The Role of Phorbol Diesters in Mediating Human Placental Aromatase Cytochrome P450 Activity
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barros-Oliveira, M.d.C.; Costa-Silva, D.R.; Dos Santos, A.R.; Pereira, R.O.; Soares-Júnior, J.M.; Silva, B.B.d. Influence of CYP19A1 gene expression levels in women with breast cancer: A systematic review of the literature. Clinics 2021, 76, e2846. [Google Scholar] [CrossRef] [PubMed]
- Artigalás, O.; Vanni, T.; Hutz, M.H.; Ashton-Prolla, P.; Schwartz, I.V. Influence of CYP19A1 polymorphisms on the treatment of breast cancer with aromatase inhibitors: A systematic review and meta-analysis. BMC Med. 2015, 13, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GLOBOCAN. Breast Cancer Fact Sheet. 2020. Available online: https://gco.iarc.fr/today/data/factsheets/cancers/20-Breast-fact-sheet.pdf (accessed on 31 August 2022).
- Sharma, G.N.; Dave, R.; Sanadya, J.; Sharma, P.; Sharma, K.K. Various types and management of breast cancer: An overview. J. Adv. Pharm. Technol. Res. 2010, 1, 109–126. [Google Scholar] [PubMed]
- Sun, Y.S.; Zhao, Z.; Yang, Z.N.; Xu, F.; Lu, H.J.; Zhu, Z.Y.; Shi, W.; Jiang, J.; Yao, P.P.; Zhu, H.P. Risk Factors and Preventions of Breast Cancer. Int. J. Biol. Sci. 2017, 13, 1387–1397. [Google Scholar] [CrossRef] [Green Version]
- Arribas, J.; Baselga, J.; Pedersen, K.; Parra-Palau, J.L. p95HER2 and Breast Cancer. Cancer Res. 2011, 71, 1515–1519. [Google Scholar] [CrossRef] [Green Version]
- Waks, A.G.; Winer, E.P. Breast Cancer Treatment: A Review. JAMA 2019, 321, 288–300. [Google Scholar] [CrossRef]
- Sgrignani, J.; Cavalli, A.; Colombo, G.; Magistrato, A. Enzymatic and inhibition mechanism of human aromatase (CYP19A1) enzyme. A computational perspective from QM/MM and classical molecular dynamics simulations. Mini Rev. Med. Chem. 2016, 16, 1112–1124. [Google Scholar] [CrossRef]
- Santen, R.J.; Brodie, H.; Simpson, E.R.; Siiteri, P.K.; Brodie, A. History of Aromatase: Saga of an Important Biological Mediator and Therapeutic Target. Endocr. Rev. 2009, 30, 343–375. [Google Scholar] [CrossRef]
- Brown, K.A.; Iyengar, N.M.; Zhou, X.K.; Gucalp, A.; Subbaramaiah, K.; Wang, H.; Giri, D.D.; Morrow, M.; Falcone, D.J.; Wendel, N.K.; et al. Menopause Is a Determinant of Breast Aromatase Expression and Its Associations With BMI, Inflammation, and Systemic Markers. J. Clin. Endocrinol. Metab. 2017, 102, 1692–1701. [Google Scholar] [CrossRef] [Green Version]
- Tüzüner, M.B.; Öztürk, T.; Eronat, A.P.; Seyhan, F.; Kısakesen, H.İ.; Calay, Z.; İlvan, Ş.; Turna, H.; Yılmaz-Aydoğan, H.; Bermek, H.; et al. Evaluation of Local CYP17A1 and CYP19A1 Expression Levels as Prognostic Factors in Postmenopausal Invasive Ductal Breast Cancer Cases. Biochem. Genet. 2016, 54, 784–802. [Google Scholar] [CrossRef]
- Friesenhengst, A.; Pribitzer-Winner, T.; Miedl, H.; Pröstling, K.; Schreiber, M. Elevated Aromatase (CYP19A1) Expression Is Associated with a Poor Survival of Patients with Estrogen Receptor Positive Breast Cancer. Horm. Cancer 2018, 9, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Yager, J.D. Endogenous estrogens as carcinogens through metabolic activation. J. Natl. Cancer Inst. Monogr. 2000, 27, 67–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavalieri, E.; Frenkel, K.; Liehr, J.G.; Rogan, E.; Roy, D. Estrogens as endogenous genotoxic agents—DNA adducts and mutations. J. Natl. Cancer Inst. Monogr. 2000, 2000, 75–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Group, E.B.C.T.C. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: An overview of the randomised trials. Lancet 2005, 365, 1687–1717. [Google Scholar]
- Augusto, T.V.; Correia-da-Silva, G.; Rodrigues, C.M.P.; Teixeira, N.; Amaral, C. Acquired resistance to aromatase inhibitors: Where we stand! Endocr. Relat. Cancer 2018, 25, R283–R301. [Google Scholar] [CrossRef] [Green Version]
- Pistelli, M.; Della Mora, A.; Ballatore, Z.; Berardi, R. Aromatase Inhibitors in Premenopausal Women with Breast Cancer: The State of the Art and Future Prospects. Curr. Oncol. 2018, 25, e168–e175. [Google Scholar] [CrossRef] [Green Version]
- Khosrow-Khavar, F.; Filion, K.B.; Bouganim, N.; Suissa, S.; Azoulay, L. Aromatase Inhibitors and the Risk of Cardiovascular Outcomes in Women with Breast Cancer. Circulation 2020, 141, 549–559. [Google Scholar] [CrossRef]
- Acar Çevik, U.; Sağlık, B.N.; Osmaniye, D.; Levent, S.; Kaya Çavuşoğlu, B.; Karaduman, A.B.; Özkay, Y.; Kaplancıklı, Z.A. Synthesis and docking study of benzimidazole–triazolothiadiazine hybrids as aromatase inhibitors. Archiv. Pharm. 2020, 353, e2000008. [Google Scholar] [CrossRef]
- Giampietro, L.; Gallorini, M.; Gambacorta, N.; Ammazzalorso, A.; De Filippis, B.; Della Valle, A.; Fantacuzzi, M.; Maccallini, C.; Mollica, A.; Cataldi, A.; et al. Synthesis, structure-activity relationships and molecular docking studies of phenyldiazenyl sulfonamides as aromatase inhibitors. Eur. J. Med. Chem. 2021, 224, 113737. [Google Scholar] [CrossRef]
- Pingaew, R.; Mandi, P.; Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, molecular docking, and QSAR study of sulfonamide-based indoles as aromatase inhibitors. Eur. J. Med. Chem. 2018, 143, 1604–1615. [Google Scholar] [CrossRef]
- Fantacuzzi, M.; De Filippis, B.; Gallorini, M.; Ammazzalorso, A.; Giampietro, L.; Maccallini, C.; Aturki, Z.; Donati, E.; Ibrahim, R.S.; Shawky, E.; et al. Synthesis, biological evaluation, and docking study of indole aryl sulfonamides as aromatase inhibitors. Eur. J. Med. Chem. 2020, 185, 111815. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Staveness, D.; Ryckbosch, S.M.; Axtman, A.D.; Loy, B.A.; Barnes, A.B.; Pande, V.S.; Schaefer, J.; Wender, P.A.; Cegelski, L. REDOR NMR reveals multiple conformers for a protein kinase C ligand in a membrane environment. ACS Cent. Sci. 2018, 4, 89–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Ziemba, B.P.; Falke, J.J.; Voth, G.A. Interactions of protein kinase C-α C1A and C1B domains with membranes: A combined computational and experimental study. J. Am. Chem. Soc. 2014, 136, 11757–11766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, J.; Rahman, G.M. C1 domains: Structure and ligand-binding properties. Chem. Rev. 2014, 114, 12108–12131. [Google Scholar] [CrossRef]
- Ezzanad, A.; Gómez-Oliva, R.; Escobar-Montaño, F.; Díez-Salguero, M.; Geribaldi-Doldan, N.; Dominguez-Garcia, S.; Botubol-Ares, J.M.; Reyes, C.d.l.; Durán-Patrón, R.; Nunez-Abades, P. Phorbol Diesters and 12-Deoxy-16-hydroxyphorbol 13, 16-Diesters Induce TGFα Release and Adult Mouse Neurogenesis. J. Med. Chem. 2021, 64, 6070–6084. [Google Scholar] [CrossRef]
- Ghosh, D.; Egbuta, C.; Lo, J. Testosterone complex and non-steroidal ligands of human aromatase. J. Steroid Biochem. Mol. Biol. 2018, 181, 11–19. [Google Scholar] [CrossRef]
- Vangone, A.; Schaarschmidt, J.; Koukos, P.; Geng, C.; Citro, N.; Trellet, M.E.; Xue, L.C.; Bonvin, A.M.J.J. Large-scale prediction of binding affinity in protein–small ligand complexes: The PRODIGY-LIG web server. Bioinformatics 2019, 35, 1585–1587. [Google Scholar] [CrossRef] [Green Version]
- Kurkcuoglu, Z.; Koukos, P.I.; Citro, N.; Trellet, M.E.; Rodrigues, J.; Moreira, I.S.; Roel-Touris, J.; Melquiond, A.S.J.; Geng, C.; Schaarschmidt, J. Performance of HADDOCK and a simple contact-based protein–ligand binding affinity predictor in the D3R Grand Challenge 2. J. Comput. Aided Mol. Des. 2018, 32, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Stroganov, O.V.; Novikov, F.N.; Stroylov, V.S.; Kulkov, V.; Chilov, G.G. Lead Finder: An Approach to Improve Accuracy of Protein−Ligand Docking, Binding Energy Estimation, and Virtual Screening. J. Chem. Inf. Model. 2008, 48, 2371–2385. [Google Scholar] [CrossRef]
- Novikov, F.N.; Stroylov, V.S.; Zeifman, A.A.; Stroganov, O.V.; Kulkov, V.; Chilov, G.G. Lead Finder docking and virtual screening evaluation with Astex and DUD test sets. J. Comput. Aided Mol. Des. 2012, 26, 725–735. [Google Scholar] [CrossRef]
- Rampogu, S.; Son, M.; Park, C.; Kim, H.H.; Suh, J.K.; Lee, K.W. Sulfonanilide Derivatives in Identifying Novel Aromatase Inhibitors by Applying Docking, Virtual Screening, and MD Simulations Studies. Biomed. Res. Int. 2017, 2017, 2105610. [Google Scholar] [CrossRef] [PubMed]
- Suvannang, N.; Nantasenamat, C.; Isarankura-Na-Ayudhya, C.; Prachayasittikul, V. Molecular Docking of Aromatase Inhibitors. Molecules 2011, 16, 3597–3617. [Google Scholar] [CrossRef] [Green Version]
- Di Nardo, G.; Zhang, C.; Marcelli, A.G.; Gilardi, G. Molecular and Structural Evolution of Cytochrome P450 Aromatase. Int. J. Mol. Sci. 2021, 22, 631. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Li, H.; Yuan, Y.C.; Chen, S. Molecular characterization of aromatase. Ann. N. Y. Acad. Sci. 2009, 1155, 112–120. [Google Scholar] [CrossRef] [Green Version]
- Chan, H.J.; Petrossian, K.; Chen, S. Structural and functional characterization of aromatase, estrogen receptor, and their genes in endocrine-responsive and -resistant breast cancer cells. J. Steroid. Biochem. Mol. Biol. 2016, 161, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Parks, C.; Gaieb, Z.; Amaro, R.E. An Analysis of Proteochemometric and Conformal Prediction Machine Learning Protein-Ligand Binding Affinity Models. Front. Mol. Biosci. 2020, 7, 93. [Google Scholar] [CrossRef]
- Hsu, K.C.; Chen, Y.F.; Yang, J.M. Binding Affinity Analysis of Protein-Ligand Complexes. In Proceedings of the 2008 2nd International Conference on Bioinformatics and Biomedical Engineering, Athens, Greece, 16–18 May 2008; pp. 167–171. [Google Scholar]
- Prabaharan, M. 7-Characterization of tissue scaffolds drug release profiles. In Characterisation and Design of Tissue Scaffolds; Tomlins, P., Ed.; Woodhead Publishing: Thorston, UK, 2016; pp. 149–168. [Google Scholar]
- Odoemelam, C.S.; Hunter, E.; Simms, J.; Ahmad, Z.; Chang, M.-W.; Percival, B.; Williams, I.H.; Molinari, M.; Kamerlin, S.C.; Wilson, P.B. In Silico Ligand Docking Approaches to Characterise the Binding of Known Allosteric Modulators to the Glucagon-Like Peptide 1 Receptor and Prediction of ADME/Tox Properties. Appl. Biosci. 2022, 1, 143–162. [Google Scholar] [CrossRef]
- Tarvainen, I.; Zimmermann, T.; Heinonen, P.; Jäntti, M.H.; Yli-Kauhaluoma, J.; Talman, V.; Franzyk, H.; Tuominen, R.K.; Christensen, S.B. Missing Selectivity of Targeted 4β-Phorbol Prodrugs Expected to be Potential Chemotherapeutics. ACS Med. Chem. Lett. 2020, 11, 671–677. [Google Scholar] [CrossRef]
- Tsai, J.-Y.; Rédei, D.; Forgo, P.; Li, Y.; Vasas, A.; Hohmann, J.; Wu, C.-C. Isolation of Phorbol Esters from Euphorbia grandicornis and Evaluation of Protein Kinase C- and Human Platelet-Activating Effects of Euphorbiaceae Diterpenes. J. Nat. Prod. 2016, 79, 2658–2666. [Google Scholar] [CrossRef]
- Neves Cruz, J.; da Costa, K.S.; de Carvalho, T.A.A.; de Alencar, N.A.N. Measuring the structural impact of mutations on cytochrome P450 21A2, the major steroid 21-hydroxylase related to congenital adrenal hyperplasia. J. Biomol. Struct. Dyn. 2020, 38, 1425–1434. [Google Scholar] [CrossRef]
- Fatima, A.; Holien, J.K.; Tiwari, C.; Parker, M.W.; Rodgers, R.J.; Martin, L.L. Sequence comparisons of cytochrome P450 aromatases from Australian animals predict differences in enzymatic activity and/or efficiency†. Biol. Reprod. 2020, 102, 1261–1269. [Google Scholar] [CrossRef] [PubMed]
Compound | dG (Kcal/mol) | Binding Affinity ΔGnoelec (Kcal/mol) |
---|---|---|
P-12,13-diAcPh | −13.993 | −13.7 |
P-12,13-diiBu | −12.114 | −11.5 |
P-12AcPh-13iBu | −12.944 | −12.9 |
P-12Ang-13iBu | −12.172 | −11.8 |
P-20Ac-12AcPh-13iBu | −13.379 | −13.0 |
P-20Ac-12Ang-13iBu | −12.686 | −12.3 |
Anastrozole | −7.301 | −8.4 |
Letrozole | −7.909 | −8.2 |
Exemestane | −8.338 | −10.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odoemelam, C.S.; Hunter, E.; Eberl, D.; Busi, B.; Ahmad, Z.; White, S.; Wilson, P.B. The Role of Phorbol Diesters in Mediating Human Placental Aromatase Cytochrome P450 Activity. Appl. Biosci. 2022, 1, 279-288. https://doi.org/10.3390/applbiosci1030017
Odoemelam CS, Hunter E, Eberl D, Busi B, Ahmad Z, White S, Wilson PB. The Role of Phorbol Diesters in Mediating Human Placental Aromatase Cytochrome P450 Activity. Applied Biosciences. 2022; 1(3):279-288. https://doi.org/10.3390/applbiosci1030017
Chicago/Turabian StyleOdoemelam, Chiemela S., Elena Hunter, Daniela Eberl, Baptiste Busi, Zeeshan Ahmad, Samuel White, and Philippe B. Wilson. 2022. "The Role of Phorbol Diesters in Mediating Human Placental Aromatase Cytochrome P450 Activity" Applied Biosciences 1, no. 3: 279-288. https://doi.org/10.3390/applbiosci1030017
APA StyleOdoemelam, C. S., Hunter, E., Eberl, D., Busi, B., Ahmad, Z., White, S., & Wilson, P. B. (2022). The Role of Phorbol Diesters in Mediating Human Placental Aromatase Cytochrome P450 Activity. Applied Biosciences, 1(3), 279-288. https://doi.org/10.3390/applbiosci1030017