Health and Legal Challenges
Abstract
:1. Introduction
2. New Psychoactive Substances: An Overview
3. Historical Perspective and Trends of NPS Abuse
4. Categories of New Psychoactive Substances
4.1. Synthetic and Semi-Synthetic Cannabinoids
4.2. Synthetic Cathinones
4.3. Phenethylamines
4.4. Aminoindanes
4.5. Piperazines
4.6. Synthetic Opioids
4.7. Tryptamines
4.8. Dissociative Drugs
4.9. Plant-Based New Psychoactive Substances
5. Legal and Criminal Aspects Related to New Psychoactive Substance Abuse
6. Warning Signs of New Psychoactive Substance Abuse
7. Concluding Remarks
8. Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Lo, T.W.; Yeung, J.W.K. Substance abuse and public health: A multilevel perspective and multiple responses. Int. J. Environ. Res. Public Health 2020, 17, 2610. [Google Scholar] [CrossRef] [PubMed]
- Mennis, J.; Stahler, G.J. Risky substance Use environments and addiction: A new frontier for environmental justice research. Int. J. Environ. Res. Public Health 2016, 13, 607. [Google Scholar] [CrossRef] [PubMed]
- Varì, M.R.; Mannocchi, G. New psychoactive substances: Evolution in the exchange of information and innovative Legal responses in the European Union. Int. J. Environ. Res. Public Health 2020, 17, 8704. [Google Scholar] [CrossRef] [PubMed]
- Simão, A.Y.; Antunes, M. An update on the implications of new psychoactive substances in public health. Int. J. Environ. Res. Public Health 2022, 19, 4869. [Google Scholar] [CrossRef] [PubMed]
- Corazza, O.; Simonato, P. “Legal highs”: Safe and legal “heavens”? A study on the diffusion, knowledge and risk awareness of novel psychoactive drugs among students in the UK. Riv. Psichiatr. 2014, 49, 89–94. [Google Scholar]
- Vandrey, R.; Dunn, K.E. A survey study to characterize use of Spice products (synthetic cannabinoids). Drug Alcohol. Depend. 2012, 120, 238–241. [Google Scholar] [CrossRef] [PubMed]
- EMCDDA. Perspectives on Drugs: Synthetic Cannabinoids in Europe; EMCDDA: Lisbon, Portugal, 2021. [Google Scholar]
- Hasan, M.; Sarker, S.A. New psychoactive substances: A potential threat to developing countries. Addict. Health 2023, 15, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Corkery, J.M.; Orsolini, L. From concept(ion) to life after death/the grave: The natural history and life cycle(s) of novel psychoactive substances (NPS). Hum. Psychopharmacol. 2017, 32, 3. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.M.; Sharma, A. “Legal highs” on the net-Evaluation of UK-based Websites, products and product information. Forensic. Sci. Int. 2011, 206, 92–97. [Google Scholar] [CrossRef]
- Brandt, S.D.; King, L.A. The new drug phenomenon. Drug Test. Anal. 2014, 6, 587–597. [Google Scholar] [CrossRef]
- Di Trana, A.; Berardinelli, D. Molecular insights and clinical outcomes of drugs of abuse adulteration: New trends and new psychoactive substances. Int. J. Mol. Sci. 2022, 23, 14619. [Google Scholar] [CrossRef] [PubMed]
- Welter-Luedeke, J.; Maurer, H.H. New psychoactive substances: Chemistry, pharmacology, metabolism, and detectability of amphetamine derivatives with modified ring systems. Ther. Drug Monit. 2016, 38, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Shafi, A.; Berry, A.J. New psychoactive substances: A review and updates. Ther. Adv. Psychopharmacol. 2020, 10, 2045125320967197. [Google Scholar] [CrossRef]
- Gioé-Gallo, C.; Ortigueira, S. Pharmacological insights emerging from the characterization of a large collection of synthetic cannabinoid receptor agonists designer drugs. Biomed. Pharmacother. 2023, 164, 114934. [Google Scholar] [CrossRef] [PubMed]
- López-Arnau, R.; Camarasa, J. 3,4-Methylenedioxy methamphetamine, synthetic cathinones and psychedelics: From recreational to novel psychotherapeutic drugs. Front. Psychiatry 2022, 13, 990405. [Google Scholar] [CrossRef] [PubMed]
- Sajwani, H.S. The dilemma of new psychoactive substances: A growing threat. Saudi. Pharm. J. 2023, 31, 348–350. [Google Scholar] [CrossRef] [PubMed]
- Negrei, C.; Galateanu, B. Worldwide legislative challenges related to psychoactive drugs. Daru 2017, 25, 14. [Google Scholar] [CrossRef] [PubMed]
- Awuchi, C.G.; Aja, M.P. New psychoactive substances: Major groups, laboratory testing challenges, public health concerns, and community-based solutions. J. Chemistry 2023, 2023, 5852315. [Google Scholar] [CrossRef]
- Grinspoon, L.; Bakalar, J.B. Psychedelic Drugs Reconsidered; Basic Books: New York, NY, USA, 1979. [Google Scholar]
- Bertron, J.L.; Seto, M. DARK classics in chemical neuroscience: Phencyclidine (PCP). ACS Chem. Neurosci. 2018, 9, 2459–2474. [Google Scholar] [CrossRef]
- Ionescu-Pioggia, M.; Bird, M. Methaqualone. Int. Clin. Psychopharmacol. 1988, 3, 97–109. [Google Scholar] [CrossRef]
- Jerrard, D.A. “Designer drugs”—A current perspective. J. Emerg. Med. 1990, 8, 733–741. [Google Scholar] [CrossRef] [PubMed]
- Luethi, D.; Liechti, M.E. Designer drugs: Mechanism of action and adverse effects. Arch Toxicol. 2020, 94, 1085–1133. [Google Scholar] [CrossRef] [PubMed]
- Gabay, M. The federal controlled substances act: Schedules and pharmacy registration. Hosp. Pharm. 2013, 48, 473–474. [Google Scholar] [CrossRef] [PubMed]
- Bonson, K.R.; Dalton, T. Scheduling synthetic cathinone substances under the Controlled Substances Act. Psychopharmacology 2019, 236, 845–860. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.P.; Buttram, M.E. A randomized trial of brief assessment interventions for young adults who use drugs in the club scene. J. Subst. Abuse Treat. 2017, 78, 64–73. [Google Scholar] [CrossRef]
- Passie, T.; Passie, T. MDMA as a Dance Drug. In The History of MDMA; Dennis, A., Ed.; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- Hassan, Z.; Bosch, O.G. Novel psychoactive substances-Recent progress on neuropharmacological mechanisms of action for selected drugs. Front. Psychiatry 2017, 8, 152. [Google Scholar] [CrossRef] [PubMed]
- Miliano, C.; Margiani, G. Sales and advertising channels of new psychoactive substances (NPS): Internet, social networks, and smartphone apps. Brain Sci. 2018, 8, 123. [Google Scholar] [CrossRef] [PubMed]
- Mounteney, J.; Bo, A. The internet and Drug Markets: Shining a Light on These Complex and Dynamic Systems; Mounteney, J., Bo, A., Oteo, A., Eds.; European Monitoring Centre on Drugs and Drug Addiction: Lisbon, Portugal, 2016. [Google Scholar]
- EMCDDA. New Psychoactive Substances—The Current Situation in Europe; EMCDDA: Lisbon, Portugal, 2023. [Google Scholar]
- Zawatsky, C.N.; Mills-Huffnagle, S. Cannabidiol-derived cannabinoids: The unregulated designer drug market following the 2018 farm bill. Med. Cannabis Cannabinoids 2024, 7, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Ottani, A.; Giuliani, D. Hu 210: A potent tool for investigations of the cannabinoid system. CNS Drug Rev. 2001, 7, 131–145. [Google Scholar] [CrossRef]
- Ujváry, I. Hexahydrocannabinol and closely related semi-synthetic cannabinoids: A comprehensive review. Drug Test. Anal. 2024, 16, 127–161. [Google Scholar] [CrossRef]
- Cohen, K.; Weinstein, A.M. Synthetic and non-synthetic cannabinoid drugs and their adverse effects-A review from public health prospective. Front. Public Health 2018, 6, 162. [Google Scholar] [CrossRef] [PubMed]
- Zawilska, J.B.; Kuczyńska, K. Neurotoxicity of exogenous cannabinoids. In Handbook of Neurotoxicity; Kostrzewa, R.M., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1323–1353. [Google Scholar]
- Alves, V.L.; Gonçalves, J.L. The synthetic cannabinoids phenomenon: From structure to toxicological properties. A review. Crit. Rev. Toxicol. 2020, 50, 359–382. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, M.C.; Vides, M.C. Toxicity of synthetic cannabinoids in K2/Spice: A systematic review. Brain Sci. 2023, 13, 990. [Google Scholar] [CrossRef] [PubMed]
- Angerer, V.; Jacobi, S. Three fatalities associated with the synthetic cannabinoids 5F-ADB, 5F-PB-22, and AB-CHMINACA. Forensic Sci. Int. 2017, 281, e9–e15. [Google Scholar] [CrossRef] [PubMed]
- Behonick, G.; Shanks, K.G. Four postmortem case reports with quantitative detection of the synthetic cannabinoid, 5F-PB-22. J. Anal. Toxicol. 2014, 38, 559–562. [Google Scholar] [CrossRef] [PubMed]
- Kolaczynska, K.E.; Thomann, J. The pharmacological profile of second generation pyrovalerone cathinones and related cathinone derivative. Int. J. Mol. Sci. 2021, 22, 8277. [Google Scholar] [CrossRef] [PubMed]
- Baumann, M.H.; Solis, E., Jr. Baths salts, spice, and related designer drugs: The science behind the headlines. J. Neurosci. 2014, 34, 15150–15158. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.S.; Silva, B. Synthetic cathinones: Recent developments, enantioselectivity studies and enantioseparation methods. Molecules 2022, 27, 2057. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Ruiz, M.J. Khat and neurobehavioral functions: A systematic review. PLoS ONE 2021, 16, e0252900. [Google Scholar] [CrossRef]
- Silva, B.; Soares, J. Khat, a cultural chewing drug: A toxicokinetic and toxicodynamic summary. Toxins 2022, 14, 71. [Google Scholar] [CrossRef]
- Riley, A.L.; Nelson, K.H. Abuse potential and toxicity of the synthetic cathinones (i.e., “Bath salts”). Neurosci. Biobehav. Rev. 2020, 110, 150–173. [Google Scholar] [CrossRef]
- Tamama, K. Synthetic drugs of abuse. In Advances in Clinical Chemistry; Makowski, G.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 191–214. [Google Scholar]
- Daziani, G.; Lo Faro, A.F. Synthetic cathinones and neurotoxicity risks: A systematic review. Int. J. Mol. Sci. 2023, 24, 6230. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, J.M.; DeRienz, R.T. Fatal intoxication by the novel cathinone 4-fluoro-3-methyl-α-PVP. J. Anal. Toxicol. 2022, 46, e101–e104. [Google Scholar] [CrossRef] [PubMed]
- Ikeji, C.; Sittambalam, C.D. Fatal intoxication with N-ethylpentylone: A case report. J. Community Hosp. Intern. Med. Perspect. 2018, 8, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Glennon, R.A.; Ismaiel, A.E. A preliminary behavioral investigation of PMMA, the 4-methoxy analog of methamphetamine. Pharmacol. Biochem. Behav. 1988, 31, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Wagmann, L.; Brandt, S.D. Interactions of phenethylamine-derived psychoactive substances of the 2C-series with human monoamine oxidases. Drug Test. Anal. 2019, 11, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Alonzo, M.; Fu, S. Hallucinogens. In Encyclopedia of Forensic Sciences, 3rd ed.; Houck, M.M., Ed.; Elsevier: Oxford, UK, 2023; pp. 107–121. [Google Scholar]
- Greene, S.L. Chapter 16—Benzofurans and Benzodifurans. In Novel Psychoactive Substances; Dargan, P.I., Wood, D.M., Eds.; Academic Press: Boston, MA, USA, 2013; pp. 383–392. [Google Scholar]
- Rickli, A.; Luethi, D. Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2C drugs). Neuropharmacology 2015, 99, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Dean, B.V.; Stellpflug, S.J. 2C or not 2C: Phenethylamine designer drug review. J. Med. Toxicol. 2013, 9, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Kristofic, J.J.; Chmiel, J.D. Detection of 25C-NBOMe in Three Related Cases. J. Anal. Toxicol. 2016, 40, 466–472. [Google Scholar] [CrossRef]
- Hofmann, V.; Sundermann, T.R. Simultaneous determination of 5- and 6-APB in blood, other body fluids, hair and various tissues by HPLC—MS-MS. J. Anal. Toxicol. 2021, 46, 264–269. [Google Scholar] [CrossRef]
- Ferrari Júnior, E.; Leite, B.H.M. Fatal cases involving new psychoactive substances and trends in analytical techniques. Front. Toxicol. 2022, 4, 1033733. [Google Scholar] [CrossRef]
- Shelton, R.S. Secondary Beta Phenyl Propyl Amines and Pharmaceutical Compositions Thereof. Google Patents US2298630A, 13 October 1942. [Google Scholar]
- Witkin, L.; Heubner, C. Pharmacology of 2-amino-indane hydrochloride (Su-8629): A potent non-narcotic analgesic. J. Pharmacol. Exp. Ther. 1961, 133, 400–408. [Google Scholar]
- Youdim, M.B.; Gross, A. Rasagiline [N-propargyl-1R(+)-aminoindan], a selective and potent inhibitor of mitochondrial monoamine oxidase B. Br. J. Pharmacol. 2001, 132, 500–506. [Google Scholar] [CrossRef]
- Sainsbury, P.D.; Kicman, A.T. Aminoindanes—the next wave of ‘legal highs’? Drug Test. Anal. 2011, 3, 479–482. [Google Scholar] [CrossRef] [PubMed]
- Brandt, S.D.; Braithwaite, R.A. Chapter 11—Aminoindane Analogues. In Novel Psychoactive Substances; Dargan, P.I., Wood, D.M., Eds.; Academic Press: Boston, MA, USA, 2013; pp. 261–283. [Google Scholar]
- Pinterova, N.; Horsley, R.R. Synthetic Aminoindanes: A Summary of Existing Knowledge. Front. Psychiatry 2017, 8, 236. [Google Scholar] [CrossRef] [PubMed]
- Simmler, L.D.; Rickli, A. Pharmacological profiles of aminoindanes, piperazines, and pipradrol derivatives. Biochem. Pharmacol. 2014, 88, 237–244. [Google Scholar] [CrossRef]
- Luethi, D.; Kolaczynska, K.E. Pharmacological profile of mephedrone analogs and related new psychoactive substances. Neuropharmacology 2018, 134, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Coppola, M.; Mondola, R. 5-Iodo-2-aminoindan (5-IAI): Chemistry, pharmacology, and toxicology of a research chemical producing MDMA-like effects. Toxicol. Lett. 2013, 218, 24–29. [Google Scholar] [CrossRef]
- Corkery, J.M.; Elliott, S. MDAI (5,6-methylenedioxy-2-aminoindane; 6,7-dihydro-5H-cyclopenta[f][1,3]benzodioxol-6-amine; ‘sparkle’; ‘mindy’) toxicity: A brief overview and update. Hum. Psychopharmacol. Clin. Exp. 2013, 28, 345–355. [Google Scholar] [CrossRef]
- Elliott, S. Current awareness of piperazines: Pharmacology and toxicology. Drug Test. Anal. 2011, 3, 430–438. [Google Scholar] [CrossRef]
- Gee, P.; Jerram, T. Multiorgan failure from 1-benzylpiperazine ingestion—Legal high or lethal high? Clin. Toxicol. 2010, 48, 230–233. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, Y.P.; Cuquel, A.-C. A fatality following ingestion of the designer drug meta-chlorophenylpiperazine (mCPP) in an asthmatic—HPLC-MS/MS detection in biofluids and hair. J. Forensic Sci. 2013, 58, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Elliott, S.; Smith, C. Investigation of the first deaths in the United Kingdom involving the detection and quantitation of the piperazines BZP and 3-TFMPP. J. Anal. Toxicol. 2008, 32, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Shafi, A.; Berry, A.J. Synthetic opioids: A review and clinical update. Ther. Adv. Psychopharmacol. 2022, 12, 20451253221139616. [Google Scholar] [CrossRef] [PubMed]
- Edinoff, A.N.; Kaplan, L.A. Full opioid agonists and tramadol: Pharmacological and clinical considerations. Anesth. Pain Med. 2021, 11, e119156. [Google Scholar] [CrossRef] [PubMed]
- Wilde, M.; Pichini, S. Metabolic pathways and potencies of new fentanyl analogs. Front. Pharmacol. 2019, 10, 238. [Google Scholar] [CrossRef] [PubMed]
- Degenhardt, L.; Grebely, J. Global patterns of opioid use and dependence: Harms to populations, interventions, and future action. Lancet 2019, 394, 1560–1579. [Google Scholar] [CrossRef] [PubMed]
- Zoorob, M. Fentanyl shock: The changing geography of overdose in the United States. Int. J. Drug Policy 2019, 70, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Araújo, A.M.; Carvalho, F. The hallucinogenic world of tryptamines: An updated review. Arch Toxicol. 2015, 89, 1151–1173. [Google Scholar] [CrossRef]
- James, E.; Keppler, J. N,N-dimethyltryptamine and Amazonian ayahuasca plant medicine. Hum. Psychopharmacol. 2022, 37, e2835. [Google Scholar] [CrossRef]
- Waldbillig, A.; Baranova, M. Exploring Psilocybe spp. mycelium and fruiting body chemistry for potential therapeutic compounds. Front. Fungal Biol. 2023, 4, 1295223. [Google Scholar]
- Chadeayne, A.R.; Pham, D.N.K. 5-MeO-DALT: The freebase of N,N-diallyl-5-meth-oxy-tryptamine. IUCrdata 2020, 5, x200498. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Perez, H.; Minauro-Sanmiguel, F. Rewarding Effects of the Hallucinogen 4-AcO-DMT Administration and Withdrawal in Rats: A Challenge to the Opponent-Process Theory. Neurosci. Lett. 2024, 820, 137597. [Google Scholar] [CrossRef] [PubMed]
- Shulgin, A.; Shulgin, A. TIHKAL: The Continuation; Transform press: Berkeley, CA, USA, 1997. [Google Scholar]
- Fantegrossi, W.E.; Reissig, C.J. Hallucinogen-like effects of N,N-dipropyltryptamine (DPT): Possible mediation by serotonin 5-HT1A and 5-HT2A receptors in rodents. Pharmacol. Biochem. Behav. 2008, 88, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Klein, L.M.; Cozzi, N.V. Receptor binding profiles and behavioral pharmacology of ring-substituted N,N-diallyltryptamine analogs. Neuropharmacology 2018, 142, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Blough, B.E.; Landavazo, A. Interaction of psychoactive tryptamines with biogenic amine transporters and serotonin receptor subtypes. Psychopharmacology 2014, 231, 4135–4144. [Google Scholar] [CrossRef] [PubMed]
- Muller, A.A. New drugs of abuse update: Foxy Methoxy. J. Emerg. Nurs. 2004, 30, 507–508. [Google Scholar] [CrossRef] [PubMed]
- Smolinske, S.C.; Rastogi, R. Foxy methoxy: A new drug of abuse. J. Med. Toxicol. 2005, 1, 22–25. [Google Scholar] [CrossRef] [PubMed]
- Nichols, D.E. Psychedelics. Pharmacol. Rev. 2016, 68, 264–355. [Google Scholar] [CrossRef]
- Boland, D.M.; Andollo, W. Fatality due to acute alpha-methyltryptamine intoxication. J. Anal. Toxicol. 2005, 29, 394–397. [Google Scholar] [CrossRef]
- Sklerov, J.; Levine, B. A fatal intoxication following the ingestion of 5-methoxy-N,N-dimethyltryptamine in an ayahuasca preparation. J. Anal. Toxicol. 2005, 29, 838–841. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, E.; Kamata, T. A fatal poisoning with 5-methoxy-N,N-diisopropyltryptamine, Foxy. Forensic. Sci. Int. 2006, 163, 152–154. [Google Scholar] [CrossRef]
- Javitt, D.C.; Zukin, S.R. Recent advances in the phencyclidine model of schizophrenia. Am. J. Psychiatry 1991, 148, 1301–1308. [Google Scholar] [PubMed]
- Wozniak, K.M.; Rojas, C. The role of glutamate signaling in pain processes and its regulation by GCP II inhibition. Curr. Med. Chem. 2012, 19, 1323–1334. [Google Scholar] [CrossRef] [PubMed]
- Marraffa, J.M. Drugs of Abuse. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Academic Press: Oxford, UK, 2014; pp. 248–251. [Google Scholar]
- Yeung, L.Y.; Wai, M.S. Hyperphosphorylated tau in the brains of mice and monkeys with long-term administration of ketamine. Toxicol. Lett. 2010, 193, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Morgan, C.J.; Dodds, C.M. Long-Term Heavy Ketamine Use is Associated with Spatial Memory Impairment and Altered Hippocampal Activation. Front. Psychiatry 2014, 5, 149. [Google Scholar] [CrossRef] [PubMed]
- Morgan, C.J.; Muetzelfeldt, L. Ketamine use, cognition and psychological wellbeing: A comparison of frequent, infrequent and ex-users with polydrug and non-using controls. Addiction 2009, 104, 77–87. [Google Scholar] [CrossRef]
- Morgan, C.J.; Muetzelfeldt, L. Consequences of chronic ketamine self-administration upon neurocognitive function and psychological wellbeing: A 1-year longitudinal study. Addiction 2010, 105, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Strous, J.F.M.; Weeland, C.J. Brain Changes Associated with Long-Term Ketamine Abuse, a Systematic Review. Front. Neuroanat. 2022, 16, 795231. [Google Scholar] [CrossRef]
- Licata, M.; Pierini, G. A fatal ketamine poisoning. J. Forensic. Sci. 1994, 39, 1314–1320. [Google Scholar] [CrossRef]
- Burns, R.S.; Lerner, S.E. Phencyclidine deaths. J. Am. Coll. Emerg. Physic. 1978, 7, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Copeland, C.S.; Hudson, S. The First Fatal Intoxication with 3-MeO-PCP in the UK and a Review of the Literature. J. Anal. Toxicol. 2022, 46, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Rammer, L.; Holmgren, P. Fatal intoxication by dextromethorphan: A report on two cases. Forensic. Sci. Int. 1988, 37, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Shafi, H.; Imran, M. Deaths due to abuse of dextromethorphan sold over-the-counter in Pakistan. Egypt. J. Forensic Sci. 2016, 6, 280–283. [Google Scholar] [CrossRef]
- Gonçalves, J.; Luís, Â. Psychoactive substances of natural origin: Toxicological aspects, therapeutic properties and analysis in biological samples. Molecules 2021, 26, 1397. [Google Scholar] [CrossRef] [PubMed]
- Eastlack, S.C.; Cornett, E.M. Kratom-pharmacology, clinical implications, and outlook: A comprehensive review. Pain Ther. 2020, 9, 55–69. [Google Scholar] [CrossRef] [PubMed]
- Hossain, R.; Sultana, A. A critical review of the neuropharmacological effects of kratom: An insight from the functional array of identified natural compounds. Molecules 2023, 28, 7372. [Google Scholar] [CrossRef] [PubMed]
- Kruegel, A.C.; Uprety, R. 7-Hydroxymitragynine is an active metabolite of mitragynine and a key mediator of its analgesic effects. ACS Cent. Sci. 2019, 5, 992–1001. [Google Scholar] [CrossRef] [PubMed]
- Striley, C.W.; Hoeflich, C.C. Health effects associated with kratom (Mitragyna speciosa) and polysubstance use: A narrative review. Subst. Abuse 2022, 16, 11782218221095873. [Google Scholar] [CrossRef]
- Roth, B.L.; Baner, K. Salvinorin A: A potent naturally occurring nonnitrogenous kappa opioid selective agonist. Proc. Natl. Acad. Sci. USA 2002, 99, 11934–11939. [Google Scholar] [CrossRef]
- Maqueda, A.E.; Valle, M. Salvinorin-A induces intense dissociative effects, blocking external sensory perception and modulating interoception and sense of body ownership in humans. Int. J. Neuropsychopharmacol. 2015, 18, pyv065. [Google Scholar] [CrossRef] [PubMed]
- MacLean, K.A.; Johnson, M.W. Dose-related effects of salvinorin A in humans: Dissociative, hallucinogenic, and memory effects. Psychopharmacology 2013, 226, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Simão, A.Y.; Gonçalves, J. Evaluation of the cytotoxicity of Ayahuasca beverages. Molecules 2020, 25, 5594. [Google Scholar] [CrossRef] [PubMed]
- Lowe, H.; Toyang, N. The therapeutic potential of psilocybin. Molecules 2021, 26, 2948. [Google Scholar] [CrossRef] [PubMed]
- Hagan, A.; Smith, C. A new beginning: An overview of new psychoactive substances. Forensic Res. Criminol. Int. J. 2017, 5, 322–333. [Google Scholar] [CrossRef]
- European Paliement. Directive (EU) 2017/2103 of the European Parliament and of the Council of 15 November 2017 Amending Council Framework Decision 2004/757/JHA in Order to Include New Psychoactive Substances in the Definition of ‘Drug’ and Repealing Council Decision 2005/387/JHA. 2017. Available online: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A32017L2103 (accessed on 24 February 2024).
- EMCDDA. Drug-Related Hospital Emergency Presentations in Europe: Update from the Euro-DEN Plus Expert Network; EMCDDA: Lisbon, Portugal, 2020. [Google Scholar]
- A Simple (ish) Guide to the Psychoactive Substances Act. 2016. Available online: https://www.sdf.org.uk/wp-content/uploads/2017/11/Psychoactive-Substances-Act-2016.pdf (accessed on 24 February 2024).
- Great Britain: Home Office. Review of the Psychoactive Substances Act; Great Britain Home Office: London, UK, 2016.
- van Amsterdam, J.; Burgess, N. Legal approaches to new psychoactive substances: First empirical findings. Eur. Addict. Res. 2023, 29, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, K.; Shover, C.L. Responding to the opioid crisis in North America and beyond: Recommendations of the Stanford-Lancet Commission. Lancet 2022, 399, 555–604. [Google Scholar] [CrossRef] [PubMed]
- EMCDDA. New Psychoactive Substances: 25 Years of Early Warning and Response in Europe—An Update from the EU Early Warning System; EMCDDA: Lisbon, Portugal, 2022. [Google Scholar]
- Greenwood, L.; Fashola, K. Illicit Fentanyl from China: An Evolving Global Operation. In U.S.-China Economic and Security Review Commission; USCC: Santa Cruz, CA, USA, 2021. [Google Scholar]
- Pardo, B.; Taylor, J. The Future of Fentanyl and Other Synthetic Opioids; RAND Corporation: Santa Monica, CA, USA, 2019. [Google Scholar]
- Wang, C.; Lassi, N. Combating illicit fentanyl: Will increased Chinese regulation generate a public health crisis in India? Front. Public Health 2022, 10, 969395. [Google Scholar] [CrossRef] [PubMed]
- Baron, M.; Elie, M. An analysis of legal highs: Do they contain what it says on the tin? Drug Test. Anal. 2011, 3, 576–581. [Google Scholar] [CrossRef]
- EMCDDA. Health Responses to New Psychoactive Substances (Perspectives on Drugs); EMCDDA: Lisbon, Portugal, 2016. [Google Scholar]
- EMCDDA. Report on the Risk Assessment of 2-(Methylamino)-1-(3-methylphenyl)propan-1-one (3-Methylmethcathinone, 3-MMC) in Accordance with Article 5c of Regulation (EC) No 1920/2006 (as Amended); EMCDDA: Lisbon, Portugal, 2022. [Google Scholar]
- Dal Cason, T.A.; Young, R. Cathinone: An investigation of several N-alkyl and methylenedioxy-substituted analogs. Pharmacol. Biochem. Behav. 1997, 58, 1109–1116. [Google Scholar] [CrossRef]
- Valente, M.J.; Guedes de Pinho, P. Khat and synthetic cathinones: A review. Arch Toxicol. 2014, 88, 15–45. [Google Scholar] [CrossRef] [PubMed]
- Hupli, A. Cognitive enhancement with licit and illicit stimulants in the Netherlands and Finland: What is the evidence? Drugs Alcohol Today 2020, 20, 62–73. [Google Scholar] [CrossRef]
- Salahshour, B.; Sadeghi, S. Determining undeclared synthetic pharmaceuticals as adulterants in weight loss herbal medicines. Int. J. Med. Toxicol. Forensic Med. 2020, 10, 26253. [Google Scholar] [CrossRef]
- Trouiller, P.; Velter, A. Injecting drug use during sex (known as “slamming”) among men who have sex with men: Results from a time-location sampling survey conducted in five cities, France. Int. J. Drug Policy 2020, 79, 102703. [Google Scholar] [CrossRef] [PubMed]
- Contrucci, R.R.; Brunt, T.M. Synthetic cathinones and their potential interactions with prescription drugs. Ther. Drug Monit. 2020, 42, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Cooper, Z.D. Adverse effects of synthetic cannabinoids: Management of acute toxicity and withdrawal. Curr. Psychiatry Rep. 2016, 18, 52. [Google Scholar] [CrossRef] [PubMed]
- Van Hout, M.C.; Hearne, E. User experiences of development of dependence on the synthetic cannabinoids, 5f-AKB48 and 5F-PB-22, and subsequent withdrawal syndromes. Int. J. Ment. Health Addict. 2017, 15, 565–579. [Google Scholar] [CrossRef]
- White, C.M. The pharmacologic and clinical effects of illicit synthetic cannabinoids. J. Clin. Pharmacol. 2017, 57, 297–304. [Google Scholar] [CrossRef]
- Rowley, E.; Benson, D. Clinical and financial implications of emergency department visits for synthetic marijuana. Am. J. Emerg. Med. 2017, 35, 1506–1509. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, I.C.; Maia, D.; Dinis-Oliveira, R.J.; Barbosa, D.J. New Psychoactive Substances: Health and Legal Challenges. Psychoactives 2024, 3, 285-302. https://doi.org/10.3390/psychoactives3020018
Santos IC, Maia D, Dinis-Oliveira RJ, Barbosa DJ. New Psychoactive Substances: Health and Legal Challenges. Psychoactives. 2024; 3(2):285-302. https://doi.org/10.3390/psychoactives3020018
Chicago/Turabian StyleSantos, Inês C., Daniela Maia, Ricardo Jorge Dinis-Oliveira, and Daniel José Barbosa. 2024. "New Psychoactive Substances: Health and Legal Challenges" Psychoactives 3, no. 2: 285-302. https://doi.org/10.3390/psychoactives3020018
APA StyleSantos, I. C., Maia, D., Dinis-Oliveira, R. J., & Barbosa, D. J. (2024). New Psychoactive Substances: Health and Legal Challenges. Psychoactives, 3(2), 285-302. https://doi.org/10.3390/psychoactives3020018