Evaluation of Density Functional Theory-Generated Data for Infrared Spectroscopy of Novel Psychoactive Substances Using Unsupervised Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studied System
2.2. Computational Procedure
2.2.1. Structural and Spectroscopical Analyses
- Generating input files for different DFT methods.
- Analyzing vibrational frequency results in the ORCA results file.
- Generating a.csv file of the spectrum normalized by the ORCA file.
- Batch generating.csv files to process chosen folders with ORCA results: each file is analyzed individually, and the output includes the molecule identification data, the DFT method, and the spectral data (frequency range and intensities).
2.2.2. Unsupervised Learning Evaluation
3. Results
3.1. Structural and Spectroscopical Analyses
3.1.1. Results for the Studied Amphetamines
3.1.2. Results for the Studied Benzodiazepines
3.1.3. Results for the Studied Synthetic Cannabinoids
3.1.4. Results for the Studied Cathinones
3.1.5. Results for the Studied Opioids
3.2. Unsupervised Machine Learning Evaluation
3.2.1. Results of Hierarchical Cluster Analysis (HCA)
3.2.2. Results of Principal Component Analysis (PCA)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations Office on Drugs and Crime. World Drug Report: Executive Sumary; United Nations Office on Drugs and Crime: Vienna, Austria, 2023; ISBN 9789210028233. [Google Scholar]
- Peacock, A.; Bruno, R.; Gisev, N.; Degenhardt, L.; Hall, W.; Sedefov, R.; White, J.; Thomas, K.V.; Farrell, M.; Griffiths, P. New Psychoactive Substances: Challenges for Drug Surveillance, Control, and Public Health Responses. Lancet 2019, 394, 1668–1684. [Google Scholar] [CrossRef] [PubMed]
- Miliano, C.; Serpelloni, G.; Rimondo, C.; Mereu, M.; Marti, M.; De Luca, M.A. Neuropharmacology of New Psychoactive Substances (NPS): Focus on the Rewarding and Reinforcing Properties of Cannabimimetics and Amphetamine-like Stimulants. Front. Neurosci. 2016, 10, 175369. [Google Scholar]
- McKetin, R.; Leung, J.; Stockings, E.; Huo, Y.; Foulds, J.; Lappin, J.M.; Cumming, C.; Arunogiri, S.; Young, J.T.; Sara, G.; et al. Mental Health Outcomes Associated with of the Use of Amphetamines: A Systematic Review and Meta-Analysis. EClinicalMedicine 2019, 16, 81. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, A. Benzodiazepine Use, Misuse, and Abuse: A Review. Mental Health Clin. 2016, 6, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Moosmann, B.; Auwärter, V. Designer Benzodiazepines: Another Class of New Psychoactive Substances. Handb. Exp. Pharmacol. 2018, 252, 383–410. [Google Scholar] [PubMed]
- Verma, S.; Kumar, S. A Mini Review on Synthetic Approaches and Biological Activities of Benzodiazepines. Mini Rev. Org. Chem. 2017, 14, 453–468. [Google Scholar] [CrossRef]
- Cole, J.O.; Chiarello, R.J. The Benzodiazepines as Drugs of Abuse. J. Psychiatr. Res. 1990, 24, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Zawilska, J.B.; Wojcieszak, J. An Expanding World of New Psychoactive Substances—Designer Benzodiazepines. Neurotoxicology 2019, 73, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Hess, C.; Schoeder, C.T.; Pillaiyar, T.; Madea, B.; Müller, C.E. Pharmacological Evaluation of Synthetic Cannabinoids Identified as Constituents of Spice. Forensic Toxicol. 2016, 34, 329–343. [Google Scholar] [CrossRef]
- Karila, L.; Megarbane, B.; Cottencin, O.; Lejoyeux, M. Synthetic Cathinones: A New Public Health Problem. Curr. Neuropharmacol. 2015, 13, 12–20. [Google Scholar] [CrossRef]
- Fattore, L.; Fratta, W. Beyond THC: The New Generation of Cannabinoid Designer Drugs. Front. Behav. Neurosci. 2011, 5, 12511. [Google Scholar]
- Gundersen, P.O.M.; Broecker, S.; Slørdal, L.; Spigset, O.; Josefsson, M. Retrospective Screening of Synthetic Cannabinoids, Synthetic Opioids and Designer Benzodiazepines in Data Files from Forensic Post Mortem Samples Analysed by UHPLC-QTOF-MS from 2014 to 2018. Forensic Sci. Int. 2020, 311, 110274. [Google Scholar] [CrossRef] [PubMed]
- Katz, D.P.; Bhattacharya, D.; Bhattacharya, S.; Deruiter, J.; Clark, C.R.; Suppiramaniam, V.; Dhanasekaran, M. Synthetic Cathinones: “A Khat and Mouse Game”. Toxicol. Lett. 2014, 229, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Banks, M.L.; Worst, T.J.; Sprague, J.E. Synthetic Cathinones and Amphetamine Analogues: What’s the Rave About? J. Emerg. Med. 2014, 46, 632–642. [Google Scholar] [CrossRef] [PubMed]
- German, C.L.; Fleckenstein, A.E.; Hanson, G.R. Bath Salts and Synthetic Cathinones: An Emerging Designer Drug Phenomenon. Life Sci. 2014, 97, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Tamama, K. Synthetic Drugs of Abuse. Adv. Clin. Chem. 2021, 103, 191–214. [Google Scholar] [CrossRef]
- Manke, H.N.; Nelson, K.H.; Riley, A.L. The Use and Abuse of Synthetic Cathinones (Aka “Bath Salts”). In Handbook of Substance Misuse and Addictions: From Biology to Public Health; Patel, V.B., Preedy, V.R., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 3041–3064. ISBN 9783030923921. [Google Scholar]
- Jalal, H.; Burke, D.S. Carfentanil and the Rise and Fall of Overdose Deaths in the United States. Addiction 2021, 116, 1593–1599. [Google Scholar] [CrossRef] [PubMed]
- Armenian, P.; Vo, K.T.; Barr-Walker, J.; Lynch, K.L. Fentanyl, Fentanyl Analogs and Novel Synthetic Opioids: A Comprehensive Review. Neuropharmacology 2018, 134, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, J.; El-Haddad, S. A Review: Fentanyl and Non-Pharmaceutical Fentanyls. Drug Alcohol Depend. 2017, 171, 107–116. [Google Scholar] [CrossRef]
- Prekupec, M.P.; Mansky, P.A.; Baumann, M.H. Misuse of Novel Synthetic Opioids: A Deadly New Trend. J. Addict. Med. 2017, 11, 256–265. [Google Scholar] [CrossRef]
- Borden, S.A.; Mercer, S.R.; Saatchi, A.; Wong, E.; Stefan, C.M.; Wiebe, H.; Hore, D.K.; Wallace, B.; Gill, C.G. Carfentanil Structural Analogs Found in Street Drugs by Paper Spray Mass Spectrometry and Their Characterization by High-Resolution Mass Spectrometry. Drug Test. Anal. 2023, 15, 484–494. [Google Scholar] [CrossRef] [PubMed]
- Zawilska, J.B.; Kuczyńska, K.; Kosmal, W.; Markiewicz, K.; Adamowicz, P. Carfentanil-from an Animal Anesthetic to a Deadly Illicit Drug. Forensic Sci. Int. 2021, 320, 110715. [Google Scholar] [CrossRef]
- Favretto, D.; Stocchero, G.; Nalesso, A.; Vogliardi, S.; Boscolo-Berto, R.; Montisci, M.; Ferrara, S.D. Monitoring Haloperidol Exposure in Body Fluids and Hair of Children by Liquid Chromatography-High-Resolution Mass Spectrometry. Ther. Drug Monit. 2013, 35, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Verma, K.L.; Sharma, M.; Sarin, R.K. Forensic Analysis of Narcotic Drugs—Challenges and Opportunities. Curr. Sci. 2016, 111, 23–24. [Google Scholar]
- Esseiva, P.; Ioset, S.; Anglada, F.; Gasté, L.; Ribaux, O.; Margot, P.; Gallusser, A.; Biedermann, A.; Specht, Y.; Ottinger, E. Forensic Drug Intelligence: An Important Tool in Law Enforcement. Forensic Sci. Int. 2007, 167, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Morelato, M.; Beavis, A.; Tahtouh, M.; Ribaux, O.; Kirkbride, P.; Roux, C. The Use of Organic and Inorganic Impurities Found in MDMA Police Seizures in a Drug Intelligence Perspective. Sci. Justice 2014, 54, 32–41. [Google Scholar] [CrossRef]
- Ribaux, O.; Baylon, A.; Roux, C.; Delémont, O.; Lock, E.; Zingg, C.; Margot, P. Intelligence-Led Crime Scene Processing. Part I: Forensic Intelligence. Forensic Sci. Int. 2010, 195, 10–16. [Google Scholar] [CrossRef]
- Morelato, M.; Beavis, A.; Tahtouh, M.; Ribaux, O.; Kirkbride, P.; Roux, C. The Use of Forensic Case Data in Intelligence-Led Policing: The Example of Drug Profiling. Forensic Sci. Int. 2013, 226. [Google Scholar] [CrossRef] [PubMed]
- Ribaux, O.; Girod, A.; Walsh, S.J.; Margot, P.; Mizrahi, S. Forensic Intelligence and Crime Analysis. Law Probab. Risk 2003, 2, 47–60. [Google Scholar] [CrossRef]
- Ribaux, O.; Walsh, S.J.; Margot, P. The Contribution of Forensic Science to Crime Analysis and Investigation: Forensic Intelligence. Forensic Sci. Int. 2006, 156, 171–181. [Google Scholar] [CrossRef]
- Cockbain, E.; Laycock, G. Crime Science. Available online: https://oxfordre.com/criminology/display/10.1093/acrefore/9780190264079.001.0001/acrefore-9780190264079-e-4 (accessed on 16 January 2024).
- Joshi, M.; Sisco, E. Forensic Seized Drug Analysis: Current Challenges and Emerging Analytical Solutions. Wiley Interdiscip. Rev. Forensic Sci. 2023, 5, e1486. [Google Scholar] [CrossRef]
- Scientific Working Group for the Analysis of Seized Drugs SWGDRUG Recommendations, Edition 8.1; 2022-August-19. 2022, pp. 1–85. Available online: https://www.swgdrug.org/Documents/SWGDRUG%20Recommendations%20Version%208.1_FINAL_ForPosting_Rev%201-23-23.pdf (accessed on 16 January 2024).
- United Nations Office on Drugs and Crime. UNODC Executive Summary. In World Drug Report; United Nations Publication, Sales No. E.19.XI.8; United Nations Office on Drugs and Crime: Vienna, Austria, 2019; ISBN 9789211483147. [Google Scholar]
- Bruni, A.T.; de Carvalho, P.O.M.; Rodrigues, C.H.P.; Leite, V.B.P. In Silico Methods in Forensic Science: Quantum Chemistry and Multivariate Analysis Applied to Infrared Spectra of New Amphetamine- and Cathinone-Derived Psychoactive Substances. Forensic Chem. 2018, 9, 21–34. [Google Scholar] [CrossRef]
- Spálovská, D.; Králík, F.; Kohout, M.; Jurásek, B.; Habartová, L.; Kuchař, M.; Setnička, V. Structure Determination of Butylone as a New Psychoactive Substance Using Chiroptical and Vibrational Spectroscopies. Chirality 2018, 30, 548–559. [Google Scholar] [CrossRef] [PubMed]
- Spálovská, D.; Maříková, T.; Kohout, M.; Králík, F.; Kuchař, M.; Setnička, V. Methylone and Pentylone: Structural Analysis of New Psychoactive Substances. Forensic Toxicol. 2019, 37, 366–377. [Google Scholar] [CrossRef]
- Trachta, G.; Schwarze, B.; Brehm, G.; Schneider, S.; Hennemann, M.; Clark, T. Near-Infrared Fourier Transform Surface-Enhanced Raman Scattering Spectroscopy of 1,4-Benzodiazepine Drugs Gold Films over Nanospheres. J. Raman Spectrosc. 2004, 35, 368–383. [Google Scholar] [CrossRef]
- Skultety, L.; Frycak, P.; Qiu, C.; Smuts, J.; Shear-Laude, L.; Lemr, K.; Mao, J.X.; Kroll, P.; Schug, K.A.; Szewczak, A.; et al. Resolution of Isomeric New Designer Stimulants Using Gas Chromatography—Vacuum Ultraviolet Spectroscopy and Theoretical Computations. Anal. Chim. Acta 2017, 971, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Leonard, J.; Haddad, A.; Green, O.; Birke, R.L.; Kubic, T.; Kocak, A.; Lombardi, J.R. SERS, Raman, and DFT Analyses of Fentanyl and Carfentanil: Toward Detection of Trace Samples. J. Raman Spectrosc. 2017, 48, 1323–1329. [Google Scholar] [CrossRef]
- Adams, K.J.; Ramirez, C.E.; Smith, N.F.; Muñoz-Muñoz, A.C.; Andrade, L.; Fernandez-Lima, F. Analysis of Isomeric Opioids in Urine Using LC-TIMS-TOF MS. Talanta 2018, 183, 177–183. [Google Scholar] [CrossRef]
- Rana, V.; Cañamares, M.V.; Kubic, T.; Leona, M.; Lombardi, J.R. Surface-Enhanced Raman Spectroscopy for Trace Identification of Controlled Substances: Morphine, Codeine, and Hydrocodone. J. Forensic Sci. 2011, 56, 200–207. [Google Scholar] [CrossRef]
- Miao, L.; Liu, Y.; Li, H.; Qi, Y.; Lu, F. Two-Dimensional Correlation Infrared Spectroscopy Applied to the Identification of Ephedrine and Pseudoephedrine in Illegally Adulterated Slimming Herbal Products. Drug Test. Anal. 2017, 9, 221–229. [Google Scholar] [CrossRef]
- Gosav, S.; Ion, A.; Praisler, M. DFT Characterization of MDMA Methylene Homologue, a Chemical Compound with Psy-choactive Properties. AIP Conf Proc 2019, 2075, 170027. [Google Scholar] [CrossRef]
- Weber, C.; Pusch, S.; Schollmeyer, D.; Münster-Müller, S.; Pütz, M.; Opatz, T. Characterization of the Synthetic Cannabinoid MDMB-CHMCZCA. Beilstein J. Org. Chem. 2016, 12, 2808–2815. [Google Scholar] [CrossRef]
- Andernach, L.; Pusch, S.; Weber, C.; Schollmeyer, D.; Münster-Müller, S.; Pütz, M.; Opatz, T. Absolute Configuration of the Synthetic Cannabinoid MDMB-CHMICA with Its Chemical Characteristics in Illegal Products. Forensic Toxicol. 2016, 34, 344–352. [Google Scholar] [CrossRef]
- Nalli, Y.; Jan, S.; Lauro, G.; Ur Rasool, J.; Lone, W.I.; Sarkar, A.R.; Banday, J.; Bifulco, G.; Laatsch, H.; Syed, S.H.; et al. Isolation, Synthesis and Structure Determination of Cannabidiol Derivatives and Their Cytotoxic Activities. Nat. Prod. Res. 2019, 35, 471–480. [Google Scholar] [CrossRef]
- Islam, S.K.; Cheng, Y.P.; Birke, R.L.; Green, O.; Kubic, T.; Lombardi, J.R. Rapid and Sensitive Detection of Synthetic Cannabinoids AMB-FUBINACA and α-PVP Using Surface Enhanced Raman Scattering (SERS). Chem. Phys. 2018, 506, 31–35. [Google Scholar] [CrossRef]
- Alkaseem, M.; Baron, M. SERS and DFT Study of 5F-PB-22. J. Raman Spectrosc. 2018, 49, 1594–1606. [Google Scholar] [CrossRef]
- Shafi, A.; Berry, A.J.; Sumnall, H.; Wood, D.M.; Tracy, D.K. New Psychoactive Substances: A Review and Updates. Ther. Adv. Psychopharmacol. 2020, 10, 204512532096719. [Google Scholar] [CrossRef]
- Zawilska, J.B.; Andrzejczak, D. Next Generation of Novel Psychoactive Substances on the Horizon—A Complex Problem to Face. Drug. Alcohol. Depend. 2015, 157, 1–17. [Google Scholar] [CrossRef]
- Machado, Y.; Coelho, J.; Eduardo, P.; Barbosa, N.; Araújo, R.; Brondi, R.; Coelho Neto, J.; Barbosa, P.E.N.; Lordeiro, R.A.; Alves, R.B. Brephedrone: A New Psychoactive Substance Seized in Brazil. Forensic Sci. Int. 2017, 275, 302–307. [Google Scholar] [CrossRef]
- de Mariotti, K.C.; Ortiz, R.S.; Souza, D.Z.; Mileski, T.C.; Fröehlich, P.E.; Limberger, R.P. Trends in Counterfeits Amphetamine-Type Stimulants after Its Prohibition in Brazil. Forensic Sci. Int. 2013, 229, 23–26. [Google Scholar] [CrossRef]
- Manchester, K.R.; Lomas, E.C.; Waters, L.; Dempsey, F.C.; Maskell, P.D. The Emergence of New Psychoactive Substance (NPS) Benzodiazepines: A Review. Drug Test. Anal. 2018, 10, 37–53. [Google Scholar] [CrossRef]
- Pantaleão, L.N. Análise Toxicológica de Anfetaminas e Benzodiazepínicos em Amostras de Cabelo por Cromatografia Gasosa Acoplada a Espectrometria de Massas Análise Toxicológica de Anfetaminas e Benzodiazepínicos em Amostras de Cabelo por Cromatografia Gasosa Acoplada a Es. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 2012. [Google Scholar]
- Mills, B.; Yepes, A.; Nugent, K. Synthetic Cannabinoids. Am. J. Med. Sci. 2015, 350, 59–62. [Google Scholar] [CrossRef]
- Karila, L.; Benyamina, A.; Blecha, L.; Cottencin, O.; Billieux, J. The Synthetic Cannabinoids Phenomenon. Curr. Pharm. Des. 2017, 22, 6420–6425. [Google Scholar] [CrossRef]
- França, H.S.; Acosta, A.; Jamal, A.; Romao, W.; Mulloor, J.; Almirall, J.R. Experimental and Ab Initio Investigation of the Products of Reaction from Δ9-Tetrahydrocannabinol (Δ9-THC) and the Fast Blue BB Spot Reagent in Presumptive Drug Tests for Cannabinoids. Forensic Chem. 2020, 17, 100212. [Google Scholar] [CrossRef]
- de Castro, J.S.; Rodrigues, C.H.P.; Bruni, A.T. In Silico Infrared Characterization of Synthetic Cannabinoids by Quantum Chemistry and Chemometrics. J. Chem. Inf. Model. 2020, 60, 2100–2114. [Google Scholar] [CrossRef]
- Rodrigues, C.H.P.; Bruni, A.T. Estudos in Silico Do Comportamento de Catinonas Sintéticas Com Interesse Forense. Ph.D. Thesis, Universidade de São Paulo, Ribeirão Preto, Brazil, 2018. [Google Scholar]
- Jannetto, P.J.; Helander, A.; Garg, U.; Janis, G.C.; Goldberger, B.; Ketha, H. The Fentanyl Epidemic and Evolution of Fentanyl Analogs in the United States and the European Union. Clin. Chem. 2019, 65, 242–253. [Google Scholar] [CrossRef]
- Baumann, M.H.; Tocco, G.; Papsun, D.M.; Mohr, A.L.; Fogarty, M.F.; Krotulski, A.J. U-47700 and Its Analogs: Non-Fentanyl Synthetic Opioids Impacting the Recreational Drug Market. Brain Sci. 2020, 10, 895. [Google Scholar] [CrossRef]
- Tobias, S.; Shapiro, A.M.; Grant, C.J.; Patel, P.; Lysyshyn, M.; Ti, L. Drug Checking Identifies Counterfeit Alprazolam Tablets. Drug Alcohol Depend. 2020, 218, 108300. [Google Scholar] [CrossRef]
- Scientific Working Group for the Analysis of Seized Drugs Monographs. Available online: https://swgdrug.org/monographs.htm (accessed on 16 January 2024).
- Sorribes-Soriano, A.; Esteve-Turrillas, F.A.; Armenta, S.; Amorós, P.; Herrero-Martínez, J.M. Amphetamine-Type Stimulants Analysis in Oral Fluid Based on Molecularly Imprinting Extraction. Anal. Chim. Acta 2019, 1052, 73–83. [Google Scholar] [CrossRef]
- Gerace, E.; Caneparo, D.; Borio, F.; Salomone, A.; Vincenti, M. Determination of Several Synthetic Cathinones and an Amphetamine-like Compound in Urine by Gas Chromatography with Mass Spectrometry. Method Validation and Application to Real Cases. J. Sep. Sci. 2019, 42, 1577–1584. [Google Scholar] [CrossRef]
- Tortajada, R.E.; San Miguel, J.P.; Doménech, M.G.; Oltra-Cucarella, J.; Costa, M.A. Drogas Emergentes: Catinonas Sintéticas (“sales de Baño”). Rev. Esp. Drogodepend. 2015, 40, 56–71. [Google Scholar]
- Feng, L.-Y.; Battulga, A.; Han, E.; Chung, H.; Li, J.-H. New Psychoactive Substances of Natural Origin: A Brief Review. J. Food Drug Anal. 2017, 25, 461–471. [Google Scholar] [CrossRef]
- Kelly, J.P. Cathinone Derivatives: A Review of Their Chemistry, Pharmacology and Toxicology. Drug Test. Anal. 2011, 3, 439–453. [Google Scholar] [CrossRef]
- Valente, M.J.; Guedes De Pinho, P.; de Lourdes Bastos, M.; Carvalho, F.; Carvalho, M. Khat and Synthetic Cathinones: A Review. Arch. Toxicol. 2014, 88, 15–45. [Google Scholar] [CrossRef]
- Beharry, S.; Gibbons, S. An Overview of Emerging and New Psychoactive Substances in the United Kingdom. Forensic Sci. Int. 2016, 267, 25–34. [Google Scholar] [CrossRef]
- Banjare, P.; Singh, J.; Roy, P.P. Design and Combinatorial Library Generation of 1H 1, 4 Benzodiazepine 2, 5 Diones as Photosystem-II Inhibitors: A Public QSAR Approach. Beni Suef Univ. J. Basic. Appl. Sci. 2017, 6, 219–231. [Google Scholar] [CrossRef]
- Verma, P.; Truhlar, D.G. Status and Challenges of Density Functional Theory. Trends Chem. 2020, 2, 302–318. [Google Scholar] [CrossRef]
- Synthetic Cannabinoids Drug Profile. Available online: https://www.emcdda.europa.eu/publications/drug-profiles/synthetic-cannabinoids_en (accessed on 16 January 2024).
- Zawilska, J.B. An Expanding World of Novel Psychoactive Substances: Opioids. Front. Psychiatry 2017, 8, 268290. [Google Scholar] [CrossRef]
- Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; et al. PubChem Substance and Compound Databases. Nucleic Acids Res. 2016, 44, D1202–D1213. [Google Scholar] [CrossRef]
- Halgren, T. a Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization, and Performance of MMFF94. J. Comput. Chem. 1996, 17, 490–519. [Google Scholar] [CrossRef]
- Halgren, T.A. Merck Molecular Force Field. II. MMFF94 van Der Waals and Electrostatic Parameters for Intermolecular Interactions. J. Comput. Chem. 1996, 17, 520–552. [Google Scholar]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef]
- Lewis-Atwell, T.; Townsend, P.A.; Grayson, M.N. Comparisons of Different Force Fields in Conformational Analysis and Searching of Organic Molecules: A Review. Tetrahedron 2021, 79, 131865. [Google Scholar] [CrossRef]
- Neese, F. The ORCA Program System. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Neugebauer, J.; Reiher, M.; Kind, C.; Hess, B.A. Quantum Chemical Calculation of Vibrational Spectra of Large Molecules—Raman and IR Spectra for Buckminsterfullerene. J. Comput. Chem. 2002, 23, 895–910. [Google Scholar] [CrossRef]
- Turovtsev, V.V.; Orlov, Y.D.; Kaplunov, I.A. Comparison of Standard Functionals to Calculate the Properties of Molecules at the Variational Limit. J. Struct. Chem. 2018, 59, 1960–1966. [Google Scholar] [CrossRef]
- Mardirossian, N.; Head-Gordon, M. Thirty Years of Density Functional Theory in Computational Chemistry: An Overview and Extensive Assessment of 200 Density Functionals. Mol. Phys. 2017, 115, 2315–2372. [Google Scholar] [CrossRef]
- Koch, W.; Holthausen, M.C. A Chemist’s Guide to Density Functional Theory, 2nd ed.; Wiley-VCH: Hoboken, NJ, USA, 2001; ISBN 9783527600045. [Google Scholar]
- Jensen, F. Introduction to Computational Chemistry, 3rd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2017; ISBN 978-1-118-82599-0. [Google Scholar]
- Johnson, R.D., III. NIST 101. Computational Chemistry Comparison and Benchmark Database. Available online: http://cccbdb.nist.gov (accessed on 16 January 2024).
- Sinhorini, L.F.C.; Rodrigues, C.H.P.; Leite, V.B.P.; Bruni, A.T. Synthetic Fentanyls Evaluation and Characterization by Infrared Spectroscopy Employing in Silico Methods. Comput. Theor. Chem. 2021, 1204, 113378. [Google Scholar] [CrossRef]
- dos Santos, C. PRISMA 2.0. Available online: https://zenodo.org/records/11127151 (accessed on 16 January 2024).
- dos Santos, C. DFT IR Processing. Available online: https://zenodo.org/records/10904104 (accessed on 16 January 2024).
- Maiorov, V.N.; Crippen, G.M. Significance of Root-Mean-Square Deviation in Comparing Three-Dimensional Structures of Globular Proteins. J. Mol. Biol. 1994, 235, 625–634. [Google Scholar] [CrossRef]
- Raschka, S. Molecular Docking, Estimating Free Energies of Binding, and AutoDock’s Semi-Empirical Force Field. Available online: https://sebastianraschka.com/Articles/2014_autodock_energycomps.html (accessed on 16 January 2024).
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Python. Available online: https://www.python.org/ (accessed on 16 January 2024).
- Kendrick, J.; Burnett, A.D. PDielec: The Calculation of Infrared and Terahertz Absorption for Powdered Crystals. J. Comput. Chem. 2016, 37, 1491–1504. [Google Scholar] [CrossRef] [PubMed]
- Hunt, J. Advanced Guide to Python 3 Programming; Undergraduate Topics in Computer Science; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-030-25942-6. [Google Scholar]
- Matthes, E. Curso Intensivo de Python, 1st ed.; NOVATEC: São Paulo, Brazil, 2016; ISBN 9788575226025. [Google Scholar]
- Heydt, M. Learning Pandas, 2nd ed.; Packt Publishing: Birmingham, UK, 2017; ISBN 978-1787123137. [Google Scholar]
- Chen, D.Y. Análise de Dados Com Python e Pandas, 1st ed.; NOVATEC: São Paulo, Brazil, 2018; ISBN 978-85-7522-699-5. [Google Scholar]
- Riverbank Computing Limited PyQt5 · PyPI. Available online: https://pypi.org/project/PyQt5/ (accessed on 16 January 2024).
- Valente, M.T. Engenharia de Software Moderna: Princípios e Práticas Para Desenvolvimento de Software Com Produtividade, 1st ed.; Independente: Belo Horizonte, Brazil, 2020; ISBN 978-65-00-00077-1. [Google Scholar]
- Beebe, K.R.; Pell, R.J.; Seasholtz, M.B. Chemometrics: A Practical Guide, 1st ed.; Wiley-Interscience: New York, NY, USA, 1998. [Google Scholar]
- Brereton, R.G. Chemometrics: Data Analysis for the Laboratory and Chemical Plant, 1st ed.; John Wiley & Sons, Ltd.: West Sussex, UK, 2003; Volume 8, ISBN 0471489778. [Google Scholar]
- Miller, J.N.; Miller, J.C. Statistics and Chemometrics for Analytical Chemistry, 5th ed.; Prentice Hall: Harlow, UK, 2005; ISBN 0131291920. [Google Scholar]
- Van Der Maaten, L.; Hinton, G. Visualizing Data Using T-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 16 January 2024).
- Brereton, R.G. Contingency Tables, Confusion Matrices, Classifiers and Quality of Prediction. J. Chemom. 2021, 35, e3331. [Google Scholar] [CrossRef]
- Brereton, R.G. False Discovery Rates, Power and Related Concepts. J. Chemom. 2021, 35, e3241. [Google Scholar] [CrossRef]
- Jollife, I.T.; Cadima, J. Principal Component Analysis: A Review and Recent Developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Outlier Detection, Influential Observations, Stability, Sensitivity, and Robust Estimation of Principal Components. In Principal Component Analysis; Springer: New York, NY, USA, 2002; pp. 232–268. ISBN 978-0-387-22440-4. [Google Scholar]
- Kücken, M.; Gerstengarbe, F.W.; Orlowsky, B. A Combination of Cluster Analysis and Kappa Statistic for the Evaluation of Climate Model Results. J. Appl. Meteorol. Climatol. 2009, 48, 1757–1765. [Google Scholar] [CrossRef]
- Rodrigues, C.H.P.; Leite, V.B.P.; Bruni, A.T. Can NMR Spectroscopy Discriminate between NPS Amphetamines and Cathinones? An Evaluation by in Silico Studies and Chemometrics. Chemom. Intell. Lab. Syst. 2021, 210, 104265. [Google Scholar] [CrossRef]
Amphetamines [15,37,55,67,68] | Cathinones [39,53,54,69,70,71,72] |
Benzidiazepines [6,7,52,65,73,74,75] | Synthetic Cannabinoids [49,52,58,70,76] |
Fentanyls [64,77] | |
Molecule | RMSD/Å | |||
---|---|---|---|---|
B3LYP | B3PW91 | M062X | PBE0 | |
Amphetamine | 0.121 | 0.126 | 0.131 | 0.128 |
2-FA | 0.224 | 0.192 | 0.318 | 0.220 |
3-FA | 0.167 | 0.179 | 0.125 | 0.191 |
4-FA | 0.108 | 0.112 | 0.130 | 0.112 |
2-FMA | 0.241 | 0.221 | 0.257 | 0.241 |
3-FMA | 0.113 | 0.118 | 0.312 | 0.109 |
4-FMA | 0.156 | 0.154 | 0.146 | 0.156 |
Metamphetamine | 0.140 | 0.140 | 0.139 | 0.140 |
4-MA | 0.116 | 0.116 | 0.256 | 0.120 |
3,4 MDA | 0.121 | 0.130 | 0.237 | 0.126 |
DMA | 0.149 | 0.148 | 0.178 | 0.152 |
2,5-DMA | 0.275 | 0.257 | 0.389 | 0.264 |
MDMA | 0.153 | 0.159 | 0.175 | 0.156 |
P-MMA | 0.150 | 0.151 | 0.186 | 0.150 |
P-MA | 0.227 | 0.237 | 0.216 | 0.233 |
2C-C | 0.063 | 0.058 | 0.108 | 0.059 |
Average | 0.158 | 0.156 | 0.206 | 0.160 |
Molecule | RMSD/Å | |||
---|---|---|---|---|
B3LYP | B3PW91 | M062X | PBE0 | |
Adinazolam | 0.240 | 0.237 | 0.333 | 0.231 |
Alprazolam | 0.184 | 0.185 | 0.239 | 0.179 |
Bromazolam | 0.184 | 0.184 | 0.251 | 0.179 |
Clonazolam | 0.447 | 0.455 | 0.471 | 0.456 |
Diazepam | 0.120 | 0.115 | 0.146 | 0.117 |
Diclazepam | 0.503 | 0.513 | 0.534 | 0.511 |
Flualprazolam | 0.260 | 0.250 | 0.266 | 0.228 |
Flubromazepam | 0.221 | 0.210 | 0.186 | 0.205 |
Flubromazolam | 0.248 | 0.246 | 0.319 | 0.255 |
Flunitrazepam | 0.210 | 0.197 | 0.170 | 0.193 |
Flunitrazolam | 0.243 | 0.240 | 0.302 | 0.254 |
Midazolam | 0.263 | 0.256 | 0.254 | 0.243 |
Oxazepam | 0.085 | 0.085 | 0.099 | 0.088 |
Average | 0.247 | 0.244 | 0.275 | 0.241 |
Molecule | RMSD/Å | |||
---|---|---|---|---|
B3LYP | B3PW91 | M062X | PBE0 | |
AM-1220 | 0.542 | 0.565 | 0.532 | 0.510 |
AM-1248 | 1.469 | 1.056 | 1.553 | 1.098 |
Cannabidiol | 0.249 | 0.261 | 0.300 | 0.254 |
Cannabinol | 0.155 | 0.168 | 0.210 | 0.164 |
Delta9-THC | 0.139 | 0.150 | 0.162 | 0.150 |
JWH-018 | 0.581 | 0.448 | 0.737 | 0.421 |
JWH-019 | 0.528 | 0.540 | 0.755 | 0.514 |
JWH-022 | 0.615 | 0.640 | 0.688 | 0.606 |
JWH-073 | 0.486 | 0.533 | 0.471 | 0.511 |
JWH-081 | 0.624 | 0.647 | 1.019 | 0.625 |
JWH-122 | 0.528 | 0.534 | 0.651 | 0.516 |
JWH-203 | 2.030 | 2.110 | 0.453 | 0.473 |
JWH-210 | 0.531 | 0.544 | 0.672 | 0.529 |
JWH-250 | 0.543 | 0.549 | 0.911 | 0.532 |
JWH-307 | 0.678 | 0.685 | 0.709 | 0.700 |
Average | 0.647 | 0.629 | 0.655 | 0.507 |
Molecule | RMSD/Å | |||
---|---|---|---|---|
B3LYP | B3PW91 | M062X | PBE0 | |
2-FEC | 0.475 | 0.497 | 0.401 | 0.471 |
2-FMC | 0.323 | 0.319 | 0.877 | 0.375 |
2-MEC | 0.398 | 0.384 | 0.457 | 0.386 |
3-FEC | 0.720 | 0.729 | 0.737 | 0.717 |
3-FMC | 0.638 | 0.649 | 0.629 | 0.641 |
3-MEC | 0.690 | 0.703 | 0.709 | 0.754 |
4-FEC | 0.759 | 0.767 | 0.777 | 0.758 |
4-FMC | 0.587 | 0.598 | 0.574 | 0.586 |
4-MEC | 0.780 | 0.787 | 0.693 | 0.781 |
23-DMMC | 0.314 | 0.302 | 0.419 | 0.313 |
24-DMMC | 0.436 | 0.426 | 0.605 | 0.441 |
25-DMMC | 0.481 | 0.475 | 0.193 | 0.495 |
34-DMMC | 0.686 | 0.690 | 0.673 | 0.686 |
Cathinone | 0.959 | 0.958 | 0.943 | 0.954 |
Diethylcathinone | 0.260 | 0.278 | 0.214 | 0.253 |
Methcathinone | 0.481 | 0.489 | 0.450 | 0.478 |
Average | 0.562 | 0.566 | 0.584 | 0.568 |
Molecule | RMSD/Å | |||
---|---|---|---|---|
B3LYP | B3PW91 | M062X | PBE0 | |
2-Furanylbenzyl | 0.689 | 0.708 | 0.649 | 0.702 |
2-Thiophenoyl | 0.338 | 0.322 | 0.495 | 0.333 |
3-Furanyl | 0.545 | 0.554 | 0.586 | 0.558 |
ACETILFEN | 0.520 | 0.449 | 0.570 | 0.491 |
Benzoylbenzyl | 0.464 | 0.471 | 0.577 | 0.895 |
Butyryl | 0.296 | 0.192 | 0.586 | 0.276 |
Crotonyl-fentanyl | 0.330 | 0.346 | 0.529 | 0.337 |
Cyclopentanoyl | 0.245 | 0.301 | 0.341 | 0.351 |
Cyclopropyl-Fentanyl | 0.745 | 0.776 | 0.662 | 0.804 |
Fentanyl | 0.262 | 0.171 | 2.650 | 0.259 |
Furanylfentanyl | 0.508 | 0.515 | 0.785 | 0.520 |
Isobutyryl-Fentanyl | 0.247 | 0.240 | 0.760 | 0.222 |
P-F-ACETILFEN | 0.425 | 0.410 | 2.123 | 0.420 |
Tetrahydrofuranfentanyl | 0.696 | 0.724 | 0.803 | 0.759 |
Valerylfentanyl | 0.513 | 0.508 | 0.481 | 0.512 |
Average | 0.455 | 0.446 | 0.840 | 0.496 |
Amphetamines | Benzodiazepines | Cannabinoids | Cathinones | Fentanyls | |
---|---|---|---|---|---|
Amphetamines | 64 | 3 | 4 | 0 | 4 |
Benzodiazepines | 0 | 49 | 0 | 0 | 0 |
Cannabinoids | 0 | 0 | 52 | 0 | 0 |
Cathinones | 0 | 0 | 4 | 60 | 0 |
Fentanyls | 0 | 0 | 0 | 0 | 60 |
Amphetamines | Benzodiazepines | Cannabinoids | Cathinones | Fentanyls | |
---|---|---|---|---|---|
Sensitivity | 1.0000 | 0.9423 | 0.8667 | 1.0000 | 0.9375 |
Specificity | 0.9534 | 1.0000 | 1.0000 | 0.9833 | 1.0000 |
Precision | 0.8533 | 1.0000 | 1.0000 | 0.9375 | 1.0000 |
Accuracy | 0.9767 | 0.9712 | 0.9333 | 0.9917 | 0.9688 |
Variance | PC1 | PC2 | PC3 | PC4 | PC5 |
---|---|---|---|---|---|
Explained | 98.96463 | 0.1226452 | 0.1007295 | 0.0897553 | 0.0597139 |
Cumulated | 98.96463 | 99.08727 | 99.18800 | 99.27776 | 99.33747 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, C.; Bruni, A.T. Evaluation of Density Functional Theory-Generated Data for Infrared Spectroscopy of Novel Psychoactive Substances Using Unsupervised Learning. Psychoactives 2024, 3, 265-284. https://doi.org/10.3390/psychoactives3020017
dos Santos C, Bruni AT. Evaluation of Density Functional Theory-Generated Data for Infrared Spectroscopy of Novel Psychoactive Substances Using Unsupervised Learning. Psychoactives. 2024; 3(2):265-284. https://doi.org/10.3390/psychoactives3020017
Chicago/Turabian Styledos Santos, Christiano, and Aline Thais Bruni. 2024. "Evaluation of Density Functional Theory-Generated Data for Infrared Spectroscopy of Novel Psychoactive Substances Using Unsupervised Learning" Psychoactives 3, no. 2: 265-284. https://doi.org/10.3390/psychoactives3020017
APA Styledos Santos, C., & Bruni, A. T. (2024). Evaluation of Density Functional Theory-Generated Data for Infrared Spectroscopy of Novel Psychoactive Substances Using Unsupervised Learning. Psychoactives, 3(2), 265-284. https://doi.org/10.3390/psychoactives3020017