Acceleration of Composting by Addition of Clinker to Tea Leaf Compost
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Test Materials
2.2. Treatments and Compost Management
2.3. Measurement of Chemical Properties in Compost and Compost-Derived Wastewater
2.4. Determination of Compost Maturity
2.5. Statistical Analysis
3. Results
3.1. pH and EC of Tea Leaf Compost with Clinker
3.2. NH4+-N and NO3–-N Content in Tea Leaf Compost with Clinker
3.3. Nitrogen and Carbon Balance in Compost
3.4. COD in Compost Extracted by 16 h Hot Water Extraction
3.5. Komatsuna Juvenile Plant Test Using Compost Water Extract
4. Discussion
4.1. Effect of Clinker Addition on Composting Acceleration of Tea Leaf Compost
4.2. Effect of Clinker Addition on Compost Quality of Tea Leaf Compost
4.3. Nitrogen and Carbon Balance
4.4. Practical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sayara, T.; Basheer-Salimia, R.; Hawamde, F.; Sánchez, A. Recycling of organic wastes through composting: Process performance and compost application in agriculture. Agronomy 2020, 10, 1838. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, N.; Lin, Y.; Zhan, Y.; Ding, X.; Liu, Y.; Zhang, A.; Ding, G.; Xu, T.; Li, J. Recycling of nutrients from organic waste by advanced compost technology—A case study. Bioresour. Technol. 2021, 337, 125411. [Google Scholar] [CrossRef]
- Debnath, B.; Haldar, D.; Purkait, M.K. Potential and sustainable utilization of tea waste: A review on present status and future trends. J. Environ. Chem. Eng. 2021, 9, 106179. [Google Scholar] [CrossRef]
- Khayum, N.; Anbarasu, S.; Murugan, S. Biogas potential from spent tea waste: A laboratory scale investigation of co-digestion with cow manure. Energy 2018, 165, 760–768. [Google Scholar] [CrossRef]
- Khurshid, H.; Mustafa, M.R.U.; Rashid, U.; Isa, M.H.; Ho, Y.C.; Shah, M.M. Adsorptive removal of COD from produced water using tea waste biochar. Environ. Technol. Innov. 2021, 23, 101563. [Google Scholar] [CrossRef]
- Thanarasu, A.; Periyasamy, K.; Devaraj, K.; Periyaraman, P.; Palaniyandi, S.; Subramanian, S. Tea powder waste as a potential co-substrate for enhancing the methane production in anaerobic digestion of carbon-rich organic waste. J. Clean. Prod. 2018, 199, 651–658. [Google Scholar] [CrossRef]
- Ahsan, M.A.; Katla, S.K.; Islam, M.T.; Hernandez-Viezcas, J.A.; Martinez, L.M.; Díaz-Moreno, C.A.; Lopez, J.; Singamaneni, S.R.; Banuelos, J.; Gardea-Torresdey, J.G.; et al. Adsorptive removal of methylene blue, tetracycline and Cr(VI) from water using sulfonated tea waste. Environ. Technol. Innov. 2018, 11, 23–40. [Google Scholar] [CrossRef]
- He, X.; Li, J.; Meng, Q.; Guo, Z.; Zhang, H.; Liu, Y. Enhanced adsorption capacity of sulfadiazine on tea waste biochar from aqueous solutions by the two-step sintering method without corrosive activator. J. Environ. Chem. Eng. 2021, 9, 104898. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Y.; Xu, J.; Mei, Y.; Fan, S.; Xu, H. Effect of carbonization methods on the properties of tea waste biochars and their application in tetracycline removal from aqueous solutions. Chemosphere 2021, 267, 129283. [Google Scholar] [CrossRef]
- Patil, C.S.; Gunjal, D.B.; Naik, V.M.; Harale, N.S.; Jagadale, S.D.; Kadam, A.N.; Patil, P.S.; Kolekar, G.B.; Gore, A.H. Waste tea residue as a low cost adsorbent for removal of hydralazine hydrochloride pharmaceutical pollutant from aqueous media: An environmental remediation. J. Clean. Prod. 2019, 206, 407–418. [Google Scholar] [CrossRef]
- Daware, G.B.; Gogate, P.R. Removal of pyridine using ultrasound assisted and conventional batch adsorption based on tea waste residue as biosorbent. Environ. Technol. Innov. 2021, 21, 101292. [Google Scholar] [CrossRef]
- Inbaraj, B.S.; Sridhar, K.; Chen, B.H. Removal of polycyclic aromatic hydrocarbons from water by magnetic activated carbon nanocomposite from green tea waste. J. Hazard. Mater. 2021, 415, 125701. [Google Scholar] [CrossRef] [PubMed]
- Keerthanan, S.; Bhatnagar, A.; Mahatantila, K.; Jayasinghe, C.; Ok, Y.S.; Vithanage, M. Engineered tea-waste biochar for the removal of caffeine, a model compound in pharmaceuticals and personal care products (PPCPs), from aqueous media. Environ. Technol. Innov. 2020, 19, 100847. [Google Scholar] [CrossRef]
- Fan, S.; Tang, J.; Wang, Y.; Li, H.; Zhang, H.; Tang, J.; Wang, Z.; Li, X. Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: Kinetics, isotherm, thermodynamic and mechanism. J. Mol. Liq. 2016, 220, 432–441. [Google Scholar] [CrossRef]
- Jain, S.N.; Tamboli, S.R.; Sutar, D.S.; Jadhav, S.R.; Marathe, J.V.; Shaikh, A.A.; Prajapati, A.A. Batch and continuous studies for adsorption of anionic dye onto waste tea residue: Kinetic, equilibrium, breakthrough and reusability studies. J. Clean. Prod. 2020, 252, 119778. [Google Scholar] [CrossRef]
- Mu, Y.; Ma, H. NaOH-modified mesoporous biochar derived from tea residue for methylene Blue and Orange II removal. Chem. Eng. Res. Des. 2021, 167, 129–140. [Google Scholar] [CrossRef]
- Tuli, F.J.; Hossain, A.; Kibria, A.K.M.F.; Tareq, A.R.M.; Mamun, S.M.M.A.; Ullah, A.K.M.A. Removal of methylene blue from water by low-cost activated carbon prepared from tea waste: A study of adsorption isotherm and kinetics. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100354. [Google Scholar] [CrossRef]
- Joshi, S.; Kataria, N.; Garg, V.K.; Kadirvelu, K. Pb2+ and CD2+ recovery from water using residual tea waste and SiO2@TW nanocomposites. Chemosphere 2020, 257, 127277. [Google Scholar] [CrossRef]
- Pal, D.; Maiti, S.K. Abatement of cadmium (Cd) contamination in sediment using tea waste biochar through meso-microcosm study. J. Clean. Prod. 2019, 212, 986–996. [Google Scholar] [CrossRef]
- Wen, T.; Wang, J.; Li, X.; Huang, S.; Chen, Z.; Wang, S.; Hayat, T.; Alsaedi, A.; Wang, X. Production of a generic magnetic Fe3O4 nanoparticles decorated tea waste composites for highly efficient sorption of Cu(II) and Zn(II). J. Environ. Chem. Eng. 2017, 5, 3656–3666. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, C.; Yuan, Y.; Fan, M.; Zhang, D.; Wang, D.; Xu, Y. Selective, highly efficient extraction of Cr(III), Pb(II) and Fe(III) from complex water environment with a tea residue derived porous gel adsorbent. Bioresour. Technol. 2020, 311, 123520. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Yang, Z.; Huang, H.; Yang, F.; Zhu, L.; Han, D. Nitrogen fertilization in soil affects physiological characteristics and quality of green tea leaves. HortScience 2018, 53, 715–722. [Google Scholar] [CrossRef]
- Kondo, M.; Kita, K.; Yokota, H.O. Effects of tea leaf waste of green tea, oolong tea, and black tea addition on Sudan grass silage quality and in vitro gas production. J. Sci. Food Agric. 2004, 84, 721–727. [Google Scholar] [CrossRef]
- Iqbal Khan, M.A.I.; Ueno, K.; Horimoto, S.; Komai, F.; Tanaka, K.; Ono, Y. Evaluation of the physio-chemical and microbial properties of green tea waste-rice bran compost and the effect of the compost on spinach production. Plant Prod. Sci. 2007, 10, 391–399. [Google Scholar] [CrossRef]
- Gülser, C.; Pekşen, A. Using tea waste as a new casing material in mushroom (Agaricus bisporus (L.) Sing.) cultivation. Bioresour. Technol. 2003, 88, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.I.; Ueno, K.; Horimoto, S.; Komai, F.; Tanaka, K.; Ono, Y. Physicochemical, including spectroscopic, and biological analyses during composting of green tea waste and rice bran. Biol. Fertil. Soils 2009, 45, 305–313. [Google Scholar] [CrossRef]
- Maharjan, K.K.; Noppradit, P.; Techato, K.; Gyawali, S. Recycling of mixed food waste and tea waste through tub basin composting. Biomass Convers. Biorefin. 2023, 13, 15039–15049. [Google Scholar] [CrossRef]
- Yigitbasi, O.N.; Baysal, E.; Colak, M.; Toker, H.; Simsek, H.; Yilmaz, F. Cultivation of Agaricus bisporus on some compost formulas and locally available casing materials. Part II: Waste tea leaves based compost formulas and locally available casing materials. Afr. J. Biotechnol. 2007, 6, 2225–2230. [Google Scholar] [CrossRef]
- An, B.J.; Kwak, J.H.; Son, J.H.; Park, J.M.; Lee, J.Y.; Jo, C.; Byun, M.W. Biological and anti-microbial activity of irradiated green tea polyphenols. Food Chem. 2004, 88, 549–555. [Google Scholar] [CrossRef]
- Zhu, N. Effect of low initial C/N ratio on aerobic composting of swine manure with rice straw. Bioresour. Technol. 2007, 98, 9–13. [Google Scholar] [CrossRef]
- Winter, M.J.; Hyodo, M.; Wu, Y.; Yoshimoto, N.; Hasan, M.B.; Matsui, K. Influences of particle characteristic and compaction degree on the shear response of clinker ash. Eng. Geol. 2017, 230, 32–45. [Google Scholar] [CrossRef]
- Klõšeiko, J.; Ots, K.; Kuznetsova, T.; Pärn, H.; Mandre, M. Short-term responses of soil chemistry, needle macronutrients and tree growth to clinker dust and fertiliser in a stand of Scots pine. Environ. Monit. Assess. 2011, 181, 83–99. [Google Scholar] [CrossRef] [PubMed]
- Kubotera, H. Analysis of problems in certain soils of the Kyushu Okinawa region for suitable management. Soil Sci. Plant Nutr. 2020, 66, 15–20. [Google Scholar] [CrossRef]
- Al-dhawi, B.N.S.; Kutty, S.R.M.; Ghaleb, A.A.S.; Almahbashi, N.M.Y.; Saeed, A.A.H.; Al-Mekhlafi, A.B.A.; Alsaeedi, Y.A.A.; Jagaba, A.H. Pretreated palm oil clinker as an attached growth media for organic matter removal from synthetic domestic wastewater in a sequencing batch reactor. Case Stud. Chem. Environ. Eng. 2023, 7, 100294. [Google Scholar] [CrossRef]
- Okazawa, H.; Fujikawa, T. Nitrogen adsorption ability in clinker ash and utilization of nitrogen-adsorbed clinker ash to promote vegetation growth. Poljopr. i Sumar. 2014, 60, 15. [Google Scholar]
- Letshwenyo, M.W.; Lebogang, L. Assessment of roughing and slow sand filter modified with slag and clinker ash for removal of microorganisms from secondary effluent. Environ. Technol. 2020, 41, 3004–3015. [Google Scholar] [CrossRef]
- Mitsuno, M.; Tazaki, K.; Fyfe, W.S.; Powell, M.A.; Hart, B.; Daishng, S.; Li, S.R. Influence of coal ash on microorganisms and applicability of coal ash to remediate desertificated soil: In the case of desertificated land in Inner Mongolia of China. Clay Sci. 2001, 11, 503–515. [Google Scholar] [CrossRef]
- Minato, K.; Watanobe, K.; Tamura, T.; Abe, H. Utility of coal combustion clinker ash as a sub material in cattle manure composting. Bull. Hokkaido Animal Res. Cent. 2007, 26, 24–30. [Google Scholar]
- Uezono, I. Applicability of rapid analysis by 80 °C-16 h hot water extraction for estimating available nitrogen in upland soil in Japan. Jpn. J. Soil Sci. Plant Nutr. 2010, 81, 39–43. [Google Scholar]
- Kikuchi, Y.; Kakizaki, S.; Koizumi, R. Decomposition characteristics of various organic compounds in chemical oxygen demand measurement. Bunseki Kagaku 2007, 56, 857–862. [Google Scholar] [CrossRef]
- Selim, S.M.; Zayed, M.S.; Atta, H.M. Evaluation of phytotoxicity of compost during composting process. Nat. Sci. 2012, 10, 69–77. [Google Scholar]
- Riffaldi, R.; Levi-Minzi, R.; Pera, A.; de Bertoidi, M. Evaluation of compost maturity by means of chemical and microbial analyses. Waste Manag. Res. 1986, 4, 387–396. [Google Scholar] [CrossRef]
- Al-dhawi, B.N.S.; Kutty, S.R.M.; Baloo, L.; Almahbashi, N.M.Y.; Ghaleb, A.A.S.; Jagaba, A.H.; Kumar, V.; Saeed, A.A.H. Treatment of synthetic wastewater by using submerged attached growth media in continuous activated sludge reactor system. Int. J. Sustain. Build. Technol. Urban Dev. 2022, 13, 2–10. [Google Scholar] [CrossRef]
- Wong, J.W.C.; Fung, S.O.; Selvam, A. Coal fly ash and lime addition enhances the rate and efficiency of decomposition of food waste during composting. Bioresour. Technol. 2009, 100, 3324–3331. [Google Scholar] [CrossRef]
- Mohee, R.; Boojhawon, A.; Sewhoo, B.; Rungasamy, S.; Somaroo, G.D.; Mudhoo, A. Assessing the potential of coal ash and bagasse ash as inorganic amendments during composting of municipal solid wastes. J. Environ. Manag. 2015, 159, 209–217. [Google Scholar] [CrossRef]
- Muhammad, T.; Jiang, C.; Li, Y.; Manan, I.; Ma, C.; Geng, H.; Fatima, I.; Adnan, M. Impacts and mechanisms of coal fly ash on kitchen waste composting performance: The perspective of microbial community. Chemosphere 2023, 350, 141068. [Google Scholar] [CrossRef]
- Jarboui, R.; Dhouib, B.; Ammar, E. Effect of food waste compost (FWC) and its non-aerated fermented extract (NFCE) on seeds germination and plant growth. Open J. Soil Sci. 2021, 11, 122–138. [Google Scholar] [CrossRef]
- Pascual, J.A.; Ayuso, M.; Garcia, C.; Hernández, T. Characterization of urban wastes according to fertility and phytotoxicity parameters. Waste Manag. Res. 1997, 15, 103–112. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; Gonzálvez, J.; García, D.; Cegarra, J. Measuring detoxification and maturity in compost made from “alperujo”, the solid by-product of extracting olive oil by the two-phase centrifugation system. Chemosphere 2006, 64, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Tam, N.F.Y.; Tiquia, S. Assessing toxicity of spent pig litter using a seed germination technique. Resour. Conserv. Recycl. 1994, 11, 261–274. [Google Scholar] [CrossRef]
- Tiquia, S.M.; Tam, N.F.Y.; Hodgkiss, I.J. Effects of composting on phytotoxicity of spent pig-manure sawdust litter. Environ. Pollut. 1996, 93, 249–256. [Google Scholar] [CrossRef]
- Morikawa, C.K.; Saigusa, M. Recycling coffee and tea wastes to increase plant available Fe in alkaline soils. Plant Soil 2008, 304, 249–255. [Google Scholar] [CrossRef]
- Cheung, Y.H.; Wong, M.H.; Tam, N.F.Y. Root and shoot elongation as an assessment of heavy metal toxicity and ‘Zn equivalent value’ of edible crops. Hydrobiologia 1989, 188, 377–383. [Google Scholar] [CrossRef]
- Jiping, H.; Chengjian, Y. Dynamic adsorption and re-adsorption characteristics of dissolved organic matter on clinker. In Proceedings of the 2019 International Conference on Biology, Chemistry and Medical Engineering, Hefei, China, 29–30 June 2019; pp. 174–181. [Google Scholar]
- Al-dhawi, B.N.; Kutty, S.R.; Almahbashi, N.M.; Noor, A.; Jagaba, A.H. Organics removal from domestic wastewater utilizing palm oil clinker (POC) media in a submerged attached growth systems. Int. J. Civ. Eng. Technol. 2020, 11, 1–7. [Google Scholar]
- Zbytniewski, R.; Buszewski, B. Characterization of natural organic matter (NOM) derived from sewage sludge compost. Part 1: Chemical and spectroscopic properties. Bioresour. Technol. 2005, 96, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Jurado, M.M.; Suárez-Estrella, F.; Vargas-García, M.C.; López, M.J.; López-González, J.A.; Moreno, J. Evolution of enzymatic activities and carbon fractions throughout composting of plant waste. J. Environ. Manag. 2014, 133, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Sundberg, C.; Smårs, S.; Jönsson, H. Low pH as an inhibiting factor in the transition from mesophilic to thermophilic phase in composting. Bioresour. Technol. 2004, 95, 145–150. [Google Scholar] [CrossRef]
- Huang, G.F.; Wong, J.W.C.; Wu, Q.T.; Nagar, B.B. Effect of C/N on composting of pig manure with sawdust. Waste Manag. 2004, 24, 805–813. [Google Scholar] [CrossRef]
- Diaz, M.J.; Madejón, E.; López, F.; López, R.; Cabrera, F. Optimization of the rate vinasse/grape marc for co-composting process. Process Biochem. 2002, 37, 1143–1150. [Google Scholar] [CrossRef]
- Han, W.; Clarke, W.; Pratt, S. Composting of waste algae: A review. Waste Manag. 2014, 34, 1148–1155. [Google Scholar] [CrossRef]
- Chew, Y.Z.; Yap, Z.K.; Kutty, S.R.M.; Ghaleb, A.A.S.; Almahbashi, N.M.Y. Removal of ammonia by palm oil clinker (POC) as submerged fixed media in sequence batch reactor (SBR) mode. IOP Conf. Ser. Mater. Sci. Eng. 2020, 849, 012024. [Google Scholar] [CrossRef]
- Yamamoto, H.; Okazawa, H.; Ohtaka, Y.; Takeuchi, Y.; Murakami, Y. Fundamental study on nitrogen removal from paddy drainage using clinker ash. Int. J. Environ. Rural Dev. 2011, 2, 54–58. [Google Scholar]
- Iglesias Jiménez, E.; Pérez García, V. Composting of domestic refuse and sewage sludge. I. Evolution of temperature, pH, C/N ratio and cation-exchange capacity. Resour. Conserv. Recycl. 1991, 6, 45–60. [Google Scholar] [CrossRef]
- Huang, D.; Gao, L.; Cheng, M.; Yan, M.; Zhang, G.; Chen, S.; Du, L.; Wang, G.; Li, R.; Tao, J.; et al. Carbon and N conservation during composting: A review. Sci. Total Environ. 2022, 840, 156355. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, E.C.; Aydın Temel, F.; Cagcag Yolcu, O.; Turan, N.G. Modeling and optimization of process parameters in co-composting of tea waste and food waste: Radial basis function neural networks and genetic algorithm. Bioresour. Technol. 2022, 363, 127910. [Google Scholar] [CrossRef] [PubMed]
- Meunchang, S.; Panichsakpatana, S.; Weaver, R.W. Co-composting of filter cake and bagasse; by-products from a sugar mill. Bioresour. Technol. 2005, 96, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Li, Y.; Han, Y.; Qian, W.; Li, G.; Luo, W. Performance of mature compost to control gaseous emissions in kitchen waste composting. Sci. Total Environ. 2019, 657, 262–269. [Google Scholar] [CrossRef] [PubMed]
Sample Type | Items | Water Content (%) | pH (H2O) | EC (1:5) (µS cm−1) | Total C (%) | Total N (%) | NH4+-N (mg kg DW−1) | NO3−-N (mg kg DW−1) |
---|---|---|---|---|---|---|---|---|
Clinker | Mean | 6.0 | 8.2 | 0.1 | 3.2 | 0.15 | 0.6 | 1.3 |
SE | 0.1 | 0.13 | 0.01 | 0.12 | 0.03 | 0.06 | 0.11 | |
Tea leaf | Mean | 78.3 | 5.7 | 0.3 | 48.3 | 4.31 | 8.9 | 2.7 |
SE | 0.03 | 0.03 | 0.00 | 0.14 | 0.01 | 1.27 | 0.31 | |
Sample Type | Items | C/N Ratio | Total P2O5 (mg 100 g DW−1) | Total Cation (mg 100 g DW−1) | COD (mg g DW−1) | |||
K2O | MgO | CaO | Na2O | |||||
Clinker | Mean | 24.2 | 20 | 46 | 31 | 0.35 | 51 | 0.048 |
SE | 6.69 | 1.0 | 5.5 | 1.9 | 0.2 | 3.6 | 0.006 | |
Tea leaf | Mean | 11.2 | 206 | 289 | 320 | 456 | 2.43 | 150 |
SE | 0.05 | 1.2 | 4.0 | 1.6 | 3.0 | 0.9 | 17 |
Treatment | N (g Container−1) | N Loss Rate (%) | C (g Container−1) | C Loss Rate (%) | ||||
---|---|---|---|---|---|---|---|---|
Start | Finish | Loss | Start | Finish | Loss | |||
Clinker 0% | 93.4 | 55.1 | 38.3 | 41.0 | 1046 | 430 | 616 | 58.9 |
Clinker 20% | 77.5 | 59.3 | 18.2 | 23.5 | 896 | 483 | 413 | 46.1 |
Clinker 40% | 61.6 | 50.3 | 11.3 | 18.3 | 747 | 432 | 315 | 42.2 |
Clinker 60% | 45.6 | 31.0 | 14.6 | 32.0 | 597 | 359 | 238 | 39.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morita, N.; Toma, Y.; Ueno, H. Acceleration of Composting by Addition of Clinker to Tea Leaf Compost. Waste 2024, 2, 72-84. https://doi.org/10.3390/waste2010004
Morita N, Toma Y, Ueno H. Acceleration of Composting by Addition of Clinker to Tea Leaf Compost. Waste. 2024; 2(1):72-84. https://doi.org/10.3390/waste2010004
Chicago/Turabian StyleMorita, Nobuki, Yo Toma, and Hideto Ueno. 2024. "Acceleration of Composting by Addition of Clinker to Tea Leaf Compost" Waste 2, no. 1: 72-84. https://doi.org/10.3390/waste2010004
APA StyleMorita, N., Toma, Y., & Ueno, H. (2024). Acceleration of Composting by Addition of Clinker to Tea Leaf Compost. Waste, 2(1), 72-84. https://doi.org/10.3390/waste2010004