ChatGPT in Health Professions Education: Findings and Implications from a Cross-Sectional Study Among Students in Saudi Arabia
Abstract
1. Introduction
2. Methods
2.1. Study Design, Population, and Setting
2.2. Sample Method and Sample Size Calculations
2.3. Development of the Study Questionnaire
2.4. Data Collection Process and Study Flow
2.5. Data Analysis
3. Results
3.1. Demographic Data and Characteristics of Participants Using ChatGPT (n = 723)
3.2. Utilization of ChatGPT Among Healthcare Students
3.3. Participants’ Satisfaction with the Information and Responses Provided by ChatGPT
3.4. Participants’ Perceived Usefulness and Disadvantages of ChatGPT
3.5. ChatGPT in Health Professions Curriculum and Activities
3.6. Association Between Participants’ Demographics and Frequency of Utilization of ChatGPT, Satisfaction with It, and Their Perceived Usefulness of ChatGPT
4. Discussion
5. Strengths and Limitations
6. Conclusions and Implications for Health Professions Education in Saudi Arabia
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AI | artificial intelligence |
| AIHTs | artificial intelligence health technologies |
| ChatGPT | chat generative pre-trained transformer |
| ML | machine learning |
| SDAIA | Saudi Data and Artificial Intelligence Authority |
| SMLE | Saudi Medical Licensing Exam |
References
- Al-Kahtani, N.; Alruwaie, S.; Al-Zahrani, B.M.; Abumadini, R.A.; Aljaffary, A.; Hariri, B.; Alissa, K.; Alakrawi, Z.; Alumran, A. Digital health transformation in Saudi Arabia: A cross-sectional analysis using Healthcare Information and Management Systems Society’s health indicators. Digit. Health 2022, 8, 20552076221117742. [Google Scholar] [CrossRef]
- Mani, Z.A.; Goniewicz, K. Transforming Healthcare in Saudi Arabia: A Comprehensive Evaluation of Vision 2030’s Impact. Sustainability 2024, 16, 3277. [Google Scholar] [CrossRef]
- Alzghaibi, H.A. An examination of large-scale electronic health records implementation in Primary Healthcare Centers in Saudi Arabia: A qualitative study. Front. Public Health 2023, 11, 1121327. [Google Scholar] [CrossRef] [PubMed]
- Memish, Z.A.; Altuwaijri, M.M.; Almoeen, A.H.; Enani, S.M. The Saudi Data & Artificial Intelligence Authority (SDAIA) Vision: Leading the Kingdom’s Journey toward Global Leadership. J. Epidemiol. Glob. Health 2021, 11, 140–142. [Google Scholar] [CrossRef]
- Khedkar, S.; Gandhi, P.; Shinde, G.; Subramanian, V. Deep Learning and Explainable AI in Healthcare Using EHR. In Deep Learning Techniques for Biomedical and Health Informatics; Dash, S., Acharya, B., Mittal, M., Abraham, A., Kelemen, A., Eds.; Studies in Big Data; Springer: Cham, Switzerland, 2020; Volume 68. [Google Scholar] [CrossRef]
- Ali, O.; Abdelbaki, W.; Shrestha, A.; Elbasi, E.; Alryalat, M.A.; Dwivedi, Y.K. A systematic literature review of artificial intelligence in the healthcare sector: Benefits, challenges, methodologies, and functionalities. J. Innov. Knowl. 2023, 8, 100333. [Google Scholar] [CrossRef]
- Sallam, M. ChatGPT Utility in Healthcare Education, Research, and Practice: Systematic Review on the Promising Perspectives and Valid Concerns. Healthcare 2023, 11, 887. [Google Scholar] [CrossRef]
- Wu, T.; He, S.; Liu, J.; Sun, S.; Liu, K.; Han, Q.L.; Tang, Y. A brief overview of ChatGPT: The history, status quo and potential future development. IEEE/CAA J. Autom. Sin. 2023, 10, 1122–1136. [Google Scholar] [CrossRef]
- Kalla, D.; Smith, N.; Samaah, F.; Kuraku, S. Study and analysis of chat GPT and its impact on different fields of study. Int. J. Innov. Sci. Res. Technol. 2023, 8, 827–833. [Google Scholar]
- Secinaro, S.; Calandra, D.; Secinaro, A.; Muthurangu, V.; Biancone, P. The role of artificial intelligence in healthcare: A structured literature review. BMC Med. Inform. Decis. Mak. 2021, 21, 125. [Google Scholar] [CrossRef]
- Sapci, A.H.; Sapci, H.A. Artificial Intelligence Education and Tools for Medical and Health Informatics Students: Systematic Review. JMIR Med. Educ. 2020, 6, e19285. [Google Scholar] [CrossRef]
- Alsakaker, A.A.; Alfayez, J.S.; Alsalamah, J.A.; Alzughibi, L.S.; Anaam, M.S.; Dixon, D.L.; Khan, R.A.; Alhomoud, I.S. ChatGPT: Pharmacy students’ perceptions, current use trends, ethical awareness, standards of ethics, prospects and recommendations for future use. Curr. Pharm. Teach. Learn. 2025, 17, 102382. [Google Scholar] [CrossRef] [PubMed]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef]
- Marinovich, M.L.; Wylie, E.; Lotter, W.; Lund, H.; Waddell, A.; Madeley, C.; Pereira, G.; Houssami, N. Artificial intelligence (AI) for breast cancer screening: BreastScreen population-based cohort study of cancer detection. EBioMedicine 2023, 90, 104498. [Google Scholar] [CrossRef]
- Van Bulck, L.; Couturier, R.; Moons, P. Applications of artificial intelligence for nursing: Has a new era arrived? Eur. J. Cardiovasc. Nurs. 2023, 22, e19–e20. [Google Scholar] [CrossRef]
- Chalasani, S.H.; Syed, J.; Ramesh, M.; Patil, V.; Pramod Kumar, T.M. Artificial intelligence in the field of pharmacy practice: A literature review. Explor. Res. Clin. Soc. Pharm. 2023, 12, 100346. [Google Scholar] [CrossRef]
- Da, B.; Chen, H.; Wu, W.; Guo, W.; Zhou, A.; Yin, Q.; Gao, J.; Chen, J.; Xiao, J.; Wang, L.; et al. Development and validation of a machine learning-based model to predict survival in patients with cirrhosis after transjugular intrahepatic portosystemic shunt. EClinicalMedicine 2024, 79, 103001. [Google Scholar] [CrossRef]
- Zhou, Y.; Chia, M.A.; Wagner, S.K.; Ayhan, M.S.; Williamson, D.J.; Struyven, R.R.; Liu, T.; Xu, M.; Lozano, M.G.; Woodward-Court, P.; et al. A foundation model for generalizable disease detection from retinal images. Nature 2023, 622, 156–163. [Google Scholar] [CrossRef]
- Bao, Y.; Medland, N.A.; Fairley, C.K.; Wu, J.; Shang, X.; Chow, E.P.; Xu, X.; Ge, Z.; Zhuang, X.; Zhang, L. Predicting the diagnosis of HIV and sexually transmitted infections among men who have sex with men using machine learning approaches. J. Infect. 2021, 82, 48–59. [Google Scholar] [CrossRef]
- Attia, Z.I.; Noseworthy, P.A.; Lopez-Jimenez, F.; Asirvatham, S.J.; Deshmukh, A.J.; Gersh, B.J.; Carter, R.E.; Yao, X.; Rabinstein, A.A.; Erickson, B.J.; et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: A retrospective analysis of outcome prediction. Lancet 2019, 394, 861–867. [Google Scholar] [CrossRef]
- Wu, J.; Biswas, D.; Ryan, M.; Bernstein, B.S.; Rizvi, M.; Fairhurst, N.; Kaye, G.; Baral, R.; Searle, T.; Melikian, N.; et al. Artificial intelligence methods for improved detection of undiagnosed heart failure with preserved ejection fraction. Eur. J. Heart Fail. 2024, 26, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Sallam, M.; Salim, N.A.; Barakat, M.; Al-Tammemi, A.B. ChatGPT applications in medical, dental, pharmacy, and public health education: A descriptive study highlighting the advantages and limitations. Narra J. 2023, 3, e103. [Google Scholar] [CrossRef] [PubMed]
- Aslam, M.S.; Nisar, S. Artificial Intelligence Applications Using ChatGPT in Education: Case Studies and Practices; IGI Global: Hershey, PA, USA, 2023. [Google Scholar]
- Shorey, S.; Mattar, C.; Pereira, T.L.; Choolani, M. A scoping review of ChatGPT’s role in healthcare education and research. Nurse Educ. Today 2024, 135, 106121. [Google Scholar] [CrossRef]
- Ali, K.; Barhom, N.; Tamimi, F.; Duggal, M. ChatGPT-A double-edged sword for healthcare education? Implications for assessments of dental students. Eur. J. Dent. Educ. 2024, 28, 206–211. [Google Scholar] [CrossRef]
- Raosoft Sample Size Calculator. Available online: http://www.raosoft.com/samplesize.html (accessed on 10 January 2024).
- Temsah, M.H.; Aljamaan, F.; Malki, K.H.; Alhasan, K.; Altamimi, I.; Aljarbou, R.; Bazuhair, F.; Alsubaihin, A.; Abdulmajeed, N.; Alshahrani, F.S.; et al. ChatGPT and the Future of Digital Health: A Study on Healthcare Workers’ Perceptions and Expectations. Healthcare 2023, 11, 1812. [Google Scholar] [CrossRef]
- Hosseini, M.; Gao, C.A.; Liebovitz, D.M.; Carvalho, A.M.; Ahmad, F.S.; Luo, Y.; MacDonald, N.; Holmes, K.L.; Kho, A. An exploratory survey about using ChatGPT in education, healthcare, and research. PLoS ONE 2023, 18, e0292216. [Google Scholar] [CrossRef]
- Zhang, J.S.; Yoon, C.; Williams, D.K.A.; Pinkas, A. Exploring the Usage of ChatGPT Among Medical Students in the United States. J. Med. Educ. Curric. Dev. 2024, 11, 23821205241264695. [Google Scholar] [CrossRef]
- Ganjavi, C.; Eppler, M.; O’Brien, D.; Ramacciotti, L.S.; Ghauri, M.S.; Anderson, I.; Choi, J.; Dwyer, D.; Stephens, C.; Shi, V.; et al. ChatGPT and large language models (LLMs) awareness and use. A prospective cross-sectional survey of U.S. medical students. PLoS Digit. Health 2024, 3, e0000596. [Google Scholar] [CrossRef]
- Hu, N.; Jiang, X.Q.; Wang, Y.D.; Kang, Y.M.; Xia, Z.; Chen, H.H.; Duan, S.N.; Chen, D.X. Status and perceptions of ChatGPT utilization among medical students: A survey-based study. BMC Med. Educ. 2025, 25, 831. [Google Scholar] [CrossRef]
- Abdelhafiz, A.S.; Farghly, M.I.; Sultan, E.A.; Abouelmagd, M.E.; Ashmawy, Y.; Elsebaie, E.H. Medical students and ChatGPT: Analyzing attitudes, practices, and academic perceptions. BMC Med. Educ. 2025, 25, 187. [Google Scholar] [CrossRef]
- Mudenda, S.; Mufwambi, W.; Mwale, R.S.; Kathewera, B.; Lubanga, A.F. Attitudes and usage of ChatGPT among pharmacy students in a Sub-Saharan African country, Zambia: Findings and implications on the education system. BMC Med. Educ. 2025, 25, 1237. [Google Scholar] [CrossRef]
- Alammari, D.; Alamari, E.; Alamri, R.; Alharbi, R.; Felimban, J.; Aljohani, J. Assessing medical students’ attitudes, performance, and usage of ChatGPT in Jeddah, Saudi Arabia. Front. Artif. Intell. 2025, 8, 1577911. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; Ni, J. A cross sectional investigation of ChatGPT-like large language models application among medical students in China. BMC Med. Educ. 2024, 24, 908. [Google Scholar] [CrossRef]
- Temsah, O.; Khan, S.A.; Chaiah, Y.; Senjab, A.; Alhasan, K.; Jamal, A.; Aljamaan, F.; Malki, K.H.; Halwani, R.; Al-Tawfiq, J.A.; et al. Overview of Early ChatGPT’s Presence in Medical Literature: Insights From a Hybrid Literature Review by ChatGPT and Human Experts. Cureus 2023, 15, e37281. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Singh, S.; Chandan, J.S.; Robbins, T.; Patel, V. Qualitative exploration of digital chatbot use in medical education: A pilot study. Digit. Health 2021, 7, 20552076211038151. [Google Scholar] [CrossRef]
- Eysenbach, G. The Role of ChatGPT, Generative Language Models, and Artificial Intelligence in Medical Education: A Conversation with ChatGPT and a Call for Papers. JMIR Med. Educ. 2023, 9, e46885. [Google Scholar] [CrossRef]
- Breeding, T.; Martinez, B.; Patel, H.; Nasef, H.; Arif, H.; Nakayama, D.; Elkbuli, A. The Utilization of ChatGPT in Reshaping Future Medical Education and Learning Perspectives: A Curse or a Blessing? Am. Surg. 2024, 90, 560–566. [Google Scholar] [CrossRef]
- Kung, T.H.; Cheatham, M.; Medenilla, A.; Sillos, C.; De Leon, L.; Elepaño, C.; Madriaga, M.; Aggabao, R.; Diaz-Candido, G.; Maningo, J.; et al. Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. PLoS Digit. Health 2023, 2, e0000198. [Google Scholar] [CrossRef]
- Aljindan, F.K.; Al Qurashi, A.A.; Albalawi, I.A.S.; Alanazi, A.M.M.; Aljuhani, H.A.M.; Falah Almutairi, F.; Aldamigh, O.A.; Halawani, I.R.; Alarki, S.M.K.Z. ChatGPT Conquers the Saudi Medical Licensing Exam: Exploring the Accuracy of Artificial Intelligence in Medical Knowledge Assessment and Implications for Modern Medical Education. Cureus 2023, 15, e45043. [Google Scholar] [CrossRef]
- Antaki, F.; Touma, S.; Milad, D.; El-Khoury, J.; Duval, R. Evaluating the Performance of ChatGPT in Ophthalmology: An Analysis of Its Successes and Shortcomings. Ophthalmol. Sci. 2023, 3, 100324. [Google Scholar] [CrossRef] [PubMed]
- Fijačko, N.; Gosak, L.; Štiglic, G.; Picard, C.T.; John Douma, M. Can ChatGPT pass the life support exams without entering the American Heart Association course? Resuscitation 2023, 185, 109732. [Google Scholar] [CrossRef]
- Wang, C.; Liu, S.; Yang, H.; Guo, J.; Wu, Y.; Liu, J. Ethical Considerations of Using ChatGPT in Health Care. J. Med. Internet Res. 2023, 25, e48009. [Google Scholar] [CrossRef]
- OpenAI ChatGPT. 2022. Available online: https://openai.com/index/chatgpt/ (accessed on 1 November 2024).
- Liebrenz, M.; Schleifer, R.; Buadze, A.; Bhugra, D.; Smith, A. Generating scholarly content with ChatGPT: Ethical challenges for medical publishing. Lancet Digit. Health 2023, 5, e105–e106. [Google Scholar] [CrossRef]
- Mostafapour, M.; Fortier, J.H.; Pacheco, K.; Murray, H.; Garber, G. Evaluating Literature Reviews Conducted by Humans Versus ChatGPT: Comparative Study. JMIR AI 2024, 3, e56537. [Google Scholar] [CrossRef]
- Stokel-Walker, C. AI bot ChatGPT writes smart essays—Should professors worry? Nature 2022. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Grassini, S. Shaping the Future of Education: Exploring the Potential and Consequences of AI and ChatGPT in Educational Settings. Educ. Sci. 2023, 13, 692. [Google Scholar] [CrossRef]
- Alammari, A. Evaluating generative AI integration in Saudi Arabian education: A mixed-methods study. PeerJ Comput. Sci. 2024, 10, e1879. [Google Scholar] [CrossRef] [PubMed]


| Variable | n (%) * |
|---|---|
| Sex | |
| Male | 293 (40.53) |
| Female | 430 (59.47) |
| Year of study | |
| First year | 172 (23.79) |
| Second year | 129 (17.84) |
| Third year | 112 (15.49) |
| Fourth year | 106 (14.66) |
| Fifth year | 76 (10.51) |
| Sixth year | 41 (5.67) |
| Internship year | 87 (12.03) |
| College (healthcare program) | |
| Medicine | 219 (30.29) |
| Pharmacy | 178 (24.62) |
| Nursing | 105 (14.52) |
| Dentistry | 57 (7.88) |
| Allied healthcare program | 164 (22.68) |
| Geographical location in Saudi Arabia | |
| Central region | 316 (43.71) |
| Western region | 133 (18.40) |
| Northern region | 101 (13.97) |
| Southern region | 65 (8.99) |
| Eastern region | 108 (14.94) |
| Variable | n (%) *** |
|---|---|
| 1. How often do you use ChatGPT? | |
| Rarely | 168 (23.24) |
| Sometimes | 305 (42.19) |
| Often | 156 (21.58) |
| Always | 94 (13.00) |
| 2. Factors influencing students’ decision to use ChatGPT in their studies * | |
| Time-saving | 521 (72.06) |
| Convenience | 289 (39.97) |
| Trust in the accuracy of the information provided | 237 (32.78) |
| Lack of access to other resources | 227 (31.40) |
| Peer recommendation | 168 (23.24) |
| Instructor recommendation | 144 (19.92) |
| 3. Purpose of using ChatGPT in their studies * | |
| Summarizing academic articles | 368 (50.90) |
| Writing assignments | 325 (44.95) |
| Preparing for exams | 300 (41.49) |
| Writing effective emails | 211 (29.18) |
| Generating study materials | 208 (28.77) |
| Practicing clinical scenarios | 178 (24.62) |
| Not using it in my academic studies | 88 (12.17) |
| 4. Encountering limitations or challenges while using ChatGPT | |
| Yes | 523 (72.34) |
| No | 200 (27.66) |
| 5. Limitations or challenges encountered while using ChatGPT (n = 523) ** | |
| ChatGPT requires a paid subscription for full use, limiting its accessibility to students | 302 (57.74) |
| Difficult to formulate questions while searching for specific answers | 221 (42.26) |
| Technical issues: connectivity issues | 183 (34.99) |
| Variable | n (%) ** |
|---|---|
| Usefulness of ChatGPT in helping with their healthcare courses | |
| Extremely helpful | 77 (10.65) |
| Very helpful | 205 (28.35) |
| Moderately helpful | 244 (33.75) |
| Slightly helpful | 136 (18.81) |
| Not helpful at all | 61 (8.44) |
| Can ChatGPT be beneficial for healthcare students? * | |
| Improving learning efficiency | 408 (56.43) |
| Reducing study stress | 387 (53.53) |
| Enhancing critical thinking skills | 282 (39.00) |
| Developing communication skills | 228 (31.54) |
| Preparing for clinical practice | 215 (29.74) |
| Other (rare diseases, new ideas, simplified information, link to resources, etc.) | 27 (3.73) |
| Perceived disadvantages of using ChatGPT in studies * | |
| Overreliance: Overdependence on ChatGPT could hinder critical and independent thinking, crucial for healthcare professionals. | 399 (55.19) |
| Academic integrity: Misuse of ChatGPT for plagiarism poses ethical and academic integrity concerns. | 374 (51.73) |
| Lack of human interactions: The absence of human interactions and feedback from instructors or peers can limit valuable learning opportunities. | 288 (39.83) |
| Regulations and guidelines: Clear guidelines and regulations for the responsible use of ChatGPT in health professions education are still evolving. | 181 (25.03) |
| Variable | n (%) * |
|---|---|
| Discuss the use of ChatGPT with your instructors. | |
| Never | 383 (52.97) |
| Rarely | 191 (26.42) |
| Sometimes | 120 (16.60) |
| Often | 29 (4.01) |
| Always | 00 (0.00) |
| Current coverage of ChatGPT in your program curriculum | |
| Very low | 99 (13.69) |
| Low | 174 (24.07) |
| Average | 314 (43.43) |
| High | 101 (13.97) |
| Very high | 35 (4.84) |
| To what extent do you believe that the effective use of ChatGPT should be taught in healthcare colleges? | |
| Very low | 53 (7.33) |
| Low | 95 (13.14) |
| Average | 341 (47.16) |
| High | 162 (22.41) |
| Very high | 72 (9.96) |
| Should ChatGPT be used more by healthcare students? | |
| Yes | 421 (58.23) |
| No | 88 (12.17) |
| Unsure | 214 (29.60) |
| Variable | Frequency of Utilization of ChatGPT n (%) | p Value * | Satisfaction n (%) | p Value * | Perceived Usefulness n (%) | p Value * | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Rarely | Sometimes | Often/Always | Unsatisfied/Very Unsatisfied | Neutral | Satisfied/Very Satisfied | Not Helpful/Slightly Helpful | Moderately Helpful | Very/Extremely Helpful | ||||
| Sex | ||||||||||||
| Male | 74 (25.26) | 114 (38.91) | 105 (35.84) | 0.310 | 22 (7.51) | 75 (25.60) | 196 (66.89) | 0.213 | 81(27.65) | 100 (34.13) | 112 (38.23) | 0.939 |
| Female | 94 (21.86) | 191 (44.42) | 145 (33.72) | 31 (7.21) | 136 (31.63) | 263 (61.16) | 116 (26.98) | 144 (33.49) | 170 (39.53) | |||
| Year of Study | ||||||||||||
| First year | 44 (25.58) | 84 (48.84) | 44 (25.58) | 0.005 a | 20 (11.63) | 56 (32.56) | 96 (55.81) | 0.067 | 57 (33.14) | 43 (25.00) | 72 (41.86) | 0.086 |
| Second year | 26 (20.16) | 64 (49.61) | 39 (30.23) | 7 (5.43) | 36 (27.91) | 86 (66.67) | 38 (29.46) | 40 (31.01) | 51 (39.53) | |||
| Third year | 27 (24.11) | 39 (34.82) | 46 (41.07) | 10 (8.93) | 31 (27.68) | 71 (63.39) | 33 (29.46) | 44 (39.29) | 35 (31.25) | |||
| Fourth year | 19 (17.92) | 43 (40.57) | 44 (41.51) | 3 (2.83) | 24 (22.64) | 79 (74.53) | 21 (19.81) | 39 (36.79) | 46 (43.40) | |||
| Fifth year | 12 (15.79) | 33 (43.42) | 31 (40.79) | 4 (5.26) | 23 (30.26) | 49 (64.47) | 16 (21.05) | 26 (34.21) | 34 (44.74) | |||
| Sixth year | 11 (26.83) | 10 (24.39) | 20 (48.78) | 5 (12.20) | 9 (21.95) | 27 (65.85) | 13 (31.71) | 14 (34.15) | 14 (34.15) | |||
| Internship year | 29 (33.33) | 32 (36.78) | 26 (29.89) | 4 (4.60) | 32 (36.78) | 51 (58.62) | 19 (21.84) | 38 (43.68) | 30 (34.48) | |||
| College (healthcare program) | ||||||||||||
| Medicine | 61(27.85) | 95 (43.38) | 63 (28.77) | 0.099 | 22 (10.05) | 72 (32.88) | 125 (57.08) | 0.191 | 77 (35.16) | 65 (29.68) | 77 (35.16) | 0.149 |
| Pharmacy | 40 (22.47) | 65 (36.52) | 73 (41.01) | 8 (4.49) | 49 (27.53) | 121 (67.98) | 40 (22.47) | 66 (37.08) | 72 (40.45) | |||
| Nursing | 2 0(19.05) | 53 (50.48) | 32 (30.48) | 10 (9.52) | 28 (26.67) | 67 (63.81) | 30 (28.57) | 34 (32.38) | 41 (39.05) | |||
| Dentistry | 14 (24.56) | 26 (45.61) | 17 (29.82) | 1 (1.75) | 16 (28.07) | 40 (70.18) | 11 (19.30) | 21 (36.84) | 25 (43.86) | |||
| Allied healthcare program | 33 (20.12) | 66 (40.24) | 65 (39.63) | 12 (7.32) | 46 (28.05) | 106 (64.63) | 39 (23.78) | 58 (35.37) | 67 (40.85) | |||
| Geographical location in Saudi Arabia | ||||||||||||
| Central region | 65 (20.57) | 145 (45.89) | 106 (33.54) | 0.291 | 15 (4.75) | 96 (30.38) | 205 (64.87) | 0.037 a | 77 (24.37) | 114 (36.08) | 125 (39.56) | 0.764 |
| Western region | 37 (27.82) | 56 (42.11) | 40 (30.08) | 11 (8.27) | 38 (28.57) | 84 (63.16) | 42 (31.58) | 39 (29.32) | 52 (39.10) | |||
| Northern region | 28 (27.72) | 39 (38.61) | 34 (33.66) | 7 (6.93) | 20 (19.80) | 74 (73.27) | 30 (29.70) | 31(30.69) | 40 (39.60) | |||
| Southern region | 12 (18.46) | 23 (35.38) | 30 (46.15) | 7 (10.77) | 18 (27.69) | 40 (61.54) | 21 (32.31) | 21(32.31) | 23 (35.38) | |||
| Eastern region | 26 (24.07) | 42 (38.89) | 40 (37.04) | 13 (12.04) | 39 (36.11) | 56 (51.85) | 27 (25.00) | 39(36.11) | 42 (38.89) | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Academic Society for International Medical Education. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Rasheed, M.K.; Alonayzan, F.; Alresheedi, N.; Aljasir, R.I.; Alhomoud, I.S.; Alrasheedy, A.A. ChatGPT in Health Professions Education: Findings and Implications from a Cross-Sectional Study Among Students in Saudi Arabia. Int. Med. Educ. 2026, 5, 6. https://doi.org/10.3390/ime5010006
Rasheed MK, Alonayzan F, Alresheedi N, Aljasir RI, Alhomoud IS, Alrasheedy AA. ChatGPT in Health Professions Education: Findings and Implications from a Cross-Sectional Study Among Students in Saudi Arabia. International Medical Education. 2026; 5(1):6. https://doi.org/10.3390/ime5010006
Chicago/Turabian StyleRasheed, Muhammad Kamran, Fay Alonayzan, Nouf Alresheedi, Reema I. Aljasir, Ibrahim S. Alhomoud, and Alian A. Alrasheedy. 2026. "ChatGPT in Health Professions Education: Findings and Implications from a Cross-Sectional Study Among Students in Saudi Arabia" International Medical Education 5, no. 1: 6. https://doi.org/10.3390/ime5010006
APA StyleRasheed, M. K., Alonayzan, F., Alresheedi, N., Aljasir, R. I., Alhomoud, I. S., & Alrasheedy, A. A. (2026). ChatGPT in Health Professions Education: Findings and Implications from a Cross-Sectional Study Among Students in Saudi Arabia. International Medical Education, 5(1), 6. https://doi.org/10.3390/ime5010006

