Patellar Tendon Thermographic Reference Values in Healthy People: A Systematic Review
Abstract
:1. Introduction
2. Method
2.1. Study Design and Documentary Resources
2.2. Search Strategy
2.3. Study Selection Process
2.4. Data Extraction
2.5. Risk of Bias and Evidence Quality
3. Results
3.1. Process of Identification and Selection of Studies
3.2. Protocols and Main Study Characteristics
3.3. Quality of Evidence and Risk of Bias in Included Studies
3.3.1. Quality of Evidence (TISEM Scale)
3.3.2. Risk of Bias (QUADAS-2 Scale)
4. Discussion
5. Study Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaux, J.F.; Forthomme, B.; Goff, C.L.; Crielaard, J.M.; Croisier, J.L. Current opinions on tendinopathy. J. Sports Sci. Med. 2011, 10, 238–253. [Google Scholar] [PubMed]
- Verdejo Herrero, A. Tendinopatía: Una visión actua. NPunto 2021, 4, 4–21. [Google Scholar]
- Nourissat, G.; Berenbaum, F.; Duprez, D. Tendon injury: From biology to tendon repair. Nat. Rev. Rheumatol. 2015, 11, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Roetert, E.P.; Brody, H.; Dillman, C.J.; Groppel, J.L.; Schultheis, J.M. The biomechanics of tennis elbow: An integrated approach. Clin. Sports Med. 1995, 14, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Gerr, F.; Letz, R.; Landrigan, P.J. Upper-extremity musculoskeletal disorders of occupational origin. Annu. Rev. Public Health 1991, 12, 543–566. [Google Scholar] [CrossRef]
- Warden, S.J.; Kiss, Z.S.; Malara, F.A.; Ooi, A.B.T.; Cook, J.L.; Crossley, K.M. Comparative Accuracy of Magnetic Resonance Imaging and Ultrasonography in Confirming Clinically Diagnosed Patellar Tendinopathy. Am. J. Sports Med. 2007, 35, 427–436. [Google Scholar] [CrossRef]
- Maffulli, N.; Nilsson Helander, K.; Migliorini, F. Tendon appearance at imaging may be altered, but it may not indicate pathology. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 1625–1628. [Google Scholar] [CrossRef]
- Rio, E.; Moseley, L.; Purdam, C.; Samiric, T.; Kidgell, D.; Pearce, A.J.; Jaberzadeh, S.; Cook, J. The pain of tendinopathy: Physiological or pathophysiological? Sports Med. 2014, 44, 9–23. [Google Scholar] [CrossRef]
- Gatz, M.; Bode, D.; Betsch, M.; Quack, V.; Tingart, M.; Kuhl, C.; Schrading, S.; Dirrichs, T. Multimodal Ultrasound Versus MRI for the Diagnosis and Monitoring of Achilles Tendinopathy: A Prospective Longitudinal Study. Orthop. J. Sports Med. 2021, 9, 232596712106826. [Google Scholar] [CrossRef]
- Lombardi, A.; Ashir, A.; Gorbachova, T.; Taljanovic, M.S.; Chang, E.Y. Magnetic resonance imaging of the elbow. Pol. J. Radiol. 2020, 85, e440–e460. [Google Scholar] [CrossRef]
- Docking, S.I.; Ooi, C.C.; Connell, D. Tendinopathy: Is Imaging Telling Us the Entire Story? J. Orthop. Sports Phys. Ther. 2015, 45, 842–852. [Google Scholar] [CrossRef]
- Ring, E.F. Quantitative thermal imaging. Clin. Phys. Physiol. Meas. 1990, 11 (Suppl. SA), 87–95. [Google Scholar] [CrossRef] [PubMed]
- de Lacerda, A.P.D.; de Andrade, P.R.; Kamonseki, D.H.; Parizotto, N.A.; da Silva, A.S.A.; de Medeiros, L.B.; de Almeida Ferreira, J.J. Accuracy of infrared thermography in detecting tendinopathy: A systematic review with meta-analysis. Phys. Ther. Sport 2022, 58, 117–125. [Google Scholar] [CrossRef]
- Ramirez-GarciaLuna, J.L.; Bartlett, R.; Arriaga-Caballero, J.E.; Fraser, R.D.J.; Saiko, G. Infrared Thermography in Wound Care, Surgery, and Sports Medicine: A Review. Front. Physiol. 2022, 13, 838528. [Google Scholar] [CrossRef]
- Ammer, K.; Ring, E.F.J. The History of Thermal Imaging. In The Thermal Image in Medicine and Biology; Uhlen-Verlag: Vienna, Austria, 1995; pp. 13–20. [Google Scholar]
- Uematsu, S.; Edwin, D.H.; Jankel, W.R.; Kozikowski, J.; Trattner, M. Quantification of thermal asymmetry. Part 1: Normal values and reproducibility. J. Neurosurg. 1988, 69, 552–555. [Google Scholar] [CrossRef] [PubMed]
- Buzanello, M.R.; Moro, A.R.P. Slaughterhouse workers exposed to cold: Proposal of reference thermography values for hands. Work. Read. Mass. 2012, 41 (Suppl. S1), 2876–2881. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Son, S.; Yoo, B.R.; Youk, T.M. Reference Standard for Digital Infrared Thermography of the Surface Temperature of the Lower Limbs. Bioengineering 2023, 10, 283. [Google Scholar] [CrossRef]
- Son, S.; Yoo, B.R.; Zhang, H.Y. Reference Standards for Digital Infrared Thermography Measuring Surface Temperature of the Upper Limbs. Bioengineering 2023, 10, 671. [Google Scholar] [CrossRef] [PubMed]
- Romanò, C.L.; D’Anchise, R.; Calamita, M.; Manzi, G.; Romanò, D.; Sansone, V. Value of digital telethermography for the diagnosis of septic knee prosthesis: A prospective cohort study. BMC Musculoskelet. Disord. 2013, 14, 7. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Santos, C.M.D.C.; Pimenta, C.A.D.M.; Nobre, M.R.C. The PICO strategy for the research question construction and evidence search. Rev. Lat. Am. Enferm. 2007, 15, 508–511. [Google Scholar] [CrossRef] [PubMed]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed]
- Moreira, D.G.; Costello, J.T.; Brito, C.J.; Adamczyk, J.G.; Ammer, K.; Bach, A.J.; Costa, C.M.; Eglin, C.; Fernandes, A.A.; Fernández-Cuevas, I.; et al. Thermographic imaging in sports and exercise medicine: A Delphi study and consensus statement on the measurement of human skin temperature. J. Therm. Biol. 2017, 69, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Whiting, P.F.; Rutjes, A.W.S.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.G.; Sterne, J.A.C.; Bossuyt, P.M.M.; QUADAS-2 Group. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Ammer, K. Methods of Scoring the TISEM-Checklist with an example of application. Thermol. Int. 2019, 29, 127. [Google Scholar]
- Cabizosu, A.; Marín-Pagán, C.; Martínez-Serrano, A.; Alcaraz, P.E.; Martínez-Noguera, F.J. Myotendinous Thermoregulation in National Level Sprinters after a Unilateral Fatigue Acute Bout—A Descriptive Study. Sensors 2023, 23, 9330. [Google Scholar] [CrossRef]
- Molina-Payá, F.J.; Ríos-Díaz, J.; Carrasco-Martínez, F.; Martínez-Payá, J.J. Infrared Thermography, Intratendon Vascular Resistance, and Echotexture in Athletes with Patellar Tendinopathy: A Cross-Sectional Study. Ultrason. Imaging 2023, 45, 47–61. [Google Scholar] [CrossRef]
- Liu, L.; Brown, F.; Pierce, H.; Wilson, S.; Gisselman, A.S.; Tumilty, S. Corrigendum to ‘Thermal profiles over the Patella tendon in a cohort of non-injured collegiate athletes over the course of a cross-country season’ [Physical Therapy in Sport 44 (2020) 47–52]. Phys. Ther. Sport 2021, 49, 122. [Google Scholar] [CrossRef]
- Brandl, A.; Egner, C.; Reisser, U.; Lingenfelder, C.; Schleip, R. Influence of high-energy laser therapy to the patellar tendon on its ligamentous microcirculation: An experimental intervention study. PLoS ONE 2023, 18, e0275883. [Google Scholar] [CrossRef]
- Sanz-López, F.; Martínez-Amat, A.; Hita-Contreras, F.; Valero-Campo, C.; Berzosa, C. Thermographic Assessment of Eccentric Overload Training Within Three Days of a Running Session. J. Strength Cond. Res. 2016, 30, 504–511. [Google Scholar] [CrossRef]
- Cuevas-Cervera, M.; Aguilar-Nuñez, D.; Aguilar-García, M.; García-Ríos, M.C.; González-Muñoz, A.; Navarro-Ledesma, S. Patellar Tendon Elasticity and Temperature Following after a 448 Kilohertz Radiofrequency Intervention on Active Healthy Subjects: An Open Controlled Clinical Trial. Diagnostics 2023, 13, 2976. [Google Scholar] [CrossRef] [PubMed]
- Corral-Pérez, J.; Martinez-Tellez, B.; Velázquez-Díaz, D.; Ponce-Gonzalez, J.G.; Carbonell-Baeza, A.; Jiménez-Pavón, D. Thermal resting pattern and acute skin temperature response to exercise in older adults: Role of cardiorespiratory fitness. J. Therm. Biol. 2023, 117, 103678. [Google Scholar] [CrossRef] [PubMed]
- Reis, H.H.T.; Brito, C.J.; Sillero-Quintana, M.; da Silva, A.G.; Fernández-Cuevas, I.; Cerqueira, M.S.; Werneck, F.Z.; Marins, J.C.B. Can the body mass index influence the skin temperature of adolescents assessed by infrared thermography? J. Therm. Biol. 2023, 111, 103424. [Google Scholar] [CrossRef] [PubMed]
- Reis, H.H.T.; Brito, C.J.; Sillero-Quintana, M.; Silva, A.G.; Fernández-Cuevas, I.; Cerqueira, M.S.; Werneck, F.Z.; Marins, J.C.B. Can Adipose Tissue Influence the Evaluation of Thermographic Images in Adolescents? Int. J. Environ. Res. Public Health 2023, 20, 4405. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.J.A.; Mendonça, L.C.S.; Nunes, L.A.O.; Andrade Filho, A.C.C.; Rebelatto, J.R.; Salvini, T.F. Exercise-Associated Thermographic Changes in Young and Elderly Subjects. Ann. Biomed. Eng. 2008, 36, 1420–1427. [Google Scholar] [CrossRef]
- Švaić, V.; Rađenović, O.; Jurak, I. Influence of knee skinfold thickness on assessing knee temperature by infrared thermography. Thermol. Int. 2023, 33, 67–74. [Google Scholar]
- Neves, E.B.; Moreira, T.R.; Lemos, R.J.; Vilaça-Alves, J.; Rosa, C.; Reis, V.M. The influence of subcutaneous fat in the skin temperature variation rate during exercise. Res. Biomed. Eng. 2015, 31, 307–312. [Google Scholar] [CrossRef]
- Neves, E.B.; Salamunes, A.C.C.; de Oliveira, R.M.; Stadnik, A.M.W. Effect of body fat and gender on body temperature distribution. J. Therm. Biol. 2017, 70 Pt B, 1–8. [Google Scholar] [CrossRef]
- Marins, J.C.B.; Fernandes, A.A.; Cano, S.P.; Moreira, D.G.; da Silva, F.S.; Costa, C.M.A.; Fernandez-Cuevas, I.; Sillero-Quintana, M. Thermal body patterns for healthy Brazilian adults (male and female). J. Therm. Biol. 2014, 42, 1–8. [Google Scholar] [CrossRef]
- Jimenez-Perez, I.; Gil-Calvo, M.; Priego-Quesada, J.I.; Aparicio, I.; Pérez-Soriano, P.; Ortiz de Anda, R.M.C. Effect of prefabricated thermoformable foot orthoses on plantar surface temperature after running: A gender comparison. J. Therm. Biol. 2020, 91, 102612. [Google Scholar] [CrossRef]
- Atalay, Y.B.; Ünal, A.M.; Oğul, A.; Ercan, S.; Çetin, C. Patellar Tendon Üzerine Sıcak-Soğuk Uygulamalarının Tork-Zaman Parametrelerine Etkisi. Spor Hekim. Derg. 2018, 53, 152–159. [Google Scholar]
- Fernández-Cuevas, I.; Torres, G.; Sillero-Quintana, M.; Navandar, A. Thermographic assessment of skin response to strength training in young participants. J. Therm. Anal. Calorim. 2023, 148, 3407–3415. [Google Scholar] [CrossRef]
- Wolf, R.; Tüzün, B.; Tüzün, Y. Alcohol ingestion and the cutaneous vasculature. Clin. Dermatol. 1999, 17, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Gershon-Cohen, J.; Habennan, J.D. Thermography of Smoking. Arch. Environ. Health Int. J. 1968, 16, 637–641. [Google Scholar] [CrossRef]
- Collins, A.J.; Notarianni, L.J.; Ring, E.F.; Seed, M.P. Some observations on the pharmacology of ‘deep-heat’, a topical rubifacient. Ann. Rheum. Dis. 1984, 43, 411–415. [Google Scholar] [CrossRef]
- Da Rosa, S.E.; Neves, E.B.; Martinez, E.C.; Marson, R.A.; Reis, V.M. Subcutaneous and Visceral Fat: Relation with Brown Adipose Tissue Activation in Women. Sports Med. Int. Open 2024, 8, a21876974. [Google Scholar] [CrossRef]
- de Andrade Fernandes, A.; Amorim, P.R.D.S.; Brito, C.J.; de Moura, A.G.; Moreira, D.G.; Costa, C.M.A.; Sillero-Quintana, M.; Marins, J.C.B. Measuring skin temperature before, during and after exercise: A comparison of thermocouples and infrared thermography. Physiol. Meas. 2014, 35, 189. [Google Scholar] [CrossRef]
- Lubkowska, A.; Pluta, W. Infrared Thermography as a Non-Invasive Tool in Musculoskeletal Disease Rehabilitation—The Control Variables in Applicability—A Systematic Review. Appl. Sci. 2022, 12, 4302. [Google Scholar] [CrossRef]
- Majano, C.; García-Unanue, J.; Hernandez-Martin, A.; Sánchez-Sánchez, J.; Gallardo, L.; Felipe, J.L. Relationship between Repeated Sprint Ability, Countermovement Jump and Thermography in Elite Football Players. Sensors 2023, 23, 631. [Google Scholar] [CrossRef]
- Mazdeyasna, S.; Ghassemi, P.; Wang, Q. Best Practices for Body Temperature Measurement with Infrared Thermography: External Factors Affecting Accuracy. Sensors 2023, 23, 8011. [Google Scholar] [CrossRef]
- Salisbury, R.S.; Parr, G.; De Silva, M.; Hazleman, B.L.; Page-Thomas, D.P. Heat distribution over normal and abnormal joints: Thermal pattern and quantification. Ann. Rheum. Dis. 1983, 42, 494–499. [Google Scholar] [CrossRef] [PubMed]
- Ghahramani, A.; Castro, G.; Becerik-Gerber, B.; Yu, X. Infrared thermography of human face for monitoring thermoregulation performance and estimating personal thermal comfort. Build. Environ. 2016, 109, 1–11. [Google Scholar] [CrossRef]
- Albuquerque, N.F.; Lopes, B.S. Musculoskeletal applications of infrared thermography on back and neck syndromes: A systematic review. Eur. J. Phys. Rehabil. Med. 2021, 57, 386–396. [Google Scholar] [CrossRef]
- Marins, J.C.B.; Moreira, D.G.; Cano, S.P.; Quintana, M.S.; Soares, D.D.; de Andrade Fernandes, A.; da Silva, F.S.; Costa, C.M.A.; Amorim, P.R.D.S. Time required to stabilize thermographic images at rest. Infrared Phys. Technol. 2014, 65, 30–35. [Google Scholar] [CrossRef]
- Costa, C.M.A.; Sillero-Quintana, M.; Cano, S.P.; Moreira, D.G.; Brito, C.J.; Fernandes, A.A.; Pussieldi, G.A.; Marins, J.C.B. Daily oscillations of skin temperature in military personnel using thermography. BMJ Mil. Health 2016, 162, 335–342. [Google Scholar] [CrossRef]
- Chudecka, M.; Lubkowska, A. The use of thermal imaging to evaluate body temperature changes of athletes during training and a study on the impact of physiological and morphological factors on skin temperature. Hum. Mov. 2012, 13, 33–39. [Google Scholar] [CrossRef]
- Ring, E.; Ammer, K. The Technique of Infra red Imaging in Medicine. Thermol. Int. 2000, 10, 7–14. [Google Scholar]
- Molina-Payá, J.; Ríos-Díaz, J.; Martínez-Payá, J. Inter and intraexaminer reliability of a new method of infrared thermography analysis of patellar tendon. Quant. InfraRed Thermogr. J. 2021, 18, 127–139. [Google Scholar] [CrossRef]
- Selfe, J.; Hardaker, N.; Thewlis, D.; Karki, A. An accurate and reliable method of thermal data analysis in thermal imaging of the anterior knee for use in cryotherapy research. Arch. Phys. Med. Rehabil. 2006, 87, 1630–1635. [Google Scholar] [CrossRef]
- Cronin, P.; Kelly, A.M.; Altaee, D.; Foerster, B.; Petrou, M.; Dwamena, B.A. How to Perform a Systematic Review and Meta-analysis of Diagnostic Imaging Studies. Acad. Radiol. 2018, 25, 573–593. [Google Scholar] [CrossRef]
Study Characteristics | Sample Characteristics | Thermographic Characteristics | Results Obteined | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Autor | Year | Study Type | Sample Country | Publication Country | Journal | Sample Size | M. Age | Sex | TISEM Scale | ΔT (°C) | Termograph |
Cabizosu et al. [27] | 2023 | Descriptive | Spain | Switzerland | Sensor | G1: 15 | 18–30 | M: 11 | YES: 1; NO: 3; UN:1 | R 31.68 ± 1.4 | Flir E75 (Wilsonville, USA) |
W: 4 | L 31.71 ± 1.2 | ||||||||||
Molina-Payá et al. [28] | 2023 | Transversal | Spain | USA | Sage Journals | G1: 26 (UT) | G1 = 30.1 ± 9.0 | M: 33 | YES: 10; NO: 5; UN: 0 | G1 healthy side: 31.10 ± 1.66 | OPTRIS PI 450 IRT (Berlin, Germany) |
G2: 27 | G2 = 23.3 ± 5.38 | W: 20 | G2: n/m | ||||||||
Liu et al. [29] | 2021 | Cohort | New Zealand | Netherlands | Physical Therapy in Sport | G1: 18 | 21.10 ± 2.13 | M: 12 | YES: 12; NO: 2; UN: 1 | 30.13 ± 1.51 | FLIR T450SC (Wilsonville, USA) |
W: 6 | |||||||||||
Brandl et al. [30] | 2023 | Quasi-experimental | Germany | USA | PLOS ONE | G1: 21 | 18–60 | M: 15 | YES: 6; NO: 9; UN: 0 | 28.2 ± 1.1 | Flir One (Wilsonville, USA) |
Sanz-López et al. [31] | 2016 | Controlled clinical trial | Spain | USA | Journal of Strength and Conditioning Research | G CONT: 10 | 22.72 ± 4.21 | M: 19 | YES: 8; NO: 7; UN: 0 | R = CONT 29.87 ± 0.75, EXC 30.92 ± 0.82. | FLIR Thermacam E60 (Boston, USA) |
G EXC: 9 | W: 0 | L = CONT 29.86 ± 0.71, EXC 30.83 ± 0.85 | |||||||||
Cuevas-Cervera et al. [32] | 2023 | Open clinical trial | Spain | Switzerland | Diagnostics | G1: 22 | 33.6 ± 10.6 | M: 14 | YES: 4; NO: 9; UN: 2 | LD: 32.1 ± 1.47 | X FLIR T420bx |
W: 8 | LND: 32.2 ± 1.70 |
Risk of Bias | Applicability Concerns | ||||||
---|---|---|---|---|---|---|---|
Patient Selection | Index Test | Reference Standard | Flow and Timing | Patient Selection | Index Test | Reference Standard | |
Cabizosu et al. 2023 [27] | |||||||
Molina-Payá et al. 2023 [28] | |||||||
Liu et al. 2021 [29] | ? | ||||||
Brandl et al. 2023 [30] | ? | ||||||
Sanz-López et al. 2016 [31] | ? | ||||||
Cuevas-Cervera et al. 2023 [32] | ? |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mevi, R.; Cabizosu, A. Patellar Tendon Thermographic Reference Values in Healthy People: A Systematic Review. Muscles 2024, 3, 349-363. https://doi.org/10.3390/muscles3040030
Mevi R, Cabizosu A. Patellar Tendon Thermographic Reference Values in Healthy People: A Systematic Review. Muscles. 2024; 3(4):349-363. https://doi.org/10.3390/muscles3040030
Chicago/Turabian StyleMevi, Roberto, and Alessio Cabizosu. 2024. "Patellar Tendon Thermographic Reference Values in Healthy People: A Systematic Review" Muscles 3, no. 4: 349-363. https://doi.org/10.3390/muscles3040030
APA StyleMevi, R., & Cabizosu, A. (2024). Patellar Tendon Thermographic Reference Values in Healthy People: A Systematic Review. Muscles, 3(4), 349-363. https://doi.org/10.3390/muscles3040030