Analyzing Respiratory Sinus Arrhythmia: A Markov Chain Approach with Hypertensive Patients and Arachnophobic Individuals
Abstract
:1. Introduction
1.1. Markov Chains
1.2. Cardiac Muscle
1.3. Respiratory Sinus Arrhythmia
1.4. On the Construction of a Markov Chain
2. Materials and Methods
2.1. Hypertensive Group
2.2. Normotensive Group
2.3. Arachnophobic Groups
2.4. Electrocardiogram (EKG) Analysis and Construction of the Transition Matrix
3. Results
Markov Chain
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RSA | Respiratory Sinus Arrhythmia |
BMI | body mass index |
SBP | systolic blood pressure |
DBP | diastolic blood pressure |
HR | heart rate |
EKG | electrocardiogram |
HRV | heart rate variability |
A | arrhythmic state. |
N | normal state |
A to N | probability of transitioning from an arrhythmic (A) state to a normal (N) state |
A to A | probability of transitioning from an arrhythmic (A) state to an arrhythmic (A) state |
N to A | probability of transitioning from a normal (N) state to an arrhythmic (A) state |
N to N | probability of transitioning from a normal (N) state to a normal (N) state |
References
- Simpson, H.D.; Foster, E.; Ademi, Z.; Lawn, N.; Brodie, M.J.; Chen, Z.; Kwan, P. Markov modelling of treatment response in a 30-year cohort study of newly diagnosed epilepsy. Brain 2022, 145, 1326–1337. [Google Scholar] [CrossRef]
- Senaratne, H.; Kuhlmann, L.; Ellis, K.; Melvin, G.; Oviatt, S. A Multimodal Dataset and Evaluation for Feature Estimators of Temporal Phases of Anxiety. In Proceedings of the 2021 International Conference on Multimodal Interaction, ICMI ’21, New York, NY, USA, 18–22 October 2021; pp. 52–61. [Google Scholar] [CrossRef]
- Norris, J.R. Markov Chains; Cambridge Series in Statistical and Probabilistic Mathematics; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Schulz, S.; Adochiei, F.C.; Edu, I.R.; Schroeder, R.; Costin, H.; Bär, K.J.; Voss, A. Cardiovascular and cardiorespiratory coupling analyses: A review. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2013, 371, 20120191. [Google Scholar] [CrossRef]
- Hall, J.E. Guyton and Hall Textbook of Medical Physiology, Jordanian Edition E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Berne, R.M. Cardiovascular physiology. Annu. Rev. Physiol. 1981, 43, 357–358. [Google Scholar] [CrossRef]
- Katz, A.M. Physiology of the Heart; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2010. [Google Scholar]
- Braunwald, E.; Zipes, D.; Libby, P. Heart Disease: A Textbook of Cardiovascular Medicine; Number v. 2 in Heart Disease: A Textbook of Cardiovascular Medicine; W. B. Saunders Company: Philadelphia, PA, USA, 1997. [Google Scholar]
- Grossman, P.; Taylor, E.W. Toward understanding respiratory sinus arrhythmia: Relations to cardiac vagal tone, evolution and biobehavioral functions. Biol. Psychol. 2007, 74, 263–285. [Google Scholar] [CrossRef]
- Berntson, G.G.; Cacioppo, J.T.; Quigley, K.S. Respiratory sinus arrhythmia: Autonomic origins, physiological mechanisms, and psychophysiological implications. Psychophysiology 1993, 30, 183–196. [Google Scholar] [CrossRef]
- Porges, S.W. The polyvagal perspective. Biol. Psychol. 2007, 74, 116–143. [Google Scholar] [CrossRef]
- Laborde, S.; Mosley, E.; Thayer, J.F. Heart rate variability and cardiac vagal tone in psychophysiological research–recommendations for experiment planning, data analysis, and data reporting. Front. Psychol. 2017, 8, 238557. [Google Scholar] [CrossRef]
- Billman, G.E. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front. Physiol. 2013, 4, 45733. [Google Scholar] [CrossRef]
- Ross, S.M. Introduction to Probability Models; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Rojas-Vite, G.; García-Muñoz, V.; Rodríguez-Torres, E.E.; Mateos-Salgado, E.L. Linear and nonlinear analysis of heart rate variability in essential hypertensive patients. Eur. Phys. J. Spec. Top. 2022, 231, 859–867. [Google Scholar] [CrossRef]
- Ihmig, F.R.; Gogeascoechea, A.; Schäfer, S.; Lass-Hennemann, J.; Michael, T. Electrocardiogram, Skin Conductance and Respiration from Spider-Fearful Individuals Watching Spider Video Clips. 2020. Available online: https://physionet.org/content/ecg-spider-clip/1.0.0/ (accessed on 2 May 2024).
- Shaffer, F.; Ginsberg, J.P. An overview of heart rate variability metrics and norms. Front. Public Health 2017, 5, 290215. [Google Scholar] [CrossRef]
- Rinck, M.; Bundschuh, S.; Engler, S.; Muller, A.; Wissmann, J.; Ellwart, T.; Becker, E.S. Reliability and validity of German versions of three instruments measuring fear of spiders. In Zeitschrift für Psychologische Diagnostik und Differentielle Psychologie; Hogrefe: Göttingen, Germany, 2002; pp. 141–149. [Google Scholar] [CrossRef]
- Szymanski, J.; O’Donohue, W. Fear of Spiders Questionnaire. J. Behav. Ther. Exp. Psychiatry 1995, 26, 31–34. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 31–34. [Google Scholar] [CrossRef]
- Gräfe, K.; Zipfel, S.; Herzog, W.; Löwe, B. Screening psychischer Störungen mit dem “Gesundheitsfragebogen für Patienten (PHQ-D)”. Diagnostica 2004, 50, 171–181. [Google Scholar] [CrossRef]
- Hautzinger, M.; Keller, F.; Kühner, C.; Beck, A.T.; Steer, R.A.; Brown, G.K. Beck Depressions-Inventar: BDI-II; Pearson: Frankfurt am Main, Germany, 2009. [Google Scholar]
- Lehrer, P.M.; Vaschillo, E.; Vaschillo, B. Resonant Frequency Biofeedback Training to Increase Cardiac Variability: Rationale and Manual for Training. Appl. Psychophysiol. Biofeedback 2000, 25, 177–191. [Google Scholar] [CrossRef]
- Ihmig, F.R.; Neurohr-Parakenings, F.; Schäfer, S.K.; Lass-Hennemann, J.; Michael, T. On-line anxiety level detection from biosignals: Machine learning based on a randomized controlled trial with spider-fearful individuals. PLoS ONE 2020, 15, e0231517. [Google Scholar] [CrossRef]
- Tran, D.T.; Vo, H.T.; Nguyen, D.D.; Nguyen, Q.M.; Huynh, L.T.; Le, L.T.; Do, H.T.; Quan, T.T. A Predictive Model for ECG Signals Collected from Specialized IoT Devices using Deep Learning. In Proceedings of the 2018 5th NAFOSTED Conference on Information and Computer Science (NICS), Ho Chi Minh City, Vietnam, 23–24 November 2018; pp. 424–429. [Google Scholar] [CrossRef]
- Allen, J.J. Calculating metrics of cardiac chronotropy: A pragmatic overview. Psychophysiology 2002, 39. Available online: https://www.researchgate.net/publication/267971299_Calculating_Metrics_of_Cardiac_Chronotropy_A_Pragmatic_Overview (accessed on 2 May 2024).
- Allen, J.J.; Chambers, A.S.; Towers, D.N. The many metrics of cardiac chronotropy: A pragmatic primer and a brief comparison of metrics. Biol. Psychol. 2007, 74, 243–262. [Google Scholar] [CrossRef]
- Bonnemeier, H.; Wiegand, U.K.; Brandes, A.; Kluge, N.; Katus, H.A.; Richardt, G.; Potratz, J. Circadian profile of cardiac autonomic nervous modulation in healthy subjects: Differing effects of aging and gender on heart rate variability. J. Cardiovasc. Electrophysiol. 2003, 14, 791–799. [Google Scholar] [CrossRef]
- Sáez, P.; Herrera, C. Proposición de un método basado en cadenas de Markov para el pronóstico de fibrilaciones auriculares paroxísticas. Ingeniare. Rev. Chil. Ing. 2015, 23, 449–457. [Google Scholar] [CrossRef]
- Savorgnan, F.; Crouthamel, D.; Heroy, A.; Santerre, J.; Acosta, S. Markov model for detection of ECG instability prior to cardiac arrest in single-ventricle patients. J. Electrocardiol. 2023, 80, 106–110. [Google Scholar] [CrossRef]
- Gullett, N.; Zajkowska, Z.; Walsh, A.; Harper, R.; Mondelli, V. Heart rate variability (HRV) as a way to understand associations between the autonomic nervous system (ANS) and affective states: A critical review of the literature. Int. J. Psychophysiol. 2023, 192, 35–42. [Google Scholar] [CrossRef]
- Sevoz-Couche, C.; Laborde, S. Heart rate variability and slow-paced breathing:when coherence meets resonance. Neurosci. Biobehav. Rev. 2022, 135, 104576. [Google Scholar] [CrossRef]
- Piskorski, J.; Guzik, P. Filtering Poincaré plots. Comput. Methods Sci. Technol. 2005, 11, 39–48. [Google Scholar] [CrossRef]
- Tayel, M.B.; AlSaba, E.I. Poincaré plot for heart rate variability. Int. J. Biomed. Biol. Eng. 2015, 9, 708–711. [Google Scholar] [CrossRef]
- Lerma, C.; Infante, O.; Pérez-Grovas, H.; José, M.V. Poincaré plot indexes of heart rate variability capture dynamic adaptations after haemodialysis in chronic renal failure patients. Clin. Physiol. Funct. Imaging 2003, 23, 72–80. [Google Scholar] [CrossRef]
- Brennan, M.; Palaniswami, M.; Kamen, P. Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Trans. Biomed. Eng. 2001, 48, 1342–1347. [Google Scholar] [CrossRef]
- Karmakar, C.; Khandoker, A.H.; Gubbi, J.; Palaniswami, M. Novel feature for quantifying temporal variability of Poincaré plot: A case study. In Proceedings of the 2009 36th Annual Computers in Cardiology Conference (CinC), Park City, UT, USA, 13–16 September 2009. [Google Scholar]
- Dimitriev, D.A.; Saperova, E.V.; Dimitriev, A.D. State Anxiety and Nonlinear Dynamics of Heart Rate Variability in Students. PLoS ONE 2016, 11, e0146131. [Google Scholar] [CrossRef]
- Jelinek, H.F.; Md Imam, H.; Al-Aubaidy, H.; Khandoker, A.H. Association of cardiovascular risk using non-linear heart rate variability measures with the framingham risk score in a rural population. Front. Physiol. 2013, 4, 186. [Google Scholar] [CrossRef]
- Karmakar, C.K.; Khandoker, A.H.; Voss, A.; Palaniswami, M. Sensitivity of temporal heart rate variability in Poincaré plot to changes in parasympathetic nervous system activity. Biomed. Eng. Online 2011, 10, 17. [Google Scholar] [CrossRef]
Probability | p-Value | Mean | SD | ||
---|---|---|---|---|---|
With Techniques | Without Techniques | With Techniques | Without Techniques | ||
A to N | 0.000002 | 0.239 | 0.216 | 0.366 | 0.370 |
A to A | 0.000002 | 0.761 | 0.784 | 0.366 | 0.370 |
N to A | 0.000062 | 0.628 | 0.693 | 0.430 | 0.427 |
N to N | 0.000062 | 0.372 | 0.307 | 0.430 | 0.427 |
Probability | p-Value | Mean | SD | ||
---|---|---|---|---|---|
Normotensive | Hypertensive | Normotensive | Hypertensive | ||
A to N | 0.00065 | 0.570 | 0.409 | 0.438 | 0.478 |
A to A | 0.00065 | 0.430 | 0.591 | 0.438 | 0.478 |
N to A | 0.00009 | 0.342 | 0.589 | 0.408 | 0.481 |
N to N | 0.00009 | 0.658 | 0.411 | 0.408 | 0.481 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez-Torres, E.E.; Azpeitia-Cruz, M.F.; Escamilla-Muñoz, J.; Vázquez-Mendoza, I. Analyzing Respiratory Sinus Arrhythmia: A Markov Chain Approach with Hypertensive Patients and Arachnophobic Individuals. Muscles 2024, 3, 177-188. https://doi.org/10.3390/muscles3020016
Rodriguez-Torres EE, Azpeitia-Cruz MF, Escamilla-Muñoz J, Vázquez-Mendoza I. Analyzing Respiratory Sinus Arrhythmia: A Markov Chain Approach with Hypertensive Patients and Arachnophobic Individuals. Muscles. 2024; 3(2):177-188. https://doi.org/10.3390/muscles3020016
Chicago/Turabian StyleRodriguez-Torres, Erika Elizabeth, María Fernanda Azpeitia-Cruz, Jaqueline Escamilla-Muñoz, and Isaac Vázquez-Mendoza. 2024. "Analyzing Respiratory Sinus Arrhythmia: A Markov Chain Approach with Hypertensive Patients and Arachnophobic Individuals" Muscles 3, no. 2: 177-188. https://doi.org/10.3390/muscles3020016
APA StyleRodriguez-Torres, E. E., Azpeitia-Cruz, M. F., Escamilla-Muñoz, J., & Vázquez-Mendoza, I. (2024). Analyzing Respiratory Sinus Arrhythmia: A Markov Chain Approach with Hypertensive Patients and Arachnophobic Individuals. Muscles, 3(2), 177-188. https://doi.org/10.3390/muscles3020016