The Era of Rhythm Control: A Review of the Epidemiology and Clinical Impact of Anti-Arrhythmic Medications in Atrial Fibrillation
Abstract
:1. Introduction
2. Methods
3. The Changing Epidemiology of Atrial Fibrillation
3.1. Epidemiology, Incidence, and Prevalence of Atrial Fibrillation
3.2. Atrial Fibrillation in Women of Child-Bearing Age & Pregnancy
4. The Impact of Atrial Fibrillation on Clinical Co-Morbidities
4.1. Heart Failure with Preserved and Reduced Ejection Fraction
4.2. Hypertrophic Cardiomyopathy
4.3. Cardiac Amyloidosis
4.4. Channelopathies
4.5. Human Immunodeficiency Virus (HIV)
4.6. Malignancies and Chemotherapeutics
5. Clinical Impact of Recent Trials on the Utilization of Anti-Arrhythmic Drugs
5.1. Rate Control versus Rhythm Control
5.2. Rhythm Control for Quality of Life
5.3. Catheter Ablation Used Alone or in Conjunction with AAD
6. Prescribing Considerations for Anti-Arrhythmic Drugs
Toxicity Monitoring
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lévy, S.; Steinbeck, G.; Santini, L.; Nabauer, M.; Maceda, D.P.; Kantharia, B.K.; Saksena, S.; Cappato, R. Management of atrial fibrillation: Two decades of progress–a scientific statement from the European Cardiac Arrhythmia Society. J. Interv. Card. Electrophysiol. 2022, 65, 287–326. [Google Scholar] [CrossRef] [PubMed]
- Fuster, V.; Rydén, L.E.; Cannom, D.S.; Crijns, H.J.; Curtis, A.B.; Ellenbogen, K.A.; Halperin, J.L.; Le Heuzey, J.-Y.; Kay, G.N.; Lowe, J.E.; et al. ACC/AHA/ESC 2006 Guidelines for the Management of Patients with Atrial Fibrillation. Circulation 2006, 114, e257–e354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyse, D.G.; Waldo, A.L.; DiMarco, J.P.; Domanski, M.J.; Rosenberg, Y.; Schron, E.B.; Kellen, J.C.; Greene, H.L.; Mickel, M.C.; E Dalquist, J.; et al. A Comparison of Rate Control and Rhythm Control in Patients with Atrial Fibrillation. N. Engl. J. Med. 2002, 347, 1825–1833. [Google Scholar] [CrossRef] [PubMed]
- Van Gelder, I.C.; Hagens, V.E.; Kingma, J.H.; Bosker, H.A.; Kamp, O.; Kingma, T.; Crijns, H.J.G.M. Rate control versus electrical cardioversion for atrial fibrillation: A randomised comparison of two treatment strategies concerning morbidity, mortality, quality of life and cost-benefit–the RACE study design. Neth. Heart J. 2002, 10, 118. [Google Scholar] [PubMed]
- Haïssaguerre, M.; Jaïs, P.; Shah, D.C.; Takahashi, A.; Hocini, M.; Quiniou, G.; Garrigue, S.; Le Mouroux, A.; Le Métayer, P.; Clémenty, J. Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins. N. Engl. J. Med. 1998, 339, 659–666. [Google Scholar] [CrossRef] [Green Version]
- Kreidieh, O.; Varley, A.L.; Romero, J.; Singh, D.; Silverstein, J.; Thosani, A.; Varosy, P.; Hebsur, S.; Godfrey, B.E.; Schrappe, G.; et al. Practice Patterns of Operators Participating in the Real-World Experience of Catheter Ablation for Treatment of Symptomatic Paroxysmal and Persistent Atrial Fibrillation (REAL-AF) Registry. J. Interv. Card. Electrophysiol. 2022, 65, 429–440. [Google Scholar] [CrossRef]
- Packer, D.L.; Mark, D.B.; Robb, R.A.; Monahan, K.H.; Bahnson, T.D.; Poole, J.E.; Noseworthy, P.A.; Rosenberg, Y.D.; Jeffries, N.; Mitchell, L.B.; et al. Effect of Catheter Ablation vs Antiarrhythmic Drug Therapy on Mortality, Stroke, Bleeding, and Cardiac Arrest Among Patients With Atrial Fibrillation: The CABANA Randomized Clinical Trial. JAMA. 2019, 321, 1261–1274. [Google Scholar] [CrossRef]
- Kuck, K.-H.; Brugada, J.; Fürnkranz, A.; Metzner, A.; Ouyang, F.; Chun, K.J.; Elvan, A.; Arentz, T.; Bestehorn, K.; Pocock, S.J.; et al. Cryoballoon or Radiofrequency Ablation for Paroxysmal Atrial Fibrillation. N. Engl. J. Med. 2016, 374, 2235–2245. [Google Scholar] [CrossRef]
- Deshpande, R.; AlKhadra, Y.; Singanallur, P.; Botchway, A.; Labedi, M. Outcomes of catheter ablation versus antiarrhythmic therapy in patients with atrial fibrillation: A systematic review and meta-analysis. J. Interv. Card. Electrophysiol. 2022, 65, 773–802. [Google Scholar] [CrossRef]
- Kirchhof, P.; Camm, A.J.; Goette, A.; Brandes, A.; Eckardt, L.; Elvan, A.; Fetsch, T.; van Gelder, I.C.; Haase, D.; Haegeli, L.M.; et al. Early Rhythm-Control Therapy in Patients with Atrial Fibrillation. N. Engl. J. Med. 2020, 383, 1305–1316. [Google Scholar] [CrossRef]
- Turagam, M.K.; Musikantow, D.; Whang, W.; Koruth, J.S.; Miller, M.A.; Langan, M.N.; Sofi, A.; Choudry, S.; Dukkipati, S.R.; Reddy, V.Y. Assessment of Catheter Ablation or Antiarrhythmic Drugs for First-line Therapy of Atrial Fibrillation: A Meta-analysis of Randomized Clinical Trials. JAMA Cardiol. 2021, 6, 697–705. [Google Scholar] [CrossRef]
- Andrade, J.G.; Wells, G.A.; Deyell, M.W.; Bennett, M.; Essebag, V.; Champagne, J.; Roux, J.-F.; Yung, D.; Skanes, A.; Khaykin, Y.; et al. Cryoablation or Drug Therapy for Initial Treatment of Atrial Fibrillation. N. Engl. J. Med. 2021, 384, 305–315. [Google Scholar] [CrossRef]
- Baysal, E.; Okşul, M.; Burak, C.; Yalin, K.; Soysal, A.U.; Yalman, H.; Bozyel, S.; Guler, T.E.; Tanboga, H.I.; Aksu, T. Decreasing time between first diagnosis of paroxysmal atrial fibrillation and cryoballoon ablation positively affects long-term consequences. J. Interv. Card. Electrophysiol. 2022, 65, 365–372. [Google Scholar] [CrossRef]
- Andrade, J.G.; Deyell, M.W. AF ablation: You cannot escape the responsibility of tomorrow by evading it today. J. Interv. Card. Electrophysiol. 2022, 65, 341–342. [Google Scholar] [CrossRef]
- Andrade, J.G.; Deyell, M.W.; Macle, L.; Wells, G.A.; Bennett, M.; Essebag, V.; Champagne, J.; Roux, J.-F.; Yung, D.; Skanes, A.; et al. Progression of Atrial Fibrillation after Cryoablation or Drug Therapy. N. Engl. J. Med. 2023, 388, 105–116. [Google Scholar] [CrossRef]
- January, C.T.; Wann, L.S.; Calkins, H.; Chen, L.Y.; Cigarroa, J.E.; Cleveland, J.C., Jr.; Ellinor, P.T., Jr.; Ezekowitz, M.D.; Field, M.E.; Furie, K.L.; et al. AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients with Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society in Collaboration With the Society of Thoracic Surgeons. Circulation 2019, 140, e125–e151. [Google Scholar] [CrossRef]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.-A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef]
- Şaylık, F.; Çınar, T.; Akbulut, T.; Hayıroğlu, M. Comparison of catheter ablation and medical therapy for atrial fibrillation in heart failure patients: A meta-analysis of randomized controlled trials. Hear. Lung 2022, 57, 69–74. [Google Scholar] [CrossRef]
- Dai, H.; Zhang, Q.; Abu Much, A.; Maor, E.; Segev, A.; Beinart, R.; Adawi, S.; Lu, Y.; Bragazzi, N.L.; Wu, J. Global, regional, and national prevalence, incidence, mortality, and risk factors for atrial fibrillation, 1990–2017: Results from the Global Burden of Disease Study 2017. Eur. Hear. J. - Qual. Care Clin. Outcomes 2020, 7, 574–582. [Google Scholar] [CrossRef]
- Colilla, S.; Crow, A.; Petkun, W.; Singer, D.E.; Simon, T.; Liu, X. Estimates of Current and Future Incidence and Prevalence of Atrial Fibrillation in the U.S. Adult Population. Am. J. Cardiol. 2013, 112, 1142–1147. [Google Scholar] [CrossRef]
- Mou, L.; Norby, F.L.; Chen, L.Y.; O’Neal, W.T.; Lewis, T.T.; Loehr, L.R.; Soliman, E.Z.; Alonso, A. Lifetime Risk of Atrial Fibrillation by Race and Socioeconomic Status. Circ. Arrhythmia Electrophysiol. 2018, 11, e006350. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Chen, W.; Zhang, Z.; Duan, L.; Ng, A.; Spencer, H.T.; Kwan, D.M.; Shen, A.Y. Atrial Fibrillation and Atrial Flutter in Pregnant Women—A Population-Based Study. J. Am. Hear. Assoc. 2016, 5, e003182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.J.; Larson, M.; Levy, D.; Vasan, R.S.; Leip, E.P.; Wolf, P.A.; D’Agostino, R.B.; Murabito, J.; Kannel, W.B.; Benjamin, E.J. Temporal Relations of Atrial Fibrillation and Congestive Heart Failure and Their Joint Influence on Mortality. Circulation 2003, 107, 2920–2925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruddox, V.; Sandven, I.; Munkhaugen, J.; Skattebu, J.; Edvardsen, T.; Otterstad, J.E. Atrial fibrillation and the risk for myocardial infarction, all-cause mortality and heart failure: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2017, 24, 1555–1566. [Google Scholar] [CrossRef] [Green Version]
- Kannel, W.; Wolf, P.; Benjamin, E.; Levy, D. Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: Population-based estimates. Am. J. Cardiol. 1998, 82, 2N–9N. [Google Scholar] [CrossRef]
- Vermond, R.A.; Geelhoed, B.; Verweij, N.; Tieleman, R.G.; Van der Harst, P.; Hillege, H.L.; Van Gilst, W.H.; Van Gelder, I.C.; Rienstra, M. Incidence of Atrial Fibrillation and Relationship with Cardiovascular Events, Heart Failure, and Mortality. J. Am. Coll. Cardiol. 2015, 66, 1000–1007. [Google Scholar] [CrossRef] [Green Version]
- January, C.T.; Wann, L.S.; Alpert, J.S.; Calkins, S.; Cigarroa, J.E.; ClevelandJr, J.C.; Conti, J.B.; Ellinor, P.T.; Ezekowitz, M.D.; Field, M.E.; et al. 2014 AHA/ACC/HRS Guideline for the Management of Patients with Atrial Fibrillation Circulation. Circulation 2014, 130, e199–e267. [Google Scholar] [CrossRef]
- Chamberlain, A.M.; Redfield, M.M.; Alonso, A.; Weston, S.A.; Roger, V.L. Atrial Fibrillation and Mortality in Heart Failure. Circ. Heart Fail. 2011, 4, 740–746. [Google Scholar] [CrossRef] [Green Version]
- Siontis, K.C.; Geske, J.B.; Ong, K.; Nishimura, R.A.; Ommen, S.R.; Gersh, B.J. Atrial Fibrillation in Hypertrophic Cardiomyopathy: Prevalence, Clinical Correlations, and Mortality in a Large High-Risk Population. J. Am. Hear. Assoc. 2014, 3, e001002. [Google Scholar] [CrossRef] [Green Version]
- Olivotto, I.; Cecchi, F.; Casey, S.A.; Dolara, A.; Traverse, J.H.; Maron, B.J. Impact of Atrial Fibrillation on the Clinical Course of Hypertrophic Cardiomyopathy. Circulation 2001, 104, 2517–2524. [Google Scholar] [CrossRef] [Green Version]
- A Marston, N.; Han, L.; Olivotto, I.; Day, S.M.; Ashley, E.A.; Michels, M.; Pereira, A.C.; Ingles, J.; Semsarian, C.; Jacoby, D.; et al. Clinical characteristics and outcomes in childhood-onset hypertrophic cardiomyopathy. Eur. Hear J. 2021, 42, 1988–1996. [Google Scholar] [CrossRef]
- Maron, B.J.; Desai, M.Y.; Nishimura, R.A.; Spirito, P.; Rakowski, H.; Towbin, J.A.; Dearani, J.A.; Rowin, E.J.; Maron, M.S.; Sherrid, M.V. Management of Hypertrophic Cardiomyopathy. J. Am. Coll. Cardiol. 2022, 79, 390–414. [Google Scholar] [CrossRef] [PubMed]
- Lioncino, M.; Monda, E.; Palmiero, G.; Caiazza, M.; Vetrano, E.; Rubino, M.; Esposito, A.; Salerno, G.; Dongiglio, F.; D’Onofrio, B.; et al. Cardiovascular Involvement in Transthyretin Cardiac Amyloidosis. Hear Fail. Clin. 2021, 18, 73–87. [Google Scholar] [CrossRef]
- Viles-Gonzalez, J.F.; Pastori, L.; Fischer, A.; Wisnivesky, J.P.; Goldman, M.G.; Mehta, D. Supraventricular Arrhythmias in Patients with Cardiac Sarcoidosis. Chest 2013, 143, 1085–1090. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.N.; Tester, D.J.; Perry, J.; Salisbury, B.A.; Reed, C.R.; Ackerman, M.J. Prevalence of early-onset atrial fibrillation in congenital long QT syndrome. Hear. Rhythm. 2008, 5, 704–709. [Google Scholar] [CrossRef] [Green Version]
- Itoh, H.; Shimizu, M.; Ino, H.; Okeie, K.; Yamaguchi, M.; Fujino, N.; Mabuchi, H. Hokuriku Brugada Study Group Arrhythmias in Patients with Brugada-Type Electrocardiographic Findings. Jpn. Circ. J. 2001, 65, 483–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morita, H.; Kusano-Fukushima, K.; Nagase, S.; Fujimoto, Y.; Hisamatsu, K.; Fujio, H.; Haraoka, K.; Kobayashi, M.; Morita, S.T.; Nakamura, K.; et al. Atrial fibrillation and atrial vulnerability in patients with Brugada syndrome. J. Am. Coll. Cardiol. 2002, 40, 1437–1444. [Google Scholar] [CrossRef] [Green Version]
- Bordachar, P.; Reuter, S.; Garrigue, S.; Caï, X.; Hocini, M.; Jaïs, P.; Haïssaguerre, M.; Clementy, J. Incidence, clinical implications and prognosis of atrial arrhythmias in brugada syndrome. Eur. Hear. J. 2004, 25, 879–884. [Google Scholar] [CrossRef] [Green Version]
- Letsas, K.P.; Sideris, A.; Efremidis, M.; Pappas, L.K.; Gavrielatos, G.; Filippatos, G.S.; Kardaras, F. Prevalence of paroxysmal atrial fibrillation in Brugada syndrome: A case series and a review of the literature. J. Cardiovasc. Med. 2007, 8, 803–806. [Google Scholar] [CrossRef]
- Vlachos, K.; Mascia, G.; Martin, C.A.; Bazoukis, G.; Frontera, A.; Cheniti, G.; Letsas, K.P.; Efremidis, M.; Georgopoulos, S.; Gkalapis, C.; et al. Atrial fibrillation in Brugada syndrome: Current perspectives. J. Cardiovasc. Electrophysiol. 2020, 31, 975–984. [Google Scholar] [CrossRef]
- Bigi, M.A.B.; Aslani, A.; Shahrzad, S. Clinical predictors of atrial fibrillation in Brugada syndrome. Europace 2007, 9, 947–950. [Google Scholar] [CrossRef]
- Gollob, M.H.; Redpath, C.J.; Roberts, J.D. The Short QT Syndrome: Proposed Diagnostic Criteria. J. Am. Coll. Cardiol. 2011, 57, 802–812. [Google Scholar] [CrossRef] [Green Version]
- El-Battrawy, I.; Besler, J.; Liebe, V.; Schimpf, R.; Tülümen, E.; Rudic, B.; Lang, S.; Wolpert, C.; Zhou, X.; Akin, I.; et al. Long-Term Follow-Up of Patients With Short QT Syndrome: Clinical Profile and Outcome. J. Am. Hear. Assoc. 2018, 7, e010073. [Google Scholar] [CrossRef] [Green Version]
- Park, D.Y.; An, S.; Romero, M.E.; Kaur, A.; Ravi, V.; Huang, H.D.; Vij, A. Incidence and risk factors of atrial fibrillation and atrial arrhythmias in people living with HIV: A systematic review and meta-analysis. J. Interv. Card. Electrophysiol. 2022, 65, 183–191. [Google Scholar] [CrossRef]
- Conen, D.; Wong, J.A.; Sandhu, R.K.; Cook, N.R.; Lee, I.-M.; Buring, J.E.; Albert, C. Risk of Malignant Cancer Among Women With New-Onset Atrial Fibrillation. JAMA Cardiol. 2016, 1, 389–396. [Google Scholar] [CrossRef] [Green Version]
- Baptiste, F.; Cautela, J.; Ancedy, Y.; Resseguier, N.; Aurran, T.; Farnault, L.; Escudier, M.; Ammar, C.; Gaubert, M.; Dolladille, C.; et al. High incidence of atrial fibrillation in patients treated with ibrutinib. Open Hear. 2019, 6, e001049. [Google Scholar] [CrossRef]
- Fazal, M.; Wei, C.; Chuy, K.L.; Hussain, K.; Gomez, S.E.; Ba, S.S.; Pietrasik, G.; Yadav, N.; Ghazizadeh, Z.; Kapoor, R.; et al. Tyrosine kinase inhibitor–associated ventricular arrhythmias: A case series and review of literature. J. Interv. Card. Electrophysiol. 2022, 1–11. [Google Scholar] [CrossRef]
- Hohnloser, S.H.; Crijns, H.J.; van Eickels, M.; Gaudin, C.; Page, R.L.; Torp-Pedersen, C.; Connolly, S.J. Effect of Dronedarone on Cardiovascular Events in Atrial Fibrillation. N. Engl. J. Med. 2009, 360, 668–678. [Google Scholar] [CrossRef] [Green Version]
- Hohnloser, S.H.; Kuck, K.-H.; Lilienthal, J. Rhythm or rate control in atrial fibrillation—Pharmacological Intervention in Atrial Fibrillation (PIAF): A randomised trial. Lancet 2000, 356, 1789–1794. [Google Scholar] [CrossRef]
- Van Gelder, I.C.; Hagens, V.E.; Bosker, H.A.; Kingma, J.H.; Kamp, O.; Kingma, T.; Said, S.A.; Darmanata, J.I.; Timmermans, A.J.; Tijssen, J.G.; et al. A Comparison of Rate Control and Rhythm Control in Patients with Recurrent Persistent Atrial Fibrillation. N. Engl. J. Med. 2002, 347, 1834–1840. [Google Scholar] [CrossRef] [Green Version]
- Carlsson, J.; Miketic, S.; Windeler, J.; Cuneo, A.; Haun, S.; Micus, S.; Walter, S.; Tebbe, U. Randomized trial of rate-control versus rhythm-control in persistent atrial fibrillation. J. Am. Coll. Cardiol. 2003, 41, 1690–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, S.; Yamashita, T.; Yamazaki, T.; Aizawa, Y.; Atarashi, H.; Inoue, H.; Ohe, T.; Ohtsu, H.; Okumura, K.; Katoh, T.; et al. Optimal Treatment Strategy for Patients with Paroxysmal Atrial Fibrillation J-RHYTHM Study. Circ. J. 2009, 73, 242–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fosbol, E.L.; Holmes, D.N.; Piccini, J.P.; Thomas, L.; Reiffel, J.A.; Mills, R.M.; Kowey, P.; Mahaffey, K.; Gersh, B.J.; Peterson, E.D.; et al. Provider Specialty and Atrial Fibrillation Treatment Strategies in United States Community Practice: Findings From the ORBIT-AF Registry. J. Am. Hear. Assoc. 2013, 2, e000110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thrall, G.; Lane, D.; Carroll, D.; Lip, G.Y. Quality of Life in Patients with Atrial Fibrillation: A Systematic Review. Am. J. Med. 2006, 119, 448.e1–448.e19. [Google Scholar] [CrossRef] [PubMed]
- Dorian, P.; Jung, W.; Newman, D.; Paquette, M.; Wood, K.; Ayers, G.M.; Camm, J.; Akhtar, M.; Luderitz, B. The impairment of health-related quality of life in patients with intermittent atrial fibrillation: Implications for the assessment of investigational therapy. J. Am. Coll. Cardiol. 2000, 36, 1303–1309. [Google Scholar] [CrossRef] [Green Version]
- Berg, M.V.D.; Hassink, R.; Tuinenburg, A.; Van Sonderen, E.; Lefrandt, J.; De Kam, P.; Van Gelder, I.; Smit, A.; Sanderman, R.; Crijns, H. Quality of life in patients with paroxysmal atrial fibrillation and its predictors: Importance of the autonomic nervous system. Eur. Hear J. 2001, 22, 247–253. [Google Scholar] [CrossRef]
- Camm, A.J.; Naccarelli, G.V.; Mittal, S.; Crijns, H.J.; Hohnloser, S.H.; Ma, C.-S.; Natale, A.; Turakhia, M.P.; Kirchhof, P. The Increasing Role of Rhythm Control in Patients with Atrial Fibrillation. J. Am. Coll. Cardiol. 2022, 79, 1932–1948. [Google Scholar] [CrossRef]
- Zhao, Y.; Krupadev, V.; Dagher, L.; Mahnkopf, C.; Sohns, C.; Sehner, S.; Suling, A.; Sanders, P.; Boersma, L.; Schunkert, H.; et al. Pharmacological rhythm versus rate control in patients with atrial fibrillation and heart failure: The CASTLE-AF trial. J. Interv. Card. Electrophysiol. 2020, 61, 609–615. [Google Scholar] [CrossRef]
- Duytschaever, M.; Demolder, A.; Phlips, T.; Sarkozy, A.; El Haddad, M.; Taghji, P.; Knecht, S.; Tavernier, R.; Vandekerckhove, Y.; De Potter, T. PulmOnary vein isolation With vs. without continued antiarrhythmic Drug trEatment in subjects with Recurrent Atrial Fibrillation (POWDER AF): Results from a multicentre randomized trial. Eur. Hear. J. 2017, 39, 1429–1437. [Google Scholar] [CrossRef]
- Markman, T.M.; Geng, Z.; Epstein, A.E.; Nazarian, S.; Deo, R.; Marchlinski, F.E.; Groeneveld, P.W.; Frankel, D.S. Trends in Antiarrhythmic Drug Use Among Patients in the United States Between 2004 and 2016. Circulation 2020, 141, 937–939. [Google Scholar] [CrossRef]
- Fang, M.C.; Stafford, R.S.; Ruskin, J.N.; Singer, D.E. National Trends in Antiarrhythmic and Antithrombotic Medication Use in Atrial Fibrillation. Arch. Intern. Med. 2004, 164, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hill, J.A. Electrophysiological remodeling in heart failure. J. Mol. Cell. Cardiol. 2010, 48, 619–632. [Google Scholar] [CrossRef] [Green Version]
- Ginsburg, K.S.; Weber, C.R.; Bers, D.M. Cardiac Na+-Ca2+exchanger: Dynamics of Ca2+-dependent activation and deactivation in intact myocytes. J. Physiol. 2013, 591, 2067–2086. [Google Scholar] [CrossRef]
- Luo, M.; Anderson, M.E. Mechanisms of Altered Ca2+ Handling in Heart Failure. Circ. Res. 2013, 113, 690–708. [Google Scholar] [CrossRef] [Green Version]
- The Cardiac Arrhythmia Suppression Trial (CAST) Investigators Preliminary Report: Effect of Encainide and Flecainide on Mortality in a Randomized Trial of Arrhythmia Suppression after Myocardial Infarction. N. Engl. J. Med. 1989, 321, 406–412. [CrossRef]
- Burnham, T.S.; May, H.T.; Bair, T.L.; Anderson, J.A.; Crandall, B.G.; Cutler, M.J.; Day, J.D.; Freedman, R.A.; Knowlton, K.U.; Muhlestein, J.B.; et al. Long-term outcomes in patients treated with flecainide for atrial fibrillation with stable coronary artery disease. Am. Hear J. 2021, 243, 127–139. [Google Scholar] [CrossRef]
- Ashraf, H.; Ko, N.K.; Ladia, V.; Agasthi, P.; Prendiville, T.; O’Herlihy, F.; Pujari, S.H.; Mulpuru, S.K.; Scott, L.; Sorajja, D. Use of Flecainide in Stable Coronary Artery Disease: An Analysis of Its Safety in Both Nonobstructive and Obstructive Coronary Artery Disease. Am. J. Cardiovasc. Drugs 2021, 21, 563–572. [Google Scholar] [CrossRef]
- Cay, S.; Kara, M.; Ozcan, F.; Ozeke, O.; Aksu, T.; Aras, D.; Topaloglu, S. Propafenone use in coronary artery disease patients undergoing atrial fibrillation ablation. J. Interv. Card. Electrophysiol. 2022, 65, 381–389. [Google Scholar] [CrossRef]
- Naccarelli, G.V.; Burkman, G.M.; Hussain, S.K. Do class IC antiarrhythmics drugs need to be cast aside in atrial fibrillation patients with minimal coronary artery disease? J. Interv. Card. Electrophysiol. 2022, 65, 347–348. [Google Scholar] [CrossRef]
- Waldo, A.L.; Camm, A.J.; Deruyter, H.; Friedman, P.L.; MacNeil, D.J.; Pauls, J.F.; Pitt, B.; Pratt, C.M.; Schwartz, P.J.; Veltri, E.P. Effect of d-sotalol on mortality in patients with left ventricular dysfunction after recent and remote myocardial infarction. Lancet 1996, 348, 7–12. [Google Scholar] [CrossRef]
- Køber, L.; Torp-Pedersen, C.; McMurray, J.J.; Gøtzsche, O.; Lévy, S.; Crijns, H.; Amlie, J.; Carlsen, J. Increased Mortality after Dronedarone Therapy for Severe Heart Failure. New Engl. J. Med. 2008, 358, 2678–2687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Washam, J.B.; Holmes, D.N.; Thomas, L.E.; Pokorney, S.D.; Hylek, E.M.; Fonarow, G.C.; Mahaffey, K.W.; Gersh, B.J.; Kowey, P.R.; Ansell, J.E.; et al. Pharmacotherapy for Atrial Fibrillation in Patients with Chronic Kidney Disease: Insights From ORBIT-AF. J. Am. Hear Assoc. 2018, 7, e008928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spinler, S.A.; Elder, C.A.; Kindwall, K.E. Propafenone-Induced Liver Injury. Ann Pharm. 1992, 26, 926–928. [Google Scholar] [CrossRef]
- Feduska, E.T.; Thoma, B.N.; Torjman, M.C.; Goldhammer, J.E. Acute Amiodarone Pulmonary Toxicity. J. Cardiothorac. Vasc. Anesthesia 2021, 35, 1485–1494. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, Y.-C.; Tiwari, N.; Di Biase, L. Amiodarone is associated with increased short-term mortality in elderly atrial fibrillation patients with preserved ejection fraction. J. Interv. Card. Electrophysiol. 2021, 63, 207–214. [Google Scholar] [CrossRef]
Class | Medication | Route | Typical Dosing | Anti-Arrhythmic Dose Adjustments | Drug-Drug Interactions and Medication Adjustments | Clinical Contraindications |
---|---|---|---|---|---|---|
IA | Disopyramide | PO | 100–400 every 8–12 h, maximum dose, 800 mg/24 h | Reduce dose in renal or hepatic dysfunction | Use with caution with inhibitors and inducers of CYP3A4. This includes non-dihydropyridine calcium channel blockers, ketoconazole, macrolide antibiotics, protease inhibitors, grapefruit juice, rifampin, phenobarbital, and phenytoin. Coadministration with beta-blockers can cause hypotension and even death. Avoid coadministration with anticholinergic medications in the elderly. Coadministration with mavacamten can decrease serum concentration of disopyramide. | Narrow-angle glaucoma |
IA | Procainamide | IV or PO | IV: 10–17 mg/kg at 20–50 mg/min load. Maintenance dose 1–4 mg/min. PO (sustained release) 500–1250 mg q6h | Use with caution with medications that inhibit cationic tubular secretion (levofloxacin, trimethoprim), especially in baseline CKD present. | QT Interval | |
IC | Flecainide | PO | 50–100 mg twice a day, maximum dose 300–400 mg/d, can give 200 mg PO daily slow release | Discontinue if QRS widens > 25% above baseline, new LBBB, or QRS > 120 ms | Coadministration with CYP2D6 inhibitors increases plasma concentrations by 16–28%. Coadministration with amiodarone raises concentration by approximately 50%. Coadministration with sotalol causes hypotension that is generally not seen with other BBs. Coadministration with mavacamten can decrease metabolism of mavacamten. | Coronary disease, CrCl < 35 mL/min/1.73 m2 |
IC | Propafenone | PO | 150–300 every 8 h or sustained release 225–425 twice a day | Discontinue if QRS widens > 25% above baseline, new LBBB, or QRS > 120 ms | Increases concentrations of digoxin and warfarin (INR typically increases 25%). Can increase beta-blocker concentrations. Coadministration with CYP2D6 inhibitors can increase plasma concentrations, including severe drug reactions when coadministered with CYP2D6 inhibiting antidepressants. Increases digoxin concentrations by approximately 60%. Coadministration with mavacamten can decrease serum concentration of Propafenone. | Coronary disease, severe renal or liver disease, asthma |
III | Dofetilide | PO | Renally dosed: CrCL > 60 (500 μg twice a day), CrCl 40–60 (250 μg twice a day), CrCl 20–39 (125 μg twice a day) | HCTZ, Verapamil, cimetidine, ketoconazole, trimethoprim, prochlorperazine, dolutegravir, and megestrol are absolute contraindications. Discontinue amiodarone at least 3 months before initiation, though in patients with and ICD can consider as little as 7 days. Stop dofetilide 48 h before amiodarone load. Administer strong CYP3A4 inhibitors with caution. Tyrosine kinase inhibitors, particularly vandetanib and nilotinib, Arsenic, anthracyclines, and panobinostat, can prolong the QT interval. Coadministration with mavacamten can decrease serum concentration of dofetilide. | QT interval | |
III | Dronedarone | PO | 400 mg every 12 h | Discontinue if QTC > 500 ms or >60 ms increase | Use with caution with CYP3A4 inhibitors (non-dihydropyridine calcium channel blockers, dabigatran, ketoconazole, macrolide antibiotics, protease inhibitors, grapefruit juice). Use with caution with CYP3A4 inducers (e.g., rifampin, phenobarbital, phenytoin). Recommend decrease beta-blocker and digoxin dose with coadministration doses. It can increase concentrations of some statins, sirolimus, and tacrolimus. Tyrosine kinase inhibitors, particularly vandetanib and nilotinib, Arsenic, anthracyclines, and panobinostat, can prolong the QT interval. Coadministration with mavacamten leads to increased mavamectin doses. | CrCl < 30 mL/min |
III | Sotalol | IV or PO | IV: 75 mg every 12 h. PO 80–160 mg every 12 h. Can increase dose every 72 h. Maximum dose 320 mg every 12 h | Discontinue if QTC > 500 ms or >60 ms increase | Tyrosine kinase inhibitors, particularly vandetanib and nilotinib, Arsenic, anthracyclines, and panobinostat, can prolong the QT interval. Administering with food or antacids can decrease plasma concentrations, though the clinical significance is unclear | Significant LVH, CrCl < 30 mL/min, long QT, asthma, hypokalemia |
III | Ibutilide | IV only | 1 mg intravenous over 10 min, repeat after 10 min if necessary | Recommend a minimum of 4 h after ibutilide administration prior to administration of Class IA or Class III anti-arrhythmic agents due to risk of precipitating ventricular arrhythmias | QT interval | |
III | Amiodarone | PO or IV | IV load 10 g over 7–10 d, then 200–400 mg/d. IV: 150–300 mg bolus, then 1 mg/min infusion for 6 h followed by 0.5 mg/min for 18 h. | Dose reduce load in the setting of bradycardia or QT prolongation. Maintenance dose of 400 mg/d recommended if treating ventricular tachycardia | Inhibits metabolism of most statins leading to statin toxicity. Reduce simvastatin max dose to 20 mg/d and lovastatin to 40 mg/d when coadministered with amiodarone. Amiodarone increases cyclosporine concentration 2-fold. Requires decreased warfarin dose by 25–40% depending on the daily amiodarone dose. Amiodarone increases plasma colchicine, macrolide antibiotics, and systemic azole antifungals. Amiodarone increases procainamide concentration (consider a decrease in procainamide by 20–30% prophylactically when starting amiodarone). Should not use amiodarone with sofosbuvir-based hepatitis C treatments—serious cases of bradycardia, causing PPM placement, and even death, have been reported. Coadministration with mavacamten leads to increased mavamectin doses. | Manifest Hyperthyroidism |
Anti-Arrhythmic Drugs Cardiovascular and Non-Cardiovascular Toxicities | ||
---|---|---|
Anti-Arrhythmic Drug | Noncardiovascular Toxicity | Cardiovascular Toxicity |
Class Ia | ||
Procainamide (pre-excited AF) | Hypotension, drug-induced lupus, agranulocytosis | Torsades de Pointes |
Disopyramide | Anticholinergic (Urinary retention, contraindicated for narrow-angle glaucoma, dry mouth, constipation, blurry vision), hypoglycemia | Negative inotropic effects, torsades de pointes, and QRS widening |
Class Ic | ||
Propafenone | Metallic taste, dizziness, worsening of reactive airway disease, GI upset | Bradycardia, atrial flutter with 1:1 conduction, ventricular tachycardia-CAD with infarct, may unmask Brugada-type ST elevation, QRS widening |
Flecainide | Dizziness, headache, visual blurring, paresthesias, interstitial lung disease | Bradycardia, atrial flutter with 1:1 conduction, ventricular tachycardia- CAD with infarct, may unmask Brugada-type ST elevation, QRS widening |
Class III | ||
Sotalol | Bronchospasm, hypotension, lightheadedness, fatigue | Bradycardia, torsades de pointes, negative inotropic effects |
Dofetilide, US only | None | Torsades de pointes |
Amiodarone | Increase in serum creatinine, Thrombophlebitis (IV), Pulmonary (acute hypersensitivity pneumonitis, chronic interstitial infiltrates), hepatitis, thyroid (hypothyroidism or hyperthyroidism), photosensitivity, blue-gray skin discoloration with chronic high dose, nausea, ataxia, tremor, alopecia, peripheral neuropathy, corneal deposits | Sinus bradycardia, torsades de pointes (rare) |
Ibutilide (intravenous) | Nausea | Torsades de pointes |
Dronedarone | Anorexia, nausea, hepatotoxicity, increase in serum creatinine | Bradycardia, torsades de pointes (rare), should not be used in patients with a history of heart failure or with permanent AF |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dye, C.A.; Skeete, J.; Khan, A.; Dunleavy, M.; Dietrich, M.; Volgman, A.S.; Sharma, P.; Huang, H. The Era of Rhythm Control: A Review of the Epidemiology and Clinical Impact of Anti-Arrhythmic Medications in Atrial Fibrillation. Pharmacoepidemiology 2023, 2, 81-97. https://doi.org/10.3390/pharma2010008
Dye CA, Skeete J, Khan A, Dunleavy M, Dietrich M, Volgman AS, Sharma P, Huang H. The Era of Rhythm Control: A Review of the Epidemiology and Clinical Impact of Anti-Arrhythmic Medications in Atrial Fibrillation. Pharmacoepidemiology. 2023; 2(1):81-97. https://doi.org/10.3390/pharma2010008
Chicago/Turabian StyleDye, Cicely Anne, Jamario Skeete, Asad Khan, Michael Dunleavy, Michael Dietrich, Annabelle Santos Volgman, Parikshit Sharma, and Henry Huang. 2023. "The Era of Rhythm Control: A Review of the Epidemiology and Clinical Impact of Anti-Arrhythmic Medications in Atrial Fibrillation" Pharmacoepidemiology 2, no. 1: 81-97. https://doi.org/10.3390/pharma2010008
APA StyleDye, C. A., Skeete, J., Khan, A., Dunleavy, M., Dietrich, M., Volgman, A. S., Sharma, P., & Huang, H. (2023). The Era of Rhythm Control: A Review of the Epidemiology and Clinical Impact of Anti-Arrhythmic Medications in Atrial Fibrillation. Pharmacoepidemiology, 2(1), 81-97. https://doi.org/10.3390/pharma2010008