Growth Performance, Meat Quality, and Lipid Oxidation in Pigs’ Fed Diets Containing Grape Pomace
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal and Design
2.2. Measurements and Analytical Methods
2.2.1. Grape Pomace Processing and Characterization
2.2.2. Animal Management at the Slaughterhouse and Carcass Measurements
2.2.3. Meat Quality and Fatty Acids
2.2.4. Mini Hamburger Preparation and TBARS Analyses
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Campos, R.; Hierro, E.; Ordóńez, J.; Bertol, T.; de la Hoz, L. A note on partial replacement of maize with rice bran in the pig diet on meat and backfat fatty acids. J. Anim. Feed Sci. 2006, 15, 427–433. [Google Scholar] [CrossRef][Green Version]
- Decker, E.A.; Akoh, C.C.; Wilkes, R.S. Incorporation of (n-3) Fatty Acids in Foods: Challenges and Opportunities. J. Nutr. 2012, 142, 610S–613S. [Google Scholar] [CrossRef] [PubMed]
- Ahn, D.U.; Lutzb, S.; Sim, J.S. Effects of dietary α-linolenic acid on the fatty acid composition, storage stability and sensory characteristics of pork loin. Meat Sci. 1996, 43, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Musella, M.; Cannata, S.; Rossi, R.; Mourot, J.; Baldini, P.; Corino, C. Omega-3 polyunsaturated fatty acid from extruded linseed influences the fatty acid composition and sensory characteristics of dry-cured ham from heavy pigs. J. Anim. Sci. 2009, 87, 3578–3588. [Google Scholar] [CrossRef] [PubMed]
- Juárez, M.; Dugan, M.E.R.; Aldai, N.; Aalhus, J.L.; Patience, J.F.; Zijlstra, R.T.; Beaulieu, A.D. Increasing omega-3 levels through dietary co-extruded flaxseed Supplementation negatively affects pork palatability. Food Chem. 2011, 126, 1716–1723. [Google Scholar] [CrossRef]
- Larick, D.K.; Turner, B.E.; Schoenherr, W.D.; Coffey, M.T.; Pilkington, D.H. Volatile compound content and fatty acid composition of pork as influenced by linolenic acid content of the diet. J. Anim. Sci. 1992, 70, 1397–1403. [Google Scholar] [CrossRef]
- Lauridsen, C.; Nielsen, J.H.; Henckel, P.; Sorensen, M.T. Antioxidative and oxidative status in muscles of pigs fed rapeseed oil, vitamin E, and copper. J. Anim. Sci. 1999, 77, 105–115. [Google Scholar] [CrossRef]
- Xu, M.; Chen, X.; Huang, Z.; Chen, D.; Li, M.; He, J.; Chen, H.; Zheng, P.; Yu, J.; Luo, Y.; et al. Effects of dietary grape seed proanthocyanidin extract supplementation on meat quality, muscle fiber characteristics and antioxidant capacity of finishing pigs. Food Chem. 2022, 367, 130781. [Google Scholar] [CrossRef]
- Pinelo, M.; Arnous, A.; Meyer, A.S. Upgrading of grape skins: Significance of plant cell-wall structural components and extraction techniques for phenol release. Trends Food Sci. Technol. 2006, 17, 579–590. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Toledo, R.T. Major Flavonoids in grape seeds and skins: Antioxidant capacity of catechin, epicatechin, and gallic acid. J. Agric. Food Chem. 2004, 52, 255–260. [Google Scholar] [CrossRef]
- Amico, V.; Napoli, E.M.; Renda, A.; Ruberto, G.; Spatafora, C.; Tringali, C. Constituents of grape pomace from the Sicilian cultivar Nerello Mascalese. Food Chem. 2004, 88, 599–607. [Google Scholar] [CrossRef]
- Lafka, T.I.; Sinanoglou, V.; Lazos, E.S. On the extraction and antioxidant activity of phenolic compounds from winery wastes. Food Chem. 2007, 104, 1206–1214. [Google Scholar] [CrossRef]
- Pazos, M.; Gallardo, J.M.; Torres, J.L.; Medina, I. Activity of grape polyphenols as inhibitors of the oxidation of fish lipids and frozen fish muscle. Food Chem. 2005, 92, 547–557. [Google Scholar] [CrossRef]
- Brewer, S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Chamorro, S.; Viveros, A.; Rebolé, A.; Rica, B.D.; Arija, I.; Brenes, A. Influence of dietary enzyme addition on polyphenol utilization and meat lipid oxidation of chicks fed grape pomace. Food Res. Int. 2015, 73, 197–203. [Google Scholar] [CrossRef]
- Yan, L.; Kim, I.H. Effect of Dietary Grape Pomace Fermented by Saccharomyces boulardii on the Growth Performance, Nutrient Digestibility and Meat Quality in Finishing Pigs. Asian Australas. J. Anim. Sci. 2011, 24, 1763–1770. [Google Scholar] [CrossRef]
- Romero, C.; Arija, I.; Viveros, A.; Chamoro, S. Productive performance, egg quality and yolk lipid oxidation in laying hens fed diets including grape pomace or grape extract. Animals 2022, 12, 1076. [Google Scholar] [CrossRef]
- Bertol, T.M.; Ludke, J.V.; de Campos, R.M.L.; Kawski, V.L.; Cunha, A., Jr.; Figueiredo, E.A.P. Inclusion of grape pomace in the diet of pigs on pork quality and oxidative stability of omega-3 enriched fat. Cienc. Rural 2017, 47, e20150358. [Google Scholar] [CrossRef]
- Trombetta, F.; Fruet, A.P.B.; Stefanello, F.S.; Fonseca, P.A.F.; Souza, A.N.M.; Tonetto, C.J.; Rosado Júnior, A.G.; Nörnberg, J.L. Effects of the dietary inclusion of linseed oil and grape pomace on weight gain, carcass characteristics, and meat quality of swine. Int. Food Res. J. 2019, 26, 1741–1749. Available online: http://www.ifrj.upm.edu.my (accessed on 16 April 2024).
- Bernardi, D.M.; Bertol, T.M.; Coldebella, A.; Cunha, A., Jr.; Silveira, B.C.A.; Rodrigues, J.B.; Barrera-Arellano, D.; Godoy, H.; Meinhart, A.D.; de Paris, L.D.; et al. Effects of dietary flaxseed oil with or without products with antioxidant properties on pig performance, carcass characteristics, meat quality, and oxidative stability. Anim. Prod. Sci. 2022, 62, 1789–1804. [Google Scholar] [CrossRef]
- NRC. National Research Council. Nutrient Requirements of Swine; Eleventh Revised Edition; The National Academies Press: Washington, DC, USA, 2012; p. 420. [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 1995. [Google Scholar]
- Singleton, V.L.; Rossi, J.A., Jr. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Kähkönen, M.P.; Hopia, A.I.; Vuorela, H.J.; Rauha, J.P.; Pihlaja, K.; Kujala, T.S.; Heinonen, M. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 1999, 47, 3954–3962. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 81, 321–326. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Hartman, L.; Lago, R.C.A. Rapid preparation of fatty acid methyl esters from lipids. Lab. Pract. 1973, 22, 475–476. [Google Scholar]
- Associação Brasileira de Criadores de Suínos. Método Brasileiro de Classificação de Carcaças; Publicação Técnica No. 2; ABCS: Estrela, Brazil, 1973; p. 17. [Google Scholar]
- RHINOCEROS, versão 4.0; McNeel North America: Seatle, WA, USA, 2007.
- NPPC. Official Color and Marbling Standards. In Composition & Quality Assessment Procedures; NPPC: Urbandale, IA, USA, 1999. [Google Scholar]
- Correa, J.A.; Méthot, S.; Faucitano, L. A modified meat juice container (EZ-DRIP LOSS) procedure for a more reliable assessment of drip loss and related quality in pork meat. J. Muscle Foods. 2007, 18, 67–77. [Google Scholar] [CrossRef]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef] [PubMed]
- AMSA. Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Meat, 2nd ed.; version 1.02; American Meat Science Association: Champaign, IL, USA, 2016; p. 106. Available online: https://www.meatscience.org/docs/default-source/publications-resources/amsa-sensory-and-tenderness-evaluation-guidelines/research-guide/amsa-research-guidelines-for-cookery-and-evaluation-1-02.pdf (accessed on 15 December 2015).
- Vyncke, B.W. Direct determination of the thiobarbituric acid value in trichloracetic acid extracts of fish as a measure of oxidative rancidity. Fette Seifen Anstr. 1970, 72, 1084–1087. [Google Scholar] [CrossRef]
- Overholt, M.F.; Arkfeld, E.K.; Mohrhauser, D.A.; King, D.A.; Wheeler, T.L.; Dilger, A.C.; Shackelford, S.D.; Boler, D.D. Comparison of variability in pork carcass composition and quality between barrows and gilts. J. Anim. Sci. 2016, 94, 4415–4426. [Google Scholar] [CrossRef]
- Woodworth, J.; Bohrer, B.; Faccin, J. Characterizing the Differences between Barrow and Gilt Growth Performance, Carcass Composition, and Meat Quality; KSU Applied Swine Nutrition Department: Manhattan, KS, USA, 2021; p. 4. [Google Scholar]
- Zhang, S.; Knight, T.J.; Stalder, K.J.; Goodwin, R.N.; Lonergan, S.M.; Beitz, D.C. Effects of breed, sex, and halothane genotype on the fatty acid composition of pork Longissimus muscle. J. Anim. Sci. 2007, 85, 583–591. [Google Scholar] [CrossRef]
- Erinle, T.J.; Oladokun, S.; MacIsaac, J.; Rathgeber, B.; Adewole, D. Dietary grape pomace—Effects on growth performance, intestinal health, blood parameters, and breast muscle myopathies of broiler chickens. Poult. Sci. 2022, 101, 101519. [Google Scholar] [CrossRef] [PubMed]
- Ospina-Romero, M.A.; Medrano-Vázquez, L.S.; Pinelli-Saavedra, A.; Sánchez-Villalba, E.; Valenzuela-Melendres, M.; Martínez-Téllez, M.A.; Barrera-Silva, M.A.; González-Ríos, H. Productive Performance, Physiological Variables, and Carcass Quality of Finishing Pigs Supplemented with Ferulic Acid and Grape Pomace under Heat Stress Conditions. Animals 2023, 13, 2396. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.M.; Alfaia, C.M.; Lopes, P.A.; Pestana, J.M.; Prates, J.A.M. Grape by-products as feedstuff for pig and poultry production. Animals 2022, 12, 2239. [Google Scholar] [CrossRef]
- Zhang, C.; Luo, J.; Yu, B.; Zheng, P.; Huang, Z.; Mao, X.; He, J.; Yu, J.; Chen, J.; Chen, D. Dietary resveratrol supplementation improves meat quality of finishing pigs through changing muscle fiber characteristics and antioxidative status. Meat Sci. 2015, 102, 15–21. [Google Scholar] [CrossRef]
- Brenes, A.; Viveros, A.; Goñi, I.; Centeno, C.; Sáyago-Ayerdy, S.G.; Arija, I.; Saura-Calixto, F. Effect of grape pomace concentrate and vitamin E on digestibility of polyphenols and antioxidant activity in chickens. Poult. Sci. 2008, 87, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Romero, C.; Nardoia, M.; Arija, I.; Viveros, A.; Rey, A.I.; Prodanov, M.; Chamorro, S. Feeding broiler chickens with grape seed and skin meals to enhance α- and γ- tocopherol content and meat oxidative stability. Antioxidants 2021, 10, 699. [Google Scholar] [CrossRef]
- O’Grady, M.N.; Carpenter, R.; Lynch, P.B.; O’Brien, N.M.; Kerry, J.P. Addition of grape seed extract and bearberry to porcine diets: Influence on quality attributes of raw and cooked pork. Meat Sci. 2008, 78, 438–446. [Google Scholar] [CrossRef]
- Bordiga, M.; Travaglia, F.; Locatelli, M. Valorisation of grape pomace: An approach that is increasingly reaching its maturity—A review. Int. J. Food Sci. Technol. 2019, 54, 933–942. [Google Scholar] [CrossRef]
- Kafantaris, I.; Stagos, D.; Kotsampasi, B.; Hatzis, A.; Kypriotakis, A.; Gerasopoulos, K.; Makri, S.; Goutzourelas, N.; Mitsagga, C.; Giavasis, I.; et al. Grape pomace improves performance, antioxidant status, fecal microbiota and meat quality of piglets. Animal 2018, 12, 246–255. [Google Scholar] [CrossRef]
- Vitali, M.; Dimauro, C.; Sirri, R.; Zappaterra, M.; Zambonelli, P.; Manca, E.; Sami, D.; Lo Fiego, D.P.; Davoli, R. Effect of dietary polyunsaturated fatty acid and antioxidant supplementation on the transcriptional level of genes involved in lipid and energy metabolism in swine. PLoS ONE 2018, 13, e0204869. [Google Scholar] [CrossRef]
- Rocchetti, G.; Vitali, M.; Zappaterra, M.; Righetti, L.; Sirri, R.; Lucini, L.; Dall’Asta, C.; Davoli, R.; Galaverna, G. A molecular insight into the lipid changes of pig Longissimus thoracic muscle following dietary supplementation with functional ingredients. PLoS ONE 2022, 17, e0264953. [Google Scholar] [CrossRef] [PubMed]
| Phase 1 (83–103 kg) | Phase 2 (103–130 kg) | |||||
|---|---|---|---|---|---|---|
| Ingredients, g/kg | Control | 5% DGP | 10% DGP | Control | 5% DGP | 10% DGP |
| Corn | 669.47 | 680.96 | 692.49 | 739.96 | 751.47 | 759.70 |
| Soybean meal | 167.28 | 173.66 | 179.92 | 99.45 | 105.82 | 115.52 |
| Wheat bran | 134.76 | 67.37 | 0.00 | 134.74 | 67.34 | 0.00 |
| DGP | 0.00 | 50.00 | 100.00 | 0.00 | 50.00 | 100.00 |
| Limestone | 10.99 | 8.93 | 6.88 | 10.13 | 8.07 | 6.01 |
| Dicalcium phosphate | 4.59 | 6.25 | 7.93 | 3.74 | 5.39 | 6.98 |
| Salt | 2.97 | 2.98 | 2.99 | 1.81 | 1.82 | 1.83 |
| Vitamin premix a | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 |
| Mineral premix b | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| L-Lysine | 2.03 | 1.92 | 1.84 | 2.45 | 2.35 | 2.14 |
| L-Threonine | 0.21 | 0.23 | 0.25 | 0.52 | 0.54 | 0.52 |
| DL-Methionine | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 |
| Choline chloride | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
| Mycotoxin adsorbent | 4.50 | 4.50 | 4.50 | 4.50 | 4.50 | 4.50 |
| Colistin sulfate | 0.50 | 0.50 | 0.50 | 0.00 | 0.00 | 0.00 |
| Calculated Composition (per kg) | ||||||
| EM (MJ) | 13.16 | 13.16 | 13.16 | 13.24 | 13.24 | 13.24 |
| Crude Protein (g) | 157.0 | 157.0 | 157.0 | 131.4 | 131.4 | 131.4 |
| Ether Extract (g) | 31.5 | 34.8 | 38.0 | 32.9 | 36.2 | 39.4 |
| Crude fiber (g) | 30.2 | 42.7 | 55.1 | 28.9 | 41.4 | 53.0 |
| Calcium (g) | 5.60 | 5.60 | 5.60 | 4.90 | 4.90 | 4.90 |
| Phosphorus available (g) | 2.60 | 2.60 | 2.60 | 2.30 | 2.30 | 2.30 |
| Digestible lysine (g) | 7.70 | 7.70 | 7.70 | 6.40 | 6.40 | 6.40 |
| Analyzed Composition (g/kg) | ||||||
| SFAs | 5.90 | 6.11 | 6.41 | 5.88 | 6.66 | 7.27 |
| MUFAs | 8.94 | 9.39 | 9.98 | 10.26 | 10.49 | 11.46 |
| PUFAs | 18.93 | 20.84 | 22.47 | 17.89 | 20.04 | 23.63 |
| ω-6 | 18.12 | 20.04 | 21.67 | 16.91 | 18.94 | 22.65 |
| ω-3 | 0.81 | 0.80 | 0.80 | 0.98 | 0.99 | 0.98 |
| Fatty Acid | g/kg Sample | Fatty Acid | g/kg Sample |
|---|---|---|---|
| C10:0 | Nd | C18:3n6 gama | Nd |
| C11:0 | Nd | C20:0 | 0.430 |
| C12:0 | Nd | C20:1n9c | Nd |
| C13:0 | Nd | C20:2n6c | Nd |
| C14:0 | 0.250 | C20:4n6c | Nd |
| C14:1 | Nd | C20:5n3c EPA | Nd |
| C15:0 | Nd | C21:0 | Nd |
| C15:1 | Nd | C22:0 | 0.100 |
| C16:0 | 7.970 | C22:1n9c | Nd |
| C16:1 | 0.240 | C22:2n6c | Nd |
| C17:0 | Nd | C22:6n3 DHA | Nd |
| C17:1 | 0.110 | C23:0 | Nd |
| C18:0 | 3.840 | C24:0 | Nd |
| C18:1n9c | 13.060 | C24:1n9c | Nd |
| C18:1n9t | Nd | ΣSFAs | 12.590 |
| C18:1n7c | 0.180 | ΣMUFAs | 13.590 |
| C18:2n6c | 49.110 | ΣPUFAs | 50.990 |
| C18:2n6t | Nd | Total ω-6 | 49.110 |
| C18:3n3 alpha | 1.890 | Total ω-3 | 1.890 |
| Variables | Treatments | Sex | Prob F | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Control | 5% DGP | 10% DGP | Female | Barrow | Treat | Sex | Treat × Sex | Linear | Quadratic | |
| ILW | 83.21 ± 1.69 | 83.20 ± 1.88 | 83.28 ± 1.78 | 83.77 ± 1.30 | 82.68 ± 1.55 | 0.990 | 0.034 | 0.938 | 0.912 | 0.936 |
| FLW | 129.4 ± 2.46 | 134.0 ± 2.54 | 133.2 ± 2.41 | 131.9 ± 1.77 | 132.5 ± 2.29 | 0.127 | 0.757 | 0.792 | 0.112 | 0.196 |
| DWG | 0.944 ± 0.03 | 1.036 ± 0.03 | 1.019 ± 0.03 | 0.982 ± 0.02 | 1.017 ± 0.03 | 0.080 | 0.324 | 0.670 | 0.081 | 0.142 |
| DFI | 3.352 ± 0.108 b | 3.600 ± 0.086 ab | 3.654 ± 0.098 a | 3.428 ± 0.074 | 3.643 ± 0.088 | 0.045 | 0.040 | 0.442 | 0.020 | 0.367 |
| F:G | 3.562 ± 0.077 | 3.486 ± 0.075 | 3.590 ± 0.048 | 3.501 ± 0.057 | 3.591 ± 0.053 | 0.548 | 0.266 | 0.909 | 0.776 | 0.294 |
| HCW | 95.16 ± 1.89 | 99.09 ± 1.97 | 97.89 ± 1.95 | 97.06 ± 1.33 | 97.70 ± 1.84 | 0.097 | 0.665 | 0.555 | 0.137 | 0.109 |
| HCY | 73.50 ± 0.26 | 73.97 ± 0.27 | 73.47 ± 0.33 | 73.58 ± 0.21 | 73.71 ± 0.27 | 0.451 | 0.712 | 0.361 | 0.939 | 0.212 |
| BFP2 | 22.56 ± 1.40 | 24.13 ± 2.35 | 26.79 ± 1.27 | 20.98 ± 0.98 | 28.01 ± 1.37 | 0.083 | <0.0001 | 0.472 | 0.029 | 0.736 |
| BFFR | 38.91 ± 2.25 | 40.48 ± 1.93 | 40.07 ± 1.16 | 37.91 ± 1.51 | 41.73 ± 1.32 | 0.833 | 0.094 | 0.850 | 0.668 | 0.675 |
| BFFSV | 20.33 ± 0.90 | 20.59 ± 1.18 | 22.92 ± 0.84 | 19.74 ± 0.67 | 22.81 ± 0.83 | 0.088 | 0.005 | 0.568 | 0.046 | 0.343 |
| BFLR | 25.97 ± 1.28 b | 28.37 ± 1.00 ab | 31.27 ± 1.30 a | 27.07 ± 1.10 | 30.01 ± 0.98 | 0.007 | 0.027 | 0.279 | 0.002 | 0.852 |
| LEA | 38.30 ± 1.35 ab | 40.75 ± 1.27 a | 36.14 ± 1.50 b | 40.52 ± 0.90 | 36.27 ± 1.24 | 0.032 | 0.004 | 0.626 | 0.200 | 0.020 |
| FAT | 22.65 ± 0.98 b | 23.45 ± 1.27 ab | 25.56 ± 0.74 a | 22.52 ± 0.80 | 25.26 ± 0.81 | 0.055 | 0.009 | 0.902 | 0.021 | 0.528 |
| FMR | 0.60 ± 0.03 b | 0.59 ± 0.04 b | 0.72 ± 0.03 a | 0.56 ± 0.02 | 0.71 ± 0.03 | 0.004 | <0.0001 | 0.798 | 0.005 | 0.047 |
| LDHGP | 57.77 ± 1.17 | 59.30 ± 1.38 | 58.20 ± 1.67 | 60.24 ± 0.97 | 56.60 ± 1.16 | 0.725 | 0.031 | 0.885 | 0.827 | 0.445 |
| BFHGP | 22.63 ± 1.28 b | 23.73 ± 1.64 ab | 26.50 ± 1.19 a | 21.44 ± 0.86 | 27.13 ± 1.04 | 0.031 | <0.0001 | 0.937 | 0.011 | 0.501 |
| PLM | 53.18 ± 0.73 a | 52.87 ± 1.01 a | 51.10 ± 0.82 b | 54.34 ± 0.47 | 50.43 ± 0.62 | 0.039 | <0.0001 | 0.971 | 0.019 | 0.320 |
| Variables | Treatments | Sex | Prob F | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Control | 5% DGP | 10% DGP | Female | Barrow | Treat | Sex | Treat × Sex | Linear | Quadratic | |
| DL, % | 3.88 ± 0.49 | 4.41 ± 0.50 | 3.68 ± 0.40 | 4.66 ± 0.39 | 3.32 ± 0.29 | 0.444 | 0.009 | 0.134 | 0.724 | 0.225 |
| CL, % | 32.56 ± 0.54 | 33.35 ± 0.31 | 31.68 ± 0.34 | 32.65 ± 0.39 | 32.40 ± 0.37 | 0.053 | 0.987 | 0.777 | 0.105 | 0.071 |
| SF, kg | 2.94 ± 0.33 | 2.71 ± 0.39 | 2.70 ± 0.43 | 2.71 ± 0.27 | 2.86 ± 0.33 | 0.890 | 0.928 | 0.416 | 0.673 | 0.850 |
| pH 45 min | 6.26 ± 0.04 | 6.30 ± 0.05 | 6.24 ± 0.04 | 6.27 ± 0.04 | 6.27 ± 0.03 | 0.641 | 0.966 | 0.816 | 0.712 | 0.389 |
| pH 24 h | 5.51 ± 0.01 | 5.48 ± 0.02 | 5.51 ± 0.03 | 5.48 ± 0.01 | 5.52 ± 0.02 | 0.487 | 0.039 | 0.072 | 0.773 | 0.249 |
| Color a | 4.17 ± 0.11 | 3.83 ± 0.11 | 4.00 ± 0.11 | 4.11 ± 0.11 | 3.89 ± 0.08 | 0.167 | 0.122 | 0.535 | 0.336 | 0.102 |
| L* | 45.96 ± 0.56 | 47.03 ± 0.62 | 46.53 ± 0.51 | 46.72 ± 0.41 | 46.29 ± 0.52 | 0.418 | 0.515 | 0.602 | 0.479 | 0.267 |
| a* | 2.72 ± 0.19 | 3.05 ± 0.24 | 2.51 ± 0.26 | 2.90 ± 0.18 | 2.62 ± 0.20 | 0.298 | 0.331 | 0.412 | 0.543 | 0.154 |
| b* | 3.59 ± 0.30 | 4.24 ± 0.20 | 3.84 ± 0.29 | 4.02 ± 0.20 | 3.76 ± 0.20 | 0.129 | 0.302 | 0.498 | 0.424 | 0.063 |
| TBARS1 | 0.272 ± 0.086 | 0.289 ± 0.064 | 0.202 ± 0.059 | 0.332 ± 0.054 | 0.177 ± 0.051 | 0.802 | 0.465 | 0.465 | 0.769 | 0.570 |
| TBARS3 | 0.739 ± 0.078 | 0.655 ± 0.133 | 0.617 ± 0.098 | 0.760 ± 0.065 | 0.580 ± 0.094 | 0.624 | 0.480 | 0.553 | 0.354 | 0.784 |
| Fatty Acid | Treatments | Sex | Prob F | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Control | 5% DGP | 10% DGP | Female | Barrow | Treat | Sex | Treat × Sex | Linear | Quadratic | |
| EE | 2400 ± 201.7 b | 2431 ± 196.9 b | 3114 ± 306.7 a | 2280 ± 155.9 | 2946 ± 209.4 | 0.029 | 0.044 | 0.528 | 0.017 | 0.171 |
| Saturated fatty acids (SFAs) | ||||||||||
| C10:0 | 2.658 ± 0.252 | 2.635 ± 0.255 | 3.401 ± 0.399 | 2.399 ± 0.204 | 3.309 ± 0.250 | 0.064 | 0.019 | 0.426 | 0.043 | 0.192 |
| C12:0 | 1.943 ± 0.200 | 2.026 ± 0.201 | 2.535 ± 0.289 | 1.836 ± 0.148 | 2.440 ± 0.201 | 0.092 | 0.087 | 0.681 | 0.045 | 0.347 |
| C14:0 | 29.12 ± 3.04 | 31.29 ± 3.20 | 39.69 ± 4.42 | 28.59 ± 2.33 | 37.22 ± 3.21 | 0.056 | 0.122 | 0.646 | 0.024 | 0.376 |
| C15:0 | 17.60 ± 0.77 | 17.71 ± 0.51 | 17.80 ± 0.63 | 17.36 ± 0.43 | 18.00 ± 0.57 | 0.938 | 0.949 | 0.928 | 0.726 | 0.953 |
| C16:0 | 558.8 ± 50.2 b | 573.3 ± 51.9 b | 738.3 ± 76.3 a | 532.9 ± 38.9 | 696.6 ± 53.2 | 0.032 | 0.058 | 0.578 | 0.018 | 0.203 |
| C17:0 | 5.940 ± 0.633 | 5.679 ± 0.640 | 6.727 ± 0.544 | 5.366 ± 0.456 | 6.741 ± 0.481 | 0.246 | 0.219 | 0.475 | 0.234 | 0.221 |
| C18:0 | 273.3 ± 24.4 b | 282.6 ± 26.4 b | 356.5 ± 39.0 a | 260.7 ± 20.0 | 339.4 ± 26.4 | 0.050 | 0.077 | 0.496 | 0.025 | 0.268 |
| C20:0 | 3.843 ± 0.315 b | 4.220 ± 0.385 b | 5.426 ± 0.632 a | 3.776 ± 0.316 | 5.077 ± 0.397 | 0.012 | 0.031 | 0.366 | 0.005 | 0.329 |
| C22:0 | 1.240 ± 0.115 | 1.240 ± 0.098 | 1.294 ± 0.097 | 1.153 ± 0.076 | 1.349 ± 0.083 | 0.846 | 0.274 | 0.076 | 0.718 | 0.649 |
| ΣSFA | 893.2 ± 78.8 b | 919.5 ± 82.5 b | 1170 ± 121.4 a | 853.0 ± 62.0 | 1109 ± 83.9 | 0.037 | 0.064 | 0.552 | 0.020 | 0.226 |
| Monounsaturated fatty acids (MUFAs) | ||||||||||
| C16:1 | 66.26 ± 6.05 b | 66.27 ± 6.84 b | 88.98 ± 8.84 a | 62.59 ± 4.35 | 82.87 ± 6.78 | 0.027 | 0.038 | 0.636 | 0.019 | 0.140 |
| C17:1 | 4.540 ± 0.679 | 4.357 ± 0.758 | 5.164 ± 0.656 | 3.773 ± 0.373 | 5.465 ± 0.619 | 0.523 | 0.145 | 0.524 | 0.415 | 0.418 |
| C18:1n7c | 88.95 ± 7.90 b | 87.81 ± 7.17 b | 115.3 ± 11.53 a | 81.61 ± 5.11 | 110.2 ± 8.02 | 0.024 | 0.013 | 0.456 | 0.018 | 0.114 |
| C18:1n9c | 860.4 ± 76.4 b | 862.2 ± 70.5 b | 1136 ± 123.4 a | 800.7 ± 58.2 | 1077 ± 80.5 | 0.023 | 0.022 | 0.441 | 0.016 | 0.138 |
| C20:1n9c | 14.05 ± 1.34 b | 14.16 ± 1.31 b | 18.84 ± 2.36 a | 12.41 ± 0.91 | 18.39 ± 1.46 | 0.015 | 0.004 | 0.248 | 0.010 | 0.120 |
| C22:1n9c | 1.424 ± 0.214 | 1.563 ± 0.113 | 1.923 ± 0.157 | 1.550 ± 0.119 | 1.696 ± 0.159 | 0.175 | 0.584 | 0.571 | 0.069 | 0.677 |
| ΣMUFA | 1036 ± 91.7 b | 1036 ± 85.2 b | 1366 ± 146.4 a | 962.7 ± 68.5 | 1295 ± 96.6 | 0.022 | 0.020 | 0.447 | 0.015 | 0.132 |
| Polyunsaturated fatty acids (PUFAs) | ||||||||||
| C18:2n6c | 227.7 ± 13.7 | 227.4 ± 12.5 | 262.9 ± 12.8 | 231.1 ± 11.3 | 245.3 ± 11.0 | 0.120 | 0.684 | 0.882 | 0.076 | 0.258 |
| C18:3n3c | 12.85 ± 1.07 b | 14.47 ± 0.94 b | 18.16 ± 1.33 a | 13.80 ± 0.98 | 16.18 ± 1.03 | 0.006 | 0.165 | 0.486 | 0.002 | 0.406 |
| C20:2n6c | 7.705 ± 0.631 | 7.756 ± 0.567 | 9.466 ± 0.705 | 7.736 ± 0.582 | 8.747 ± 0.490 | 0.097 | 0.358 | 0.901 | 0.056 | 0.271 |
| C20:4n6c | 4.397 ± 0.214 | 4.520 ± 0.229 | 4.511 ± 0.215 | 4.292 ± 0.171 | 4.637 ± 0.171 | 0.879 | 0.432 | 0.340 | 0.622 | 0.933 |
| C20:5n3c | 0.769 ± 0.080 | 0.882 ± 0.055 | 0.887 ± 0.087 | 0.842 ± 0.055 | 0.852 ± 0.067 | 0.421 | 0.410 | 0.365 | 0.257 | 0.512 |
| ΣPUFA | 253.6 ± 15.6 | 255.1 ± 14.1 | 295.9 ± 14.5 | 257.7 ± 12.8 | 275.8 ± 12.5 | 0.100 | 0.610 | 0.877 | 0.059 | 0.267 |
| Σω-6 | 239.8 ± 14.5 | 239.7 ± 13.2 | 276.8 ± 13.6 | 243.1 ± 12.0 | 258.6 ± 11.6 | 0.121 | 0.662 | 0.881 | 0.076 | 0.263 |
| Σω-3 | 13.79 ± 1.18 b | 15.35 ± 0.97 b | 19.04 ± 1.35 a | 14.64 ± 0.99 | 17.14 ± 1.08 | 0.011 | 0.186 | 0.632 | 0.004 | 0.434 |
| ω-6:ω-3 | 17.85 ± 0.70 a | 15.72 ± 0.40 b | 14.96 ± 0.88 b | 17.02 ± 0.68 | 15.50 ± 0.52 | 0.020 | 0.098 | 0.639 | 0.008 | 0.383 |
| Fatty Acid | Treatments | Sex | Prob F | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Control | 5% DGP | 10% DGP | Female | Barrow | Treat | Sex | Treat × Sex | Linear | Quadratic | |
| Saturated fatty acids (SFAs) | ||||||||||
| C10:0 | 70.07 ± 2.58 | 69.65 ± 1.40 | 69.52 ± 1.46 | 70.78 ± 1.69 | 68.67 ± 1.31 | 0.987 | 0.459 | 0.835 | 0.983 | 0.874 |
| C12:0 | 74.70 ± 3.09 | 75.97 ± 1.70 | 73.92 ± 1.53 | 75.64 ± 1.60 | 74.09 ± 2.03 | 0.878 | 0.646 | 0.899 | 0.919 | 0.619 |
| C14:0 | 1241 ± 28.3 | 1286 ± 37.9 | 1249 ± 23.4 | 1272 ± 16.1 | 1245 ± 32.3 | 0.554 | 0.427 | 0.138 | 0.932 | 0.285 |
| C15:0 | 50.20 ± 2.63 | 50.21 ± 2.92 | 51.18 ± 2.03 | 48.54 ± 1.95 | 52.60 ± 2.10 | 0.961 | 0.209 | 0.176 | 0.806 | 0.886 |
| C16:0 | 23,490 ± 153.6 | 23,921 ± 242.1 | 23,678 ± 112.6 | 23,576 ± 107.4 | 23,825 ± 184.9 | 0.263 | 0.269 | 0.270 | 0.481 | 0.148 |
| C17:0 | 331.4 ± 13.8 | 314.7 ± 19.5 | 312.9 ± 17.6 | 298.5 ± 11.1 | 342.6 ± 14.5 | 0.703 | 0.035 | 0.373 | 0.469 | 0.700 |
| C18:0 | 12,434 ± 170.8 | 12,193 ± 255.9 | 11,909 ± 185.0 | 12,021 ± 178.0 | 12,362 ± 161.9 | 0.290 | 0.096 | 0.481 | 0.121 | 0.913 |
| C20:0 | 224.8 ± 6.1 | 231.1 ± 7.69 | 238.8 ± 8.93 | 223.5 ± 5.96 | 239.7 ± 5.91 | 0.252 | 0.036 | 0.233 | 0.103 | 0.793 |
| ΣSFA | 37,917 ± 198.7 | 38,141 ± 334.0 | 37,583 ± 223.9 | 37,586 ± 201.8 | 38,209 ± 204.9 | 0.372 | 0.020 | 0.549 | 0.466 | 0.222 |
| Monounsaturated fatty acids (MUFAs) | ||||||||||
| C16:1 | 1653 ± 49.9 | 1791 ± 77.7 | 1849 ± 54.2 | 1784 ± 55.3 | 1739 ± 51.8 | 0.138 | 0.490 | 0.265 | 0.063 | 0.532 |
| C17:1 | 231.9 ± 11.2 | 228.0 ± 16.0 | 225.7 ± 12.2 | 211.3 ± 7.7 | 246.9 ± 11.8 | 0.946 | 0.026 | 0.270 | 0.748 | 0.949 |
| C18:1n7c | 1882 ± 47.2 | 2039 ± 90.4 | 2017 ± 63.9 | 1975 ± 60.0 | 1982 ± 57.3 | 0.280 | 0.935 | 0.267 | 0.278 | 0.254 |
| C18:1n9c | 37,298 ± 395.5 | 37,411 ± 261.6 | 37,341 ± 143.5 | 37,081 ± 253.9 | 37,636 ± 187.9 | 0.941 | 0.119 | 0.137 | 0.994 | 0.731 |
| C20:1n9c | 781.1 ± 29.0 | 778.4 ± 18.8 | 761.1 ± 22.3 | 732.3 ± 10.2 | 818.0 ± 20.9 | 0.832 | 0.003 | 0.791 | 0.574 | 0.817 |
| C22:1n9c | 117.4 ± 4.6 ab | 108.9 ± 4.2 b | 129.0 ± 5.3 a | 121.6 ± 4.5 | 114.4 ± 3.8 | 0.008 | 0.275 | 0.219 | 0.050 | 0.009 |
| ΣMUFA | 41,963 ± 436.4 | 42,357 ± 258.8 | 42,323 ± 170.3 | 41,905 ± 293.8 | 42,536 ± 175.8 | 0.569 | 0.084 | 0.059 | 0.481 | 0.445 |
| Polyunsaturated fatty acids (PUFAs) | ||||||||||
| C18:2n6c | 13,995 ± 464.7 | 13,504 ± 238.9 | 13,983 ± 189.2 | 14,412 ± 236.7 | 13,200 ± 208.7 | 0.387 | 0.001 | 0.215 | 0.933 | 0.175 |
| C18:3n3c | 976.8 ± 48.2 | 886.1 ± 26.5 | 1007 ± 34.8 | 955.7 ± 33.1 | 954.4 ± 32.6 | 0.101 | 0.902 | 0.780 | 0.544 | 0.039 |
| C20:2n6c | 666.8 ± 20.1 | 640.8 ± 16.0 | 629.5 ± 9.4 | 657.7 ± 11.9 | 634.0 ± 14.5 | 0.324 | 0.259 | 0.580 | 0.156 | 0.679 |
| C20:4n6c | 79.58 ± 4.14 | 70.89 ± 4.23 | 73.52 ± 3.95 | 81.28 ± 2.75 | 67.72 ± 3.26 | 0.238 | 0.005 | 0.879 | 0.251 | 0.224 |
| ΣPUFA | 15,718 ± 480.3 | 15,102 ± 248.5 | 15,693 ± 184.3 | 16,106 ± 251.6 | 14,856 ± 211.5 | 0.249 | 0.001 | 0.186 | 0.926 | 0.100 |
| Σω-6 | 14,742 ± 474.9 | 14,216 ± 245.5 | 14,686 ± 189.4 | 15,151 ± 237.2 | 13,901 ± 216.9 | 0.368 | 0.001 | 0.204 | 0.854 | 0.167 |
| Σω-3 | 976.8 ± 48.2 | 886.1 ± 26.5 | 1007 ± 34.8 | 955.7 ± 33.1 | 954.4 ± 32.6 | 0.101 | 0.902 | 0.780 | 0.544 | 0.039 |
| ω-6:ω-3 | 15.44 ± 0.79 | 16.21 ± 0.56 | 14.79 ± 0.60 | 16.12 ± 0.51 | 14.84 ± 0.54 | 0.296 | 0.092 | 0.977 | 0.426 | 0.172 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silveira Almeida, B.C.; Ludke, M.d.C.M.M.; Bertol, T.M.; Ludke, J.V.; Bernardi, D.M.; Cunha Jr., A.; Coldebella, A. Growth Performance, Meat Quality, and Lipid Oxidation in Pigs’ Fed Diets Containing Grape Pomace. Appl. Biosci. 2024, 3, 378-391. https://doi.org/10.3390/applbiosci3030025
da Silveira Almeida BC, Ludke MdCMM, Bertol TM, Ludke JV, Bernardi DM, Cunha Jr. A, Coldebella A. Growth Performance, Meat Quality, and Lipid Oxidation in Pigs’ Fed Diets Containing Grape Pomace. Applied Biosciences. 2024; 3(3):378-391. https://doi.org/10.3390/applbiosci3030025
Chicago/Turabian Styleda Silveira Almeida, Barbara Cristina, Maria do Carmo Mohaupt Marques Ludke, Teresinha Marisa Bertol, Jorge Vitor Ludke, Daniela Miotto Bernardi, Anildo Cunha Jr., and Arlei Coldebella. 2024. "Growth Performance, Meat Quality, and Lipid Oxidation in Pigs’ Fed Diets Containing Grape Pomace" Applied Biosciences 3, no. 3: 378-391. https://doi.org/10.3390/applbiosci3030025
APA Styleda Silveira Almeida, B. C., Ludke, M. d. C. M. M., Bertol, T. M., Ludke, J. V., Bernardi, D. M., Cunha Jr., A., & Coldebella, A. (2024). Growth Performance, Meat Quality, and Lipid Oxidation in Pigs’ Fed Diets Containing Grape Pomace. Applied Biosciences, 3(3), 378-391. https://doi.org/10.3390/applbiosci3030025

